Abstract

Cu2O is an interesting semiconductor with extraordinary high exciton binding energy, however exhibiting weak room temperature excitonic luminescence. The issue was addressed in literature emphasizing a detrimental role of native point defects responsible for optical quenching. Resolving the problem, we propose a method to manipulate the Cu and O vacancies contents opening a gateway for optoelectronic applications of Cu2O. Specifically, applying oxygen lean conditions, we observe a remarkable suppression of VCu enabling strong room temperature exciton luminescence, while manipulating with VO reveals no impact on the signal. As a result, the excitonic signature was interpreted in terms of phonon assisted transitions.

© 2013 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Y. Jeong, J. Sohn, S. H. Song, I. T. Cho, J. H. Lee, E. S. Cho, and H. I. Kwon, “Investigation of the charge transport mechanism and subgap density of states in p-type Cu2O thin-film transistors,” Appl. Phys. Lett.102(8), 082103 (2013).
    [CrossRef]
  2. S. O. Kang, S. Hong, J. Choi, J. S. Kim, I. Hwang, I. S. Byun, K. S. Yun, and B. H. Park, “Electrochemical growth and resistive switching of flat-surfaced and (111)-oriented Cu2O films,” Appl. Phys. Lett.95(9), 092108 (2009).
    [CrossRef]
  3. A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett.88(16), 163502 (2006).
    [CrossRef]
  4. A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, and E. Thimsen, “Highly active oxide photocathode for photoelectrochemical water reduction,” Nat. Mater.10(6), 456–461 (2011).
    [CrossRef] [PubMed]
  5. H. Raebiger, S. Lany, and A. Zunger, “Impurity Clustering and Ferromagnetic Interactions that are not Carrier Induced in Dilute Magnetic Semiconductors: The Case of Cu2O:Co,” Phys. Rev. Lett.99(16), 167203 (2007).
    [CrossRef] [PubMed]
  6. D. W. Snoke, J. P. Wolfe, and A. Mysyrowicz, “Evidence for Bose-Einstein condensation of excitons in Cu2O,” Phys. Rev. B41(16), 11171–11184 (1990).
    [CrossRef] [PubMed]
  7. H. Stolz and N. Naka, “Paraexcitons of Cu2O confined by a strain trap and high magnetic fields,” Phys. Rev. B84(16), 165215 (2011).
    [CrossRef]
  8. F. Bassani and M. Rovere, “Biexciton binding energy in Cu2O,” Solid State Commun.19(9), 887–890 (1976).
    [CrossRef]
  9. R. J. Elliott, “Symmetry of Excitons in Cu2O,” Phys. Rev.124(2), 340–345 (1961).
    [CrossRef]
  10. T. Itoh and S. Narita, “Study of absorption spectra of excitons in Cu2O by wavelength modulation technique,” J. Phys. Soc. Jpn.39(1), 132–139 (1975).
    [CrossRef]
  11. D. W. Snoke, A. J. Shields, and M. Cardona, “Phonon-absorption recombination luminescence of room-temperature excitons in Cu2O,” Phys. Rev. B45(20), 11693–11697 (1992).
    [CrossRef] [PubMed]
  12. T. Ito and T. Masumi, “Detailed examination of relaxation processes of excitons in photoluminescence spectra of Cu2O,” J. Phys. Soc. Jpn.66(7), 2185–2193 (1997).
    [CrossRef]
  13. T. Ito, H. Yamaguchi, K. Okabe, and T. Masumi, “Single-crystal growth and characterization of Cu2O and CuO,” J. Mater. Sci.33(14), 3555–3566 (1998).
    [CrossRef]
  14. Z. G. Yin, H. T. Zhang, D. M. Goodner, M. J. Bedzyk, R. P. H. Chang, Y. Sun, and J. B. Ketterson, “Two-dimensional growth of continuous Cu2O thin films by magnetron sputtering,” Appl. Phys. Lett.86(6), 061901 (2005).
    [CrossRef]
  15. G. G. Condorelli, G. Malandrino, and I. L. Fragalà, “Kinetic Study of MOCVD Fabrication of Copper (I) and Copper (II) Oxide Films,” Chem. Vap. Deposition5(1), 21–27 (1999).
    [CrossRef]
  16. X. L. Du, Z. X. Mei, Z. L. Liu, Y. Guo, T. C. Zhang, Y. N. Hou, Z. Zhang, Q. K. Xue, and A. Yu Kuznetsov, “Controlled growth of high-quality ZnO-based films and fabrication of visible-blind and solar-blind ultra-violet detectors,” Adv. Mater.21(45), 4625–4630 (2009).
    [CrossRef]
  17. In fact the MBE synthesis was explored, in terms of crystalline quality, single phase appearance, and growth rate trade-offs, at a range of temperatures and optimized at 650°C, so that this epi-sample is used in the optical characterization for comparison with the oxidized samples.
  18. J. Q. Li, Z. X. Mei, D. Q. Ye, Y. N. Hou, Y. P. Liu, and X. L. Du, “Temperature dependence of Cu2O orientations in oxidation of Cu (111)/ZnO (0001) by oxygen plasma,” Chin. Phys. B21(7), 076401 (2012).
    [CrossRef]
  19. J. Q. Li, Z. X. Mei, D. Q. Ye, H. L. Liang, Y. P. Liu, and X. L. Du, “Growth of single-crystalline Cu2O(111) film on ultrathin MgO modified α-Al2O3(0001) substrate by molecular beam epitaxy,” J. Cryst. Growth353(1), 63–67 (2012).
    [CrossRef]
  20. H. Raebiger, S. Lany, and A. Zunger, “Origins of the p-type nature and cation deficiency in Cu2O and related materials,” Phys. Rev. B76(4), 045209 (2007).
    [CrossRef]
  21. The VO signature at ~750 nm, is still attributed to the doubly charged VO, however slightly shifted to the longer wavelength as compared to that of 720 nm in [13], in part due to the bad gap narrowing.
  22. Using this logic it may be anticipated that the sample oxidized at 300°C might yield the strongest VO signal, but due to its generally low crystallinity, the PL intensity is damped by non-radiative recombination channels.

2013 (1)

C. Y. Jeong, J. Sohn, S. H. Song, I. T. Cho, J. H. Lee, E. S. Cho, and H. I. Kwon, “Investigation of the charge transport mechanism and subgap density of states in p-type Cu2O thin-film transistors,” Appl. Phys. Lett.102(8), 082103 (2013).
[CrossRef]

2012 (2)

J. Q. Li, Z. X. Mei, D. Q. Ye, Y. N. Hou, Y. P. Liu, and X. L. Du, “Temperature dependence of Cu2O orientations in oxidation of Cu (111)/ZnO (0001) by oxygen plasma,” Chin. Phys. B21(7), 076401 (2012).
[CrossRef]

J. Q. Li, Z. X. Mei, D. Q. Ye, H. L. Liang, Y. P. Liu, and X. L. Du, “Growth of single-crystalline Cu2O(111) film on ultrathin MgO modified α-Al2O3(0001) substrate by molecular beam epitaxy,” J. Cryst. Growth353(1), 63–67 (2012).
[CrossRef]

2011 (2)

A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, and E. Thimsen, “Highly active oxide photocathode for photoelectrochemical water reduction,” Nat. Mater.10(6), 456–461 (2011).
[CrossRef] [PubMed]

H. Stolz and N. Naka, “Paraexcitons of Cu2O confined by a strain trap and high magnetic fields,” Phys. Rev. B84(16), 165215 (2011).
[CrossRef]

2009 (2)

S. O. Kang, S. Hong, J. Choi, J. S. Kim, I. Hwang, I. S. Byun, K. S. Yun, and B. H. Park, “Electrochemical growth and resistive switching of flat-surfaced and (111)-oriented Cu2O films,” Appl. Phys. Lett.95(9), 092108 (2009).
[CrossRef]

X. L. Du, Z. X. Mei, Z. L. Liu, Y. Guo, T. C. Zhang, Y. N. Hou, Z. Zhang, Q. K. Xue, and A. Yu Kuznetsov, “Controlled growth of high-quality ZnO-based films and fabrication of visible-blind and solar-blind ultra-violet detectors,” Adv. Mater.21(45), 4625–4630 (2009).
[CrossRef]

2007 (2)

H. Raebiger, S. Lany, and A. Zunger, “Origins of the p-type nature and cation deficiency in Cu2O and related materials,” Phys. Rev. B76(4), 045209 (2007).
[CrossRef]

H. Raebiger, S. Lany, and A. Zunger, “Impurity Clustering and Ferromagnetic Interactions that are not Carrier Induced in Dilute Magnetic Semiconductors: The Case of Cu2O:Co,” Phys. Rev. Lett.99(16), 167203 (2007).
[CrossRef] [PubMed]

2006 (1)

A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett.88(16), 163502 (2006).
[CrossRef]

2005 (1)

Z. G. Yin, H. T. Zhang, D. M. Goodner, M. J. Bedzyk, R. P. H. Chang, Y. Sun, and J. B. Ketterson, “Two-dimensional growth of continuous Cu2O thin films by magnetron sputtering,” Appl. Phys. Lett.86(6), 061901 (2005).
[CrossRef]

1999 (1)

G. G. Condorelli, G. Malandrino, and I. L. Fragalà, “Kinetic Study of MOCVD Fabrication of Copper (I) and Copper (II) Oxide Films,” Chem. Vap. Deposition5(1), 21–27 (1999).
[CrossRef]

1998 (1)

T. Ito, H. Yamaguchi, K. Okabe, and T. Masumi, “Single-crystal growth and characterization of Cu2O and CuO,” J. Mater. Sci.33(14), 3555–3566 (1998).
[CrossRef]

1997 (1)

T. Ito and T. Masumi, “Detailed examination of relaxation processes of excitons in photoluminescence spectra of Cu2O,” J. Phys. Soc. Jpn.66(7), 2185–2193 (1997).
[CrossRef]

1992 (1)

D. W. Snoke, A. J. Shields, and M. Cardona, “Phonon-absorption recombination luminescence of room-temperature excitons in Cu2O,” Phys. Rev. B45(20), 11693–11697 (1992).
[CrossRef] [PubMed]

1990 (1)

D. W. Snoke, J. P. Wolfe, and A. Mysyrowicz, “Evidence for Bose-Einstein condensation of excitons in Cu2O,” Phys. Rev. B41(16), 11171–11184 (1990).
[CrossRef] [PubMed]

1976 (1)

F. Bassani and M. Rovere, “Biexciton binding energy in Cu2O,” Solid State Commun.19(9), 887–890 (1976).
[CrossRef]

1975 (1)

T. Itoh and S. Narita, “Study of absorption spectra of excitons in Cu2O by wavelength modulation technique,” J. Phys. Soc. Jpn.39(1), 132–139 (1975).
[CrossRef]

1961 (1)

R. J. Elliott, “Symmetry of Excitons in Cu2O,” Phys. Rev.124(2), 340–345 (1961).
[CrossRef]

Bassani, F.

F. Bassani and M. Rovere, “Biexciton binding energy in Cu2O,” Solid State Commun.19(9), 887–890 (1976).
[CrossRef]

Bedzyk, M. J.

Z. G. Yin, H. T. Zhang, D. M. Goodner, M. J. Bedzyk, R. P. H. Chang, Y. Sun, and J. B. Ketterson, “Two-dimensional growth of continuous Cu2O thin films by magnetron sputtering,” Appl. Phys. Lett.86(6), 061901 (2005).
[CrossRef]

Byun, I. S.

S. O. Kang, S. Hong, J. Choi, J. S. Kim, I. Hwang, I. S. Byun, K. S. Yun, and B. H. Park, “Electrochemical growth and resistive switching of flat-surfaced and (111)-oriented Cu2O films,” Appl. Phys. Lett.95(9), 092108 (2009).
[CrossRef]

Cardona, M.

D. W. Snoke, A. J. Shields, and M. Cardona, “Phonon-absorption recombination luminescence of room-temperature excitons in Cu2O,” Phys. Rev. B45(20), 11693–11697 (1992).
[CrossRef] [PubMed]

Chang, R. P. H.

Z. G. Yin, H. T. Zhang, D. M. Goodner, M. J. Bedzyk, R. P. H. Chang, Y. Sun, and J. B. Ketterson, “Two-dimensional growth of continuous Cu2O thin films by magnetron sputtering,” Appl. Phys. Lett.86(6), 061901 (2005).
[CrossRef]

Cho, E. S.

C. Y. Jeong, J. Sohn, S. H. Song, I. T. Cho, J. H. Lee, E. S. Cho, and H. I. Kwon, “Investigation of the charge transport mechanism and subgap density of states in p-type Cu2O thin-film transistors,” Appl. Phys. Lett.102(8), 082103 (2013).
[CrossRef]

Cho, I. T.

C. Y. Jeong, J. Sohn, S. H. Song, I. T. Cho, J. H. Lee, E. S. Cho, and H. I. Kwon, “Investigation of the charge transport mechanism and subgap density of states in p-type Cu2O thin-film transistors,” Appl. Phys. Lett.102(8), 082103 (2013).
[CrossRef]

Choi, J.

S. O. Kang, S. Hong, J. Choi, J. S. Kim, I. Hwang, I. S. Byun, K. S. Yun, and B. H. Park, “Electrochemical growth and resistive switching of flat-surfaced and (111)-oriented Cu2O films,” Appl. Phys. Lett.95(9), 092108 (2009).
[CrossRef]

Condorelli, G. G.

G. G. Condorelli, G. Malandrino, and I. L. Fragalà, “Kinetic Study of MOCVD Fabrication of Copper (I) and Copper (II) Oxide Films,” Chem. Vap. Deposition5(1), 21–27 (1999).
[CrossRef]

Du, X. L.

J. Q. Li, Z. X. Mei, D. Q. Ye, Y. N. Hou, Y. P. Liu, and X. L. Du, “Temperature dependence of Cu2O orientations in oxidation of Cu (111)/ZnO (0001) by oxygen plasma,” Chin. Phys. B21(7), 076401 (2012).
[CrossRef]

J. Q. Li, Z. X. Mei, D. Q. Ye, H. L. Liang, Y. P. Liu, and X. L. Du, “Growth of single-crystalline Cu2O(111) film on ultrathin MgO modified α-Al2O3(0001) substrate by molecular beam epitaxy,” J. Cryst. Growth353(1), 63–67 (2012).
[CrossRef]

X. L. Du, Z. X. Mei, Z. L. Liu, Y. Guo, T. C. Zhang, Y. N. Hou, Z. Zhang, Q. K. Xue, and A. Yu Kuznetsov, “Controlled growth of high-quality ZnO-based films and fabrication of visible-blind and solar-blind ultra-violet detectors,” Adv. Mater.21(45), 4625–4630 (2009).
[CrossRef]

Elliott, R. J.

R. J. Elliott, “Symmetry of Excitons in Cu2O,” Phys. Rev.124(2), 340–345 (1961).
[CrossRef]

Fragalà, I. L.

G. G. Condorelli, G. Malandrino, and I. L. Fragalà, “Kinetic Study of MOCVD Fabrication of Copper (I) and Copper (II) Oxide Films,” Chem. Vap. Deposition5(1), 21–27 (1999).
[CrossRef]

Goodner, D. M.

Z. G. Yin, H. T. Zhang, D. M. Goodner, M. J. Bedzyk, R. P. H. Chang, Y. Sun, and J. B. Ketterson, “Two-dimensional growth of continuous Cu2O thin films by magnetron sputtering,” Appl. Phys. Lett.86(6), 061901 (2005).
[CrossRef]

Grätzel, M.

A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, and E. Thimsen, “Highly active oxide photocathode for photoelectrochemical water reduction,” Nat. Mater.10(6), 456–461 (2011).
[CrossRef] [PubMed]

Guo, Y.

X. L. Du, Z. X. Mei, Z. L. Liu, Y. Guo, T. C. Zhang, Y. N. Hou, Z. Zhang, Q. K. Xue, and A. Yu Kuznetsov, “Controlled growth of high-quality ZnO-based films and fabrication of visible-blind and solar-blind ultra-violet detectors,” Adv. Mater.21(45), 4625–4630 (2009).
[CrossRef]

Hong, S.

S. O. Kang, S. Hong, J. Choi, J. S. Kim, I. Hwang, I. S. Byun, K. S. Yun, and B. H. Park, “Electrochemical growth and resistive switching of flat-surfaced and (111)-oriented Cu2O films,” Appl. Phys. Lett.95(9), 092108 (2009).
[CrossRef]

Hou, Y. N.

J. Q. Li, Z. X. Mei, D. Q. Ye, Y. N. Hou, Y. P. Liu, and X. L. Du, “Temperature dependence of Cu2O orientations in oxidation of Cu (111)/ZnO (0001) by oxygen plasma,” Chin. Phys. B21(7), 076401 (2012).
[CrossRef]

X. L. Du, Z. X. Mei, Z. L. Liu, Y. Guo, T. C. Zhang, Y. N. Hou, Z. Zhang, Q. K. Xue, and A. Yu Kuznetsov, “Controlled growth of high-quality ZnO-based films and fabrication of visible-blind and solar-blind ultra-violet detectors,” Adv. Mater.21(45), 4625–4630 (2009).
[CrossRef]

Hwang, I.

S. O. Kang, S. Hong, J. Choi, J. S. Kim, I. Hwang, I. S. Byun, K. S. Yun, and B. H. Park, “Electrochemical growth and resistive switching of flat-surfaced and (111)-oriented Cu2O films,” Appl. Phys. Lett.95(9), 092108 (2009).
[CrossRef]

Ito, T.

T. Ito, H. Yamaguchi, K. Okabe, and T. Masumi, “Single-crystal growth and characterization of Cu2O and CuO,” J. Mater. Sci.33(14), 3555–3566 (1998).
[CrossRef]

T. Ito and T. Masumi, “Detailed examination of relaxation processes of excitons in photoluminescence spectra of Cu2O,” J. Phys. Soc. Jpn.66(7), 2185–2193 (1997).
[CrossRef]

Itoh, T.

T. Itoh and S. Narita, “Study of absorption spectra of excitons in Cu2O by wavelength modulation technique,” J. Phys. Soc. Jpn.39(1), 132–139 (1975).
[CrossRef]

Jeong, C. Y.

C. Y. Jeong, J. Sohn, S. H. Song, I. T. Cho, J. H. Lee, E. S. Cho, and H. I. Kwon, “Investigation of the charge transport mechanism and subgap density of states in p-type Cu2O thin-film transistors,” Appl. Phys. Lett.102(8), 082103 (2013).
[CrossRef]

Kang, S. O.

S. O. Kang, S. Hong, J. Choi, J. S. Kim, I. Hwang, I. S. Byun, K. S. Yun, and B. H. Park, “Electrochemical growth and resistive switching of flat-surfaced and (111)-oriented Cu2O films,” Appl. Phys. Lett.95(9), 092108 (2009).
[CrossRef]

Ketterson, J. B.

Z. G. Yin, H. T. Zhang, D. M. Goodner, M. J. Bedzyk, R. P. H. Chang, Y. Sun, and J. B. Ketterson, “Two-dimensional growth of continuous Cu2O thin films by magnetron sputtering,” Appl. Phys. Lett.86(6), 061901 (2005).
[CrossRef]

Kim, J. S.

S. O. Kang, S. Hong, J. Choi, J. S. Kim, I. Hwang, I. S. Byun, K. S. Yun, and B. H. Park, “Electrochemical growth and resistive switching of flat-surfaced and (111)-oriented Cu2O films,” Appl. Phys. Lett.95(9), 092108 (2009).
[CrossRef]

Kwon, H. I.

C. Y. Jeong, J. Sohn, S. H. Song, I. T. Cho, J. H. Lee, E. S. Cho, and H. I. Kwon, “Investigation of the charge transport mechanism and subgap density of states in p-type Cu2O thin-film transistors,” Appl. Phys. Lett.102(8), 082103 (2013).
[CrossRef]

Lany, S.

H. Raebiger, S. Lany, and A. Zunger, “Impurity Clustering and Ferromagnetic Interactions that are not Carrier Induced in Dilute Magnetic Semiconductors: The Case of Cu2O:Co,” Phys. Rev. Lett.99(16), 167203 (2007).
[CrossRef] [PubMed]

H. Raebiger, S. Lany, and A. Zunger, “Origins of the p-type nature and cation deficiency in Cu2O and related materials,” Phys. Rev. B76(4), 045209 (2007).
[CrossRef]

Laporte, V.

A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, and E. Thimsen, “Highly active oxide photocathode for photoelectrochemical water reduction,” Nat. Mater.10(6), 456–461 (2011).
[CrossRef] [PubMed]

Lee, J. H.

C. Y. Jeong, J. Sohn, S. H. Song, I. T. Cho, J. H. Lee, E. S. Cho, and H. I. Kwon, “Investigation of the charge transport mechanism and subgap density of states in p-type Cu2O thin-film transistors,” Appl. Phys. Lett.102(8), 082103 (2013).
[CrossRef]

Li, J. Q.

J. Q. Li, Z. X. Mei, D. Q. Ye, Y. N. Hou, Y. P. Liu, and X. L. Du, “Temperature dependence of Cu2O orientations in oxidation of Cu (111)/ZnO (0001) by oxygen plasma,” Chin. Phys. B21(7), 076401 (2012).
[CrossRef]

J. Q. Li, Z. X. Mei, D. Q. Ye, H. L. Liang, Y. P. Liu, and X. L. Du, “Growth of single-crystalline Cu2O(111) film on ultrathin MgO modified α-Al2O3(0001) substrate by molecular beam epitaxy,” J. Cryst. Growth353(1), 63–67 (2012).
[CrossRef]

Liang, H. L.

J. Q. Li, Z. X. Mei, D. Q. Ye, H. L. Liang, Y. P. Liu, and X. L. Du, “Growth of single-crystalline Cu2O(111) film on ultrathin MgO modified α-Al2O3(0001) substrate by molecular beam epitaxy,” J. Cryst. Growth353(1), 63–67 (2012).
[CrossRef]

Liu, Y. P.

J. Q. Li, Z. X. Mei, D. Q. Ye, H. L. Liang, Y. P. Liu, and X. L. Du, “Growth of single-crystalline Cu2O(111) film on ultrathin MgO modified α-Al2O3(0001) substrate by molecular beam epitaxy,” J. Cryst. Growth353(1), 63–67 (2012).
[CrossRef]

J. Q. Li, Z. X. Mei, D. Q. Ye, Y. N. Hou, Y. P. Liu, and X. L. Du, “Temperature dependence of Cu2O orientations in oxidation of Cu (111)/ZnO (0001) by oxygen plasma,” Chin. Phys. B21(7), 076401 (2012).
[CrossRef]

Liu, Z. L.

X. L. Du, Z. X. Mei, Z. L. Liu, Y. Guo, T. C. Zhang, Y. N. Hou, Z. Zhang, Q. K. Xue, and A. Yu Kuznetsov, “Controlled growth of high-quality ZnO-based films and fabrication of visible-blind and solar-blind ultra-violet detectors,” Adv. Mater.21(45), 4625–4630 (2009).
[CrossRef]

Malandrino, G.

G. G. Condorelli, G. Malandrino, and I. L. Fragalà, “Kinetic Study of MOCVD Fabrication of Copper (I) and Copper (II) Oxide Films,” Chem. Vap. Deposition5(1), 21–27 (1999).
[CrossRef]

Masumi, T.

T. Ito, H. Yamaguchi, K. Okabe, and T. Masumi, “Single-crystal growth and characterization of Cu2O and CuO,” J. Mater. Sci.33(14), 3555–3566 (1998).
[CrossRef]

T. Ito and T. Masumi, “Detailed examination of relaxation processes of excitons in photoluminescence spectra of Cu2O,” J. Phys. Soc. Jpn.66(7), 2185–2193 (1997).
[CrossRef]

Mei, Z. X.

J. Q. Li, Z. X. Mei, D. Q. Ye, Y. N. Hou, Y. P. Liu, and X. L. Du, “Temperature dependence of Cu2O orientations in oxidation of Cu (111)/ZnO (0001) by oxygen plasma,” Chin. Phys. B21(7), 076401 (2012).
[CrossRef]

J. Q. Li, Z. X. Mei, D. Q. Ye, H. L. Liang, Y. P. Liu, and X. L. Du, “Growth of single-crystalline Cu2O(111) film on ultrathin MgO modified α-Al2O3(0001) substrate by molecular beam epitaxy,” J. Cryst. Growth353(1), 63–67 (2012).
[CrossRef]

X. L. Du, Z. X. Mei, Z. L. Liu, Y. Guo, T. C. Zhang, Y. N. Hou, Z. Zhang, Q. K. Xue, and A. Yu Kuznetsov, “Controlled growth of high-quality ZnO-based films and fabrication of visible-blind and solar-blind ultra-violet detectors,” Adv. Mater.21(45), 4625–4630 (2009).
[CrossRef]

Mittiga, A.

A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett.88(16), 163502 (2006).
[CrossRef]

Mysyrowicz, A.

D. W. Snoke, J. P. Wolfe, and A. Mysyrowicz, “Evidence for Bose-Einstein condensation of excitons in Cu2O,” Phys. Rev. B41(16), 11171–11184 (1990).
[CrossRef] [PubMed]

Naka, N.

H. Stolz and N. Naka, “Paraexcitons of Cu2O confined by a strain trap and high magnetic fields,” Phys. Rev. B84(16), 165215 (2011).
[CrossRef]

Narita, S.

T. Itoh and S. Narita, “Study of absorption spectra of excitons in Cu2O by wavelength modulation technique,” J. Phys. Soc. Jpn.39(1), 132–139 (1975).
[CrossRef]

Okabe, K.

T. Ito, H. Yamaguchi, K. Okabe, and T. Masumi, “Single-crystal growth and characterization of Cu2O and CuO,” J. Mater. Sci.33(14), 3555–3566 (1998).
[CrossRef]

Paracchino, A.

A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, and E. Thimsen, “Highly active oxide photocathode for photoelectrochemical water reduction,” Nat. Mater.10(6), 456–461 (2011).
[CrossRef] [PubMed]

Park, B. H.

S. O. Kang, S. Hong, J. Choi, J. S. Kim, I. Hwang, I. S. Byun, K. S. Yun, and B. H. Park, “Electrochemical growth and resistive switching of flat-surfaced and (111)-oriented Cu2O films,” Appl. Phys. Lett.95(9), 092108 (2009).
[CrossRef]

Raebiger, H.

H. Raebiger, S. Lany, and A. Zunger, “Impurity Clustering and Ferromagnetic Interactions that are not Carrier Induced in Dilute Magnetic Semiconductors: The Case of Cu2O:Co,” Phys. Rev. Lett.99(16), 167203 (2007).
[CrossRef] [PubMed]

H. Raebiger, S. Lany, and A. Zunger, “Origins of the p-type nature and cation deficiency in Cu2O and related materials,” Phys. Rev. B76(4), 045209 (2007).
[CrossRef]

Rovere, M.

F. Bassani and M. Rovere, “Biexciton binding energy in Cu2O,” Solid State Commun.19(9), 887–890 (1976).
[CrossRef]

Salza, E.

A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett.88(16), 163502 (2006).
[CrossRef]

Sarto, F.

A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett.88(16), 163502 (2006).
[CrossRef]

Shields, A. J.

D. W. Snoke, A. J. Shields, and M. Cardona, “Phonon-absorption recombination luminescence of room-temperature excitons in Cu2O,” Phys. Rev. B45(20), 11693–11697 (1992).
[CrossRef] [PubMed]

Sivula, K.

A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, and E. Thimsen, “Highly active oxide photocathode for photoelectrochemical water reduction,” Nat. Mater.10(6), 456–461 (2011).
[CrossRef] [PubMed]

Snoke, D. W.

D. W. Snoke, A. J. Shields, and M. Cardona, “Phonon-absorption recombination luminescence of room-temperature excitons in Cu2O,” Phys. Rev. B45(20), 11693–11697 (1992).
[CrossRef] [PubMed]

D. W. Snoke, J. P. Wolfe, and A. Mysyrowicz, “Evidence for Bose-Einstein condensation of excitons in Cu2O,” Phys. Rev. B41(16), 11171–11184 (1990).
[CrossRef] [PubMed]

Sohn, J.

C. Y. Jeong, J. Sohn, S. H. Song, I. T. Cho, J. H. Lee, E. S. Cho, and H. I. Kwon, “Investigation of the charge transport mechanism and subgap density of states in p-type Cu2O thin-film transistors,” Appl. Phys. Lett.102(8), 082103 (2013).
[CrossRef]

Song, S. H.

C. Y. Jeong, J. Sohn, S. H. Song, I. T. Cho, J. H. Lee, E. S. Cho, and H. I. Kwon, “Investigation of the charge transport mechanism and subgap density of states in p-type Cu2O thin-film transistors,” Appl. Phys. Lett.102(8), 082103 (2013).
[CrossRef]

Stolz, H.

H. Stolz and N. Naka, “Paraexcitons of Cu2O confined by a strain trap and high magnetic fields,” Phys. Rev. B84(16), 165215 (2011).
[CrossRef]

Sun, Y.

Z. G. Yin, H. T. Zhang, D. M. Goodner, M. J. Bedzyk, R. P. H. Chang, Y. Sun, and J. B. Ketterson, “Two-dimensional growth of continuous Cu2O thin films by magnetron sputtering,” Appl. Phys. Lett.86(6), 061901 (2005).
[CrossRef]

Thimsen, E.

A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, and E. Thimsen, “Highly active oxide photocathode for photoelectrochemical water reduction,” Nat. Mater.10(6), 456–461 (2011).
[CrossRef] [PubMed]

Tucci, M.

A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett.88(16), 163502 (2006).
[CrossRef]

Vasanthi, R.

A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett.88(16), 163502 (2006).
[CrossRef]

Wolfe, J. P.

D. W. Snoke, J. P. Wolfe, and A. Mysyrowicz, “Evidence for Bose-Einstein condensation of excitons in Cu2O,” Phys. Rev. B41(16), 11171–11184 (1990).
[CrossRef] [PubMed]

Xue, Q. K.

X. L. Du, Z. X. Mei, Z. L. Liu, Y. Guo, T. C. Zhang, Y. N. Hou, Z. Zhang, Q. K. Xue, and A. Yu Kuznetsov, “Controlled growth of high-quality ZnO-based films and fabrication of visible-blind and solar-blind ultra-violet detectors,” Adv. Mater.21(45), 4625–4630 (2009).
[CrossRef]

Yamaguchi, H.

T. Ito, H. Yamaguchi, K. Okabe, and T. Masumi, “Single-crystal growth and characterization of Cu2O and CuO,” J. Mater. Sci.33(14), 3555–3566 (1998).
[CrossRef]

Ye, D. Q.

J. Q. Li, Z. X. Mei, D. Q. Ye, Y. N. Hou, Y. P. Liu, and X. L. Du, “Temperature dependence of Cu2O orientations in oxidation of Cu (111)/ZnO (0001) by oxygen plasma,” Chin. Phys. B21(7), 076401 (2012).
[CrossRef]

J. Q. Li, Z. X. Mei, D. Q. Ye, H. L. Liang, Y. P. Liu, and X. L. Du, “Growth of single-crystalline Cu2O(111) film on ultrathin MgO modified α-Al2O3(0001) substrate by molecular beam epitaxy,” J. Cryst. Growth353(1), 63–67 (2012).
[CrossRef]

Yin, Z. G.

Z. G. Yin, H. T. Zhang, D. M. Goodner, M. J. Bedzyk, R. P. H. Chang, Y. Sun, and J. B. Ketterson, “Two-dimensional growth of continuous Cu2O thin films by magnetron sputtering,” Appl. Phys. Lett.86(6), 061901 (2005).
[CrossRef]

Yu Kuznetsov, A.

X. L. Du, Z. X. Mei, Z. L. Liu, Y. Guo, T. C. Zhang, Y. N. Hou, Z. Zhang, Q. K. Xue, and A. Yu Kuznetsov, “Controlled growth of high-quality ZnO-based films and fabrication of visible-blind and solar-blind ultra-violet detectors,” Adv. Mater.21(45), 4625–4630 (2009).
[CrossRef]

Yun, K. S.

S. O. Kang, S. Hong, J. Choi, J. S. Kim, I. Hwang, I. S. Byun, K. S. Yun, and B. H. Park, “Electrochemical growth and resistive switching of flat-surfaced and (111)-oriented Cu2O films,” Appl. Phys. Lett.95(9), 092108 (2009).
[CrossRef]

Zhang, H. T.

Z. G. Yin, H. T. Zhang, D. M. Goodner, M. J. Bedzyk, R. P. H. Chang, Y. Sun, and J. B. Ketterson, “Two-dimensional growth of continuous Cu2O thin films by magnetron sputtering,” Appl. Phys. Lett.86(6), 061901 (2005).
[CrossRef]

Zhang, T. C.

X. L. Du, Z. X. Mei, Z. L. Liu, Y. Guo, T. C. Zhang, Y. N. Hou, Z. Zhang, Q. K. Xue, and A. Yu Kuznetsov, “Controlled growth of high-quality ZnO-based films and fabrication of visible-blind and solar-blind ultra-violet detectors,” Adv. Mater.21(45), 4625–4630 (2009).
[CrossRef]

Zhang, Z.

X. L. Du, Z. X. Mei, Z. L. Liu, Y. Guo, T. C. Zhang, Y. N. Hou, Z. Zhang, Q. K. Xue, and A. Yu Kuznetsov, “Controlled growth of high-quality ZnO-based films and fabrication of visible-blind and solar-blind ultra-violet detectors,” Adv. Mater.21(45), 4625–4630 (2009).
[CrossRef]

Zunger, A.

H. Raebiger, S. Lany, and A. Zunger, “Impurity Clustering and Ferromagnetic Interactions that are not Carrier Induced in Dilute Magnetic Semiconductors: The Case of Cu2O:Co,” Phys. Rev. Lett.99(16), 167203 (2007).
[CrossRef] [PubMed]

H. Raebiger, S. Lany, and A. Zunger, “Origins of the p-type nature and cation deficiency in Cu2O and related materials,” Phys. Rev. B76(4), 045209 (2007).
[CrossRef]

Adv. Mater. (1)

X. L. Du, Z. X. Mei, Z. L. Liu, Y. Guo, T. C. Zhang, Y. N. Hou, Z. Zhang, Q. K. Xue, and A. Yu Kuznetsov, “Controlled growth of high-quality ZnO-based films and fabrication of visible-blind and solar-blind ultra-violet detectors,” Adv. Mater.21(45), 4625–4630 (2009).
[CrossRef]

Appl. Phys. Lett. (4)

C. Y. Jeong, J. Sohn, S. H. Song, I. T. Cho, J. H. Lee, E. S. Cho, and H. I. Kwon, “Investigation of the charge transport mechanism and subgap density of states in p-type Cu2O thin-film transistors,” Appl. Phys. Lett.102(8), 082103 (2013).
[CrossRef]

S. O. Kang, S. Hong, J. Choi, J. S. Kim, I. Hwang, I. S. Byun, K. S. Yun, and B. H. Park, “Electrochemical growth and resistive switching of flat-surfaced and (111)-oriented Cu2O films,” Appl. Phys. Lett.95(9), 092108 (2009).
[CrossRef]

A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett.88(16), 163502 (2006).
[CrossRef]

Z. G. Yin, H. T. Zhang, D. M. Goodner, M. J. Bedzyk, R. P. H. Chang, Y. Sun, and J. B. Ketterson, “Two-dimensional growth of continuous Cu2O thin films by magnetron sputtering,” Appl. Phys. Lett.86(6), 061901 (2005).
[CrossRef]

Chem. Vap. Deposition (1)

G. G. Condorelli, G. Malandrino, and I. L. Fragalà, “Kinetic Study of MOCVD Fabrication of Copper (I) and Copper (II) Oxide Films,” Chem. Vap. Deposition5(1), 21–27 (1999).
[CrossRef]

Chin. Phys. B (1)

J. Q. Li, Z. X. Mei, D. Q. Ye, Y. N. Hou, Y. P. Liu, and X. L. Du, “Temperature dependence of Cu2O orientations in oxidation of Cu (111)/ZnO (0001) by oxygen plasma,” Chin. Phys. B21(7), 076401 (2012).
[CrossRef]

J. Cryst. Growth (1)

J. Q. Li, Z. X. Mei, D. Q. Ye, H. L. Liang, Y. P. Liu, and X. L. Du, “Growth of single-crystalline Cu2O(111) film on ultrathin MgO modified α-Al2O3(0001) substrate by molecular beam epitaxy,” J. Cryst. Growth353(1), 63–67 (2012).
[CrossRef]

J. Mater. Sci. (1)

T. Ito, H. Yamaguchi, K. Okabe, and T. Masumi, “Single-crystal growth and characterization of Cu2O and CuO,” J. Mater. Sci.33(14), 3555–3566 (1998).
[CrossRef]

J. Phys. Soc. Jpn. (2)

T. Ito and T. Masumi, “Detailed examination of relaxation processes of excitons in photoluminescence spectra of Cu2O,” J. Phys. Soc. Jpn.66(7), 2185–2193 (1997).
[CrossRef]

T. Itoh and S. Narita, “Study of absorption spectra of excitons in Cu2O by wavelength modulation technique,” J. Phys. Soc. Jpn.39(1), 132–139 (1975).
[CrossRef]

Nat. Mater. (1)

A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, and E. Thimsen, “Highly active oxide photocathode for photoelectrochemical water reduction,” Nat. Mater.10(6), 456–461 (2011).
[CrossRef] [PubMed]

Phys. Rev. (1)

R. J. Elliott, “Symmetry of Excitons in Cu2O,” Phys. Rev.124(2), 340–345 (1961).
[CrossRef]

Phys. Rev. B (4)

H. Raebiger, S. Lany, and A. Zunger, “Origins of the p-type nature and cation deficiency in Cu2O and related materials,” Phys. Rev. B76(4), 045209 (2007).
[CrossRef]

D. W. Snoke, A. J. Shields, and M. Cardona, “Phonon-absorption recombination luminescence of room-temperature excitons in Cu2O,” Phys. Rev. B45(20), 11693–11697 (1992).
[CrossRef] [PubMed]

D. W. Snoke, J. P. Wolfe, and A. Mysyrowicz, “Evidence for Bose-Einstein condensation of excitons in Cu2O,” Phys. Rev. B41(16), 11171–11184 (1990).
[CrossRef] [PubMed]

H. Stolz and N. Naka, “Paraexcitons of Cu2O confined by a strain trap and high magnetic fields,” Phys. Rev. B84(16), 165215 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

H. Raebiger, S. Lany, and A. Zunger, “Impurity Clustering and Ferromagnetic Interactions that are not Carrier Induced in Dilute Magnetic Semiconductors: The Case of Cu2O:Co,” Phys. Rev. Lett.99(16), 167203 (2007).
[CrossRef] [PubMed]

Solid State Commun. (1)

F. Bassani and M. Rovere, “Biexciton binding energy in Cu2O,” Solid State Commun.19(9), 887–890 (1976).
[CrossRef]

Other (3)

The VO signature at ~750 nm, is still attributed to the doubly charged VO, however slightly shifted to the longer wavelength as compared to that of 720 nm in [13], in part due to the bad gap narrowing.

Using this logic it may be anticipated that the sample oxidized at 300°C might yield the strongest VO signal, but due to its generally low crystallinity, the PL intensity is damped by non-radiative recombination channels.

In fact the MBE synthesis was explored, in terms of crystalline quality, single phase appearance, and growth rate trade-offs, at a range of temperatures and optimized at 650°C, so that this epi-sample is used in the optical characterization for comparison with the oxidized samples.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics