Abstract

Herein we present nanoporous transparent and conducting films prepared by sputtering controlled amounts of ITO onto and into the interconnected pores of SiO2 and SnO2 nanoparticle films. The sheet resistance of these nanoporous transparent conducting films made with either SiO2 or SnO2 nanoparticles is less than 103 Ω/□. Furthermore, we demonstrate entirely nanoporous one-dimensional photonic crystals by alternately stacking nanoporous transparent and conducting films made from SiO2 and SnO2 nanoparticles.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, “Evaporation-induced self-assembly: Nanostructures made easy,” Adv. Mater.11(7), 579–585 (1999).
    [CrossRef]
  2. D. Fattakhova-Rohlfing, T. Brezesinski, J. Rathuoský, A. Feldhoff, T. Oekermann, M. Wark, and B. Smarsly, “Transparent conducting films of indium tin oxide with 3D mesopore architecture,” Adv. Mater.18(22), 2980–2983 (2006).
    [CrossRef]
  3. K. J. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A13(3), 1032–1035 (1995).
    [CrossRef]
  4. M. F. Roscheisen and B. M. Sager, “Nanostructured transparent conducting electrode,” U.S. Pat. No. 7,594,982, (January 6, 2003).
  5. C. Goebbert, R. Nonninger, M. A. Aegerter, and H. Schmidt, “Wet chemical deposition of ATO and ITO coatings using crystalline nanoparticles redispersable in solutions,” Thin Solid Films351(1–2), 79–84 (1999).
    [CrossRef]
  6. T. G. Conti, A. J. Chiquito, R. O. da Silva, E. Longo, and E. R. Leite, “Electrical properties of highly conducting SnO2:Sb nanocrystals synthesized using a nonaqueous sol-gel method,” J. Am. Ceram. Soc.93(11), 3862–3866 (2010).
    [CrossRef]
  7. H. Lin, T. Jin, A. Dmytruk, M. Saito, and T. Yazawa, “Preparation of a porous ITO electrode,” J.Photochem. Photobiol. A164(1–3), 173–177 (2004).
    [CrossRef]
  8. P. G. O’Brien, Y. Yang, A. Chutinan, P. Mahtani, K. Leong, D. P. Puzzo, L. D. Bonifacio, C. Lin, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystal solar spectrum splitters made of alternating sputtered indium-tin oxide and spin-coated silica nanoparticle layers for enhanced photovoltaics,” Sol. Energy Mater. Sol. Cells102, 173–183 (2012).
    [CrossRef]
  9. M. E. Calvo, O. Sánchez-Sobrado, S. Colodrero, and H. Míguez, “Control over the Structural and Optical Features of Nanoparticle-Based One-Dimensional Photonic Crystals,” Langmuir25(4), 2443–2448 (2009).
    [CrossRef] [PubMed]
  10. D. P. Puzzo, L. D. Bonifacio, J. Oreopoulos, C. M. Yip, I. Manners, and G. A. Ozin, “Color from colorless nanomaterials: Bragg reflectors made of nanoparticles,” J. Mater. Chem.19(21), 3500–3506 (2009).
    [CrossRef]
  11. P. G. O’Brien, D. P. Puzzo, A. Chutinan, L. D. Bonifacio, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystals,” Adv. Mater.22(5), 611–616 (2010).
    [CrossRef] [PubMed]
  12. J. D. Joannopoulos, S. G. Johnson, R. D. Meade, and J. N. Winn, Photonic Crystals, Molding the Flow of Light second edition, (Princeton University Press 2008).
  13. S. Colodrero, A. Forneli, C. López-López, L. Pellejà, H. Míguez, and E. Palomares, “Efficient transparent thin dye solar cells based on highly porous 1D photonic crystals,” Adv. Funct. Mater.22(6), 1303–1310 (2012).
    [CrossRef]
  14. T. Suzuki, H. Ueno, J. Nemoto, Y. Fujii, M. Hoshino, and M. Kaneko, “Wide range ammonia concentration analyzer utilizing a new principle of photoelectrochemical reaction at a nanoporous TiO2 photoanaode,” Analyst (Lond.)134(8), 1541–1543 (2009).
    [CrossRef]
  15. J. I. L. Chen, G. von Freymann, S. Y. Choi, V. Kitaev, and G. A. Ozin, “Slow photons in the fast lane in chemistry,” J. Mater. Chem.18(4), 369–373 (2008).
    [CrossRef]
  16. S. Shen and S. S. Mao, “Nanostructure designs for effective solar-to-hydrogen conversion,” Nanophotonics1(1), 31–50 (2012).
    [CrossRef]

2012 (3)

P. G. O’Brien, Y. Yang, A. Chutinan, P. Mahtani, K. Leong, D. P. Puzzo, L. D. Bonifacio, C. Lin, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystal solar spectrum splitters made of alternating sputtered indium-tin oxide and spin-coated silica nanoparticle layers for enhanced photovoltaics,” Sol. Energy Mater. Sol. Cells102, 173–183 (2012).
[CrossRef]

S. Colodrero, A. Forneli, C. López-López, L. Pellejà, H. Míguez, and E. Palomares, “Efficient transparent thin dye solar cells based on highly porous 1D photonic crystals,” Adv. Funct. Mater.22(6), 1303–1310 (2012).
[CrossRef]

S. Shen and S. S. Mao, “Nanostructure designs for effective solar-to-hydrogen conversion,” Nanophotonics1(1), 31–50 (2012).
[CrossRef]

2010 (2)

P. G. O’Brien, D. P. Puzzo, A. Chutinan, L. D. Bonifacio, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystals,” Adv. Mater.22(5), 611–616 (2010).
[CrossRef] [PubMed]

T. G. Conti, A. J. Chiquito, R. O. da Silva, E. Longo, and E. R. Leite, “Electrical properties of highly conducting SnO2:Sb nanocrystals synthesized using a nonaqueous sol-gel method,” J. Am. Ceram. Soc.93(11), 3862–3866 (2010).
[CrossRef]

2009 (3)

M. E. Calvo, O. Sánchez-Sobrado, S. Colodrero, and H. Míguez, “Control over the Structural and Optical Features of Nanoparticle-Based One-Dimensional Photonic Crystals,” Langmuir25(4), 2443–2448 (2009).
[CrossRef] [PubMed]

D. P. Puzzo, L. D. Bonifacio, J. Oreopoulos, C. M. Yip, I. Manners, and G. A. Ozin, “Color from colorless nanomaterials: Bragg reflectors made of nanoparticles,” J. Mater. Chem.19(21), 3500–3506 (2009).
[CrossRef]

T. Suzuki, H. Ueno, J. Nemoto, Y. Fujii, M. Hoshino, and M. Kaneko, “Wide range ammonia concentration analyzer utilizing a new principle of photoelectrochemical reaction at a nanoporous TiO2 photoanaode,” Analyst (Lond.)134(8), 1541–1543 (2009).
[CrossRef]

2008 (1)

J. I. L. Chen, G. von Freymann, S. Y. Choi, V. Kitaev, and G. A. Ozin, “Slow photons in the fast lane in chemistry,” J. Mater. Chem.18(4), 369–373 (2008).
[CrossRef]

2006 (1)

D. Fattakhova-Rohlfing, T. Brezesinski, J. Rathuoský, A. Feldhoff, T. Oekermann, M. Wark, and B. Smarsly, “Transparent conducting films of indium tin oxide with 3D mesopore architecture,” Adv. Mater.18(22), 2980–2983 (2006).
[CrossRef]

2004 (1)

H. Lin, T. Jin, A. Dmytruk, M. Saito, and T. Yazawa, “Preparation of a porous ITO electrode,” J.Photochem. Photobiol. A164(1–3), 173–177 (2004).
[CrossRef]

1999 (2)

C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, “Evaporation-induced self-assembly: Nanostructures made easy,” Adv. Mater.11(7), 579–585 (1999).
[CrossRef]

C. Goebbert, R. Nonninger, M. A. Aegerter, and H. Schmidt, “Wet chemical deposition of ATO and ITO coatings using crystalline nanoparticles redispersable in solutions,” Thin Solid Films351(1–2), 79–84 (1999).
[CrossRef]

1995 (1)

K. J. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A13(3), 1032–1035 (1995).
[CrossRef]

Aegerter, M. A.

C. Goebbert, R. Nonninger, M. A. Aegerter, and H. Schmidt, “Wet chemical deposition of ATO and ITO coatings using crystalline nanoparticles redispersable in solutions,” Thin Solid Films351(1–2), 79–84 (1999).
[CrossRef]

Bonifacio, L. D.

P. G. O’Brien, Y. Yang, A. Chutinan, P. Mahtani, K. Leong, D. P. Puzzo, L. D. Bonifacio, C. Lin, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystal solar spectrum splitters made of alternating sputtered indium-tin oxide and spin-coated silica nanoparticle layers for enhanced photovoltaics,” Sol. Energy Mater. Sol. Cells102, 173–183 (2012).
[CrossRef]

P. G. O’Brien, D. P. Puzzo, A. Chutinan, L. D. Bonifacio, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystals,” Adv. Mater.22(5), 611–616 (2010).
[CrossRef] [PubMed]

D. P. Puzzo, L. D. Bonifacio, J. Oreopoulos, C. M. Yip, I. Manners, and G. A. Ozin, “Color from colorless nanomaterials: Bragg reflectors made of nanoparticles,” J. Mater. Chem.19(21), 3500–3506 (2009).
[CrossRef]

Brett, M. J.

K. J. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A13(3), 1032–1035 (1995).
[CrossRef]

Brezesinski, T.

D. Fattakhova-Rohlfing, T. Brezesinski, J. Rathuoský, A. Feldhoff, T. Oekermann, M. Wark, and B. Smarsly, “Transparent conducting films of indium tin oxide with 3D mesopore architecture,” Adv. Mater.18(22), 2980–2983 (2006).
[CrossRef]

Brinker, C. J.

C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, “Evaporation-induced self-assembly: Nanostructures made easy,” Adv. Mater.11(7), 579–585 (1999).
[CrossRef]

Calvo, M. E.

M. E. Calvo, O. Sánchez-Sobrado, S. Colodrero, and H. Míguez, “Control over the Structural and Optical Features of Nanoparticle-Based One-Dimensional Photonic Crystals,” Langmuir25(4), 2443–2448 (2009).
[CrossRef] [PubMed]

Chen, J. I. L.

J. I. L. Chen, G. von Freymann, S. Y. Choi, V. Kitaev, and G. A. Ozin, “Slow photons in the fast lane in chemistry,” J. Mater. Chem.18(4), 369–373 (2008).
[CrossRef]

Chiquito, A. J.

T. G. Conti, A. J. Chiquito, R. O. da Silva, E. Longo, and E. R. Leite, “Electrical properties of highly conducting SnO2:Sb nanocrystals synthesized using a nonaqueous sol-gel method,” J. Am. Ceram. Soc.93(11), 3862–3866 (2010).
[CrossRef]

Choi, S. Y.

J. I. L. Chen, G. von Freymann, S. Y. Choi, V. Kitaev, and G. A. Ozin, “Slow photons in the fast lane in chemistry,” J. Mater. Chem.18(4), 369–373 (2008).
[CrossRef]

Chutinan, A.

P. G. O’Brien, Y. Yang, A. Chutinan, P. Mahtani, K. Leong, D. P. Puzzo, L. D. Bonifacio, C. Lin, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystal solar spectrum splitters made of alternating sputtered indium-tin oxide and spin-coated silica nanoparticle layers for enhanced photovoltaics,” Sol. Energy Mater. Sol. Cells102, 173–183 (2012).
[CrossRef]

P. G. O’Brien, D. P. Puzzo, A. Chutinan, L. D. Bonifacio, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystals,” Adv. Mater.22(5), 611–616 (2010).
[CrossRef] [PubMed]

Colodrero, S.

S. Colodrero, A. Forneli, C. López-López, L. Pellejà, H. Míguez, and E. Palomares, “Efficient transparent thin dye solar cells based on highly porous 1D photonic crystals,” Adv. Funct. Mater.22(6), 1303–1310 (2012).
[CrossRef]

M. E. Calvo, O. Sánchez-Sobrado, S. Colodrero, and H. Míguez, “Control over the Structural and Optical Features of Nanoparticle-Based One-Dimensional Photonic Crystals,” Langmuir25(4), 2443–2448 (2009).
[CrossRef] [PubMed]

Conti, T. G.

T. G. Conti, A. J. Chiquito, R. O. da Silva, E. Longo, and E. R. Leite, “Electrical properties of highly conducting SnO2:Sb nanocrystals synthesized using a nonaqueous sol-gel method,” J. Am. Ceram. Soc.93(11), 3862–3866 (2010).
[CrossRef]

da Silva, R. O.

T. G. Conti, A. J. Chiquito, R. O. da Silva, E. Longo, and E. R. Leite, “Electrical properties of highly conducting SnO2:Sb nanocrystals synthesized using a nonaqueous sol-gel method,” J. Am. Ceram. Soc.93(11), 3862–3866 (2010).
[CrossRef]

Dew, S. K.

K. J. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A13(3), 1032–1035 (1995).
[CrossRef]

Dmytruk, A.

H. Lin, T. Jin, A. Dmytruk, M. Saito, and T. Yazawa, “Preparation of a porous ITO electrode,” J.Photochem. Photobiol. A164(1–3), 173–177 (2004).
[CrossRef]

Fan, H.

C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, “Evaporation-induced self-assembly: Nanostructures made easy,” Adv. Mater.11(7), 579–585 (1999).
[CrossRef]

Fattakhova-Rohlfing, D.

D. Fattakhova-Rohlfing, T. Brezesinski, J. Rathuoský, A. Feldhoff, T. Oekermann, M. Wark, and B. Smarsly, “Transparent conducting films of indium tin oxide with 3D mesopore architecture,” Adv. Mater.18(22), 2980–2983 (2006).
[CrossRef]

Feldhoff, A.

D. Fattakhova-Rohlfing, T. Brezesinski, J. Rathuoský, A. Feldhoff, T. Oekermann, M. Wark, and B. Smarsly, “Transparent conducting films of indium tin oxide with 3D mesopore architecture,” Adv. Mater.18(22), 2980–2983 (2006).
[CrossRef]

Forneli, A.

S. Colodrero, A. Forneli, C. López-López, L. Pellejà, H. Míguez, and E. Palomares, “Efficient transparent thin dye solar cells based on highly porous 1D photonic crystals,” Adv. Funct. Mater.22(6), 1303–1310 (2012).
[CrossRef]

Friedrich, L. J.

K. J. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A13(3), 1032–1035 (1995).
[CrossRef]

Fujii, Y.

T. Suzuki, H. Ueno, J. Nemoto, Y. Fujii, M. Hoshino, and M. Kaneko, “Wide range ammonia concentration analyzer utilizing a new principle of photoelectrochemical reaction at a nanoporous TiO2 photoanaode,” Analyst (Lond.)134(8), 1541–1543 (2009).
[CrossRef]

Goebbert, C.

C. Goebbert, R. Nonninger, M. A. Aegerter, and H. Schmidt, “Wet chemical deposition of ATO and ITO coatings using crystalline nanoparticles redispersable in solutions,” Thin Solid Films351(1–2), 79–84 (1999).
[CrossRef]

Hoshino, M.

T. Suzuki, H. Ueno, J. Nemoto, Y. Fujii, M. Hoshino, and M. Kaneko, “Wide range ammonia concentration analyzer utilizing a new principle of photoelectrochemical reaction at a nanoporous TiO2 photoanaode,” Analyst (Lond.)134(8), 1541–1543 (2009).
[CrossRef]

Jin, T.

H. Lin, T. Jin, A. Dmytruk, M. Saito, and T. Yazawa, “Preparation of a porous ITO electrode,” J.Photochem. Photobiol. A164(1–3), 173–177 (2004).
[CrossRef]

Kaneko, M.

T. Suzuki, H. Ueno, J. Nemoto, Y. Fujii, M. Hoshino, and M. Kaneko, “Wide range ammonia concentration analyzer utilizing a new principle of photoelectrochemical reaction at a nanoporous TiO2 photoanaode,” Analyst (Lond.)134(8), 1541–1543 (2009).
[CrossRef]

Kherani, N. P.

P. G. O’Brien, Y. Yang, A. Chutinan, P. Mahtani, K. Leong, D. P. Puzzo, L. D. Bonifacio, C. Lin, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystal solar spectrum splitters made of alternating sputtered indium-tin oxide and spin-coated silica nanoparticle layers for enhanced photovoltaics,” Sol. Energy Mater. Sol. Cells102, 173–183 (2012).
[CrossRef]

P. G. O’Brien, D. P. Puzzo, A. Chutinan, L. D. Bonifacio, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystals,” Adv. Mater.22(5), 611–616 (2010).
[CrossRef] [PubMed]

Kitaev, V.

J. I. L. Chen, G. von Freymann, S. Y. Choi, V. Kitaev, and G. A. Ozin, “Slow photons in the fast lane in chemistry,” J. Mater. Chem.18(4), 369–373 (2008).
[CrossRef]

Leite, E. R.

T. G. Conti, A. J. Chiquito, R. O. da Silva, E. Longo, and E. R. Leite, “Electrical properties of highly conducting SnO2:Sb nanocrystals synthesized using a nonaqueous sol-gel method,” J. Am. Ceram. Soc.93(11), 3862–3866 (2010).
[CrossRef]

Leong, K.

P. G. O’Brien, Y. Yang, A. Chutinan, P. Mahtani, K. Leong, D. P. Puzzo, L. D. Bonifacio, C. Lin, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystal solar spectrum splitters made of alternating sputtered indium-tin oxide and spin-coated silica nanoparticle layers for enhanced photovoltaics,” Sol. Energy Mater. Sol. Cells102, 173–183 (2012).
[CrossRef]

Lin, C.

P. G. O’Brien, Y. Yang, A. Chutinan, P. Mahtani, K. Leong, D. P. Puzzo, L. D. Bonifacio, C. Lin, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystal solar spectrum splitters made of alternating sputtered indium-tin oxide and spin-coated silica nanoparticle layers for enhanced photovoltaics,” Sol. Energy Mater. Sol. Cells102, 173–183 (2012).
[CrossRef]

Lin, H.

H. Lin, T. Jin, A. Dmytruk, M. Saito, and T. Yazawa, “Preparation of a porous ITO electrode,” J.Photochem. Photobiol. A164(1–3), 173–177 (2004).
[CrossRef]

Longo, E.

T. G. Conti, A. J. Chiquito, R. O. da Silva, E. Longo, and E. R. Leite, “Electrical properties of highly conducting SnO2:Sb nanocrystals synthesized using a nonaqueous sol-gel method,” J. Am. Ceram. Soc.93(11), 3862–3866 (2010).
[CrossRef]

López-López, C.

S. Colodrero, A. Forneli, C. López-López, L. Pellejà, H. Míguez, and E. Palomares, “Efficient transparent thin dye solar cells based on highly porous 1D photonic crystals,” Adv. Funct. Mater.22(6), 1303–1310 (2012).
[CrossRef]

Lu, Y.

C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, “Evaporation-induced self-assembly: Nanostructures made easy,” Adv. Mater.11(7), 579–585 (1999).
[CrossRef]

Mahtani, P.

P. G. O’Brien, Y. Yang, A. Chutinan, P. Mahtani, K. Leong, D. P. Puzzo, L. D. Bonifacio, C. Lin, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystal solar spectrum splitters made of alternating sputtered indium-tin oxide and spin-coated silica nanoparticle layers for enhanced photovoltaics,” Sol. Energy Mater. Sol. Cells102, 173–183 (2012).
[CrossRef]

Manners, I.

D. P. Puzzo, L. D. Bonifacio, J. Oreopoulos, C. M. Yip, I. Manners, and G. A. Ozin, “Color from colorless nanomaterials: Bragg reflectors made of nanoparticles,” J. Mater. Chem.19(21), 3500–3506 (2009).
[CrossRef]

Mao, S. S.

S. Shen and S. S. Mao, “Nanostructure designs for effective solar-to-hydrogen conversion,” Nanophotonics1(1), 31–50 (2012).
[CrossRef]

Míguez, H.

S. Colodrero, A. Forneli, C. López-López, L. Pellejà, H. Míguez, and E. Palomares, “Efficient transparent thin dye solar cells based on highly porous 1D photonic crystals,” Adv. Funct. Mater.22(6), 1303–1310 (2012).
[CrossRef]

M. E. Calvo, O. Sánchez-Sobrado, S. Colodrero, and H. Míguez, “Control over the Structural and Optical Features of Nanoparticle-Based One-Dimensional Photonic Crystals,” Langmuir25(4), 2443–2448 (2009).
[CrossRef] [PubMed]

Nemoto, J.

T. Suzuki, H. Ueno, J. Nemoto, Y. Fujii, M. Hoshino, and M. Kaneko, “Wide range ammonia concentration analyzer utilizing a new principle of photoelectrochemical reaction at a nanoporous TiO2 photoanaode,” Analyst (Lond.)134(8), 1541–1543 (2009).
[CrossRef]

Nonninger, R.

C. Goebbert, R. Nonninger, M. A. Aegerter, and H. Schmidt, “Wet chemical deposition of ATO and ITO coatings using crystalline nanoparticles redispersable in solutions,” Thin Solid Films351(1–2), 79–84 (1999).
[CrossRef]

O’Brien, P. G.

P. G. O’Brien, Y. Yang, A. Chutinan, P. Mahtani, K. Leong, D. P. Puzzo, L. D. Bonifacio, C. Lin, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystal solar spectrum splitters made of alternating sputtered indium-tin oxide and spin-coated silica nanoparticle layers for enhanced photovoltaics,” Sol. Energy Mater. Sol. Cells102, 173–183 (2012).
[CrossRef]

P. G. O’Brien, D. P. Puzzo, A. Chutinan, L. D. Bonifacio, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystals,” Adv. Mater.22(5), 611–616 (2010).
[CrossRef] [PubMed]

Oekermann, T.

D. Fattakhova-Rohlfing, T. Brezesinski, J. Rathuoský, A. Feldhoff, T. Oekermann, M. Wark, and B. Smarsly, “Transparent conducting films of indium tin oxide with 3D mesopore architecture,” Adv. Mater.18(22), 2980–2983 (2006).
[CrossRef]

Oreopoulos, J.

D. P. Puzzo, L. D. Bonifacio, J. Oreopoulos, C. M. Yip, I. Manners, and G. A. Ozin, “Color from colorless nanomaterials: Bragg reflectors made of nanoparticles,” J. Mater. Chem.19(21), 3500–3506 (2009).
[CrossRef]

Ozin, G. A.

P. G. O’Brien, Y. Yang, A. Chutinan, P. Mahtani, K. Leong, D. P. Puzzo, L. D. Bonifacio, C. Lin, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystal solar spectrum splitters made of alternating sputtered indium-tin oxide and spin-coated silica nanoparticle layers for enhanced photovoltaics,” Sol. Energy Mater. Sol. Cells102, 173–183 (2012).
[CrossRef]

P. G. O’Brien, D. P. Puzzo, A. Chutinan, L. D. Bonifacio, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystals,” Adv. Mater.22(5), 611–616 (2010).
[CrossRef] [PubMed]

D. P. Puzzo, L. D. Bonifacio, J. Oreopoulos, C. M. Yip, I. Manners, and G. A. Ozin, “Color from colorless nanomaterials: Bragg reflectors made of nanoparticles,” J. Mater. Chem.19(21), 3500–3506 (2009).
[CrossRef]

J. I. L. Chen, G. von Freymann, S. Y. Choi, V. Kitaev, and G. A. Ozin, “Slow photons in the fast lane in chemistry,” J. Mater. Chem.18(4), 369–373 (2008).
[CrossRef]

Palomares, E.

S. Colodrero, A. Forneli, C. López-López, L. Pellejà, H. Míguez, and E. Palomares, “Efficient transparent thin dye solar cells based on highly porous 1D photonic crystals,” Adv. Funct. Mater.22(6), 1303–1310 (2012).
[CrossRef]

Pellejà, L.

S. Colodrero, A. Forneli, C. López-López, L. Pellejà, H. Míguez, and E. Palomares, “Efficient transparent thin dye solar cells based on highly porous 1D photonic crystals,” Adv. Funct. Mater.22(6), 1303–1310 (2012).
[CrossRef]

Puzzo, D. P.

P. G. O’Brien, Y. Yang, A. Chutinan, P. Mahtani, K. Leong, D. P. Puzzo, L. D. Bonifacio, C. Lin, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystal solar spectrum splitters made of alternating sputtered indium-tin oxide and spin-coated silica nanoparticle layers for enhanced photovoltaics,” Sol. Energy Mater. Sol. Cells102, 173–183 (2012).
[CrossRef]

P. G. O’Brien, D. P. Puzzo, A. Chutinan, L. D. Bonifacio, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystals,” Adv. Mater.22(5), 611–616 (2010).
[CrossRef] [PubMed]

D. P. Puzzo, L. D. Bonifacio, J. Oreopoulos, C. M. Yip, I. Manners, and G. A. Ozin, “Color from colorless nanomaterials: Bragg reflectors made of nanoparticles,” J. Mater. Chem.19(21), 3500–3506 (2009).
[CrossRef]

Rathuoský, J.

D. Fattakhova-Rohlfing, T. Brezesinski, J. Rathuoský, A. Feldhoff, T. Oekermann, M. Wark, and B. Smarsly, “Transparent conducting films of indium tin oxide with 3D mesopore architecture,” Adv. Mater.18(22), 2980–2983 (2006).
[CrossRef]

Robbie, K. J.

K. J. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A13(3), 1032–1035 (1995).
[CrossRef]

Saito, M.

H. Lin, T. Jin, A. Dmytruk, M. Saito, and T. Yazawa, “Preparation of a porous ITO electrode,” J.Photochem. Photobiol. A164(1–3), 173–177 (2004).
[CrossRef]

Sánchez-Sobrado, O.

M. E. Calvo, O. Sánchez-Sobrado, S. Colodrero, and H. Míguez, “Control over the Structural and Optical Features of Nanoparticle-Based One-Dimensional Photonic Crystals,” Langmuir25(4), 2443–2448 (2009).
[CrossRef] [PubMed]

Schmidt, H.

C. Goebbert, R. Nonninger, M. A. Aegerter, and H. Schmidt, “Wet chemical deposition of ATO and ITO coatings using crystalline nanoparticles redispersable in solutions,” Thin Solid Films351(1–2), 79–84 (1999).
[CrossRef]

Sellinger, A.

C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, “Evaporation-induced self-assembly: Nanostructures made easy,” Adv. Mater.11(7), 579–585 (1999).
[CrossRef]

Shen, S.

S. Shen and S. S. Mao, “Nanostructure designs for effective solar-to-hydrogen conversion,” Nanophotonics1(1), 31–50 (2012).
[CrossRef]

Smarsly, B.

D. Fattakhova-Rohlfing, T. Brezesinski, J. Rathuoský, A. Feldhoff, T. Oekermann, M. Wark, and B. Smarsly, “Transparent conducting films of indium tin oxide with 3D mesopore architecture,” Adv. Mater.18(22), 2980–2983 (2006).
[CrossRef]

Smy, T.

K. J. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A13(3), 1032–1035 (1995).
[CrossRef]

Suzuki, T.

T. Suzuki, H. Ueno, J. Nemoto, Y. Fujii, M. Hoshino, and M. Kaneko, “Wide range ammonia concentration analyzer utilizing a new principle of photoelectrochemical reaction at a nanoporous TiO2 photoanaode,” Analyst (Lond.)134(8), 1541–1543 (2009).
[CrossRef]

Ueno, H.

T. Suzuki, H. Ueno, J. Nemoto, Y. Fujii, M. Hoshino, and M. Kaneko, “Wide range ammonia concentration analyzer utilizing a new principle of photoelectrochemical reaction at a nanoporous TiO2 photoanaode,” Analyst (Lond.)134(8), 1541–1543 (2009).
[CrossRef]

von Freymann, G.

J. I. L. Chen, G. von Freymann, S. Y. Choi, V. Kitaev, and G. A. Ozin, “Slow photons in the fast lane in chemistry,” J. Mater. Chem.18(4), 369–373 (2008).
[CrossRef]

Wark, M.

D. Fattakhova-Rohlfing, T. Brezesinski, J. Rathuoský, A. Feldhoff, T. Oekermann, M. Wark, and B. Smarsly, “Transparent conducting films of indium tin oxide with 3D mesopore architecture,” Adv. Mater.18(22), 2980–2983 (2006).
[CrossRef]

Yang, Y.

P. G. O’Brien, Y. Yang, A. Chutinan, P. Mahtani, K. Leong, D. P. Puzzo, L. D. Bonifacio, C. Lin, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystal solar spectrum splitters made of alternating sputtered indium-tin oxide and spin-coated silica nanoparticle layers for enhanced photovoltaics,” Sol. Energy Mater. Sol. Cells102, 173–183 (2012).
[CrossRef]

Yazawa, T.

H. Lin, T. Jin, A. Dmytruk, M. Saito, and T. Yazawa, “Preparation of a porous ITO electrode,” J.Photochem. Photobiol. A164(1–3), 173–177 (2004).
[CrossRef]

Yip, C. M.

D. P. Puzzo, L. D. Bonifacio, J. Oreopoulos, C. M. Yip, I. Manners, and G. A. Ozin, “Color from colorless nanomaterials: Bragg reflectors made of nanoparticles,” J. Mater. Chem.19(21), 3500–3506 (2009).
[CrossRef]

Adv. Funct. Mater. (1)

S. Colodrero, A. Forneli, C. López-López, L. Pellejà, H. Míguez, and E. Palomares, “Efficient transparent thin dye solar cells based on highly porous 1D photonic crystals,” Adv. Funct. Mater.22(6), 1303–1310 (2012).
[CrossRef]

Adv. Mater. (3)

P. G. O’Brien, D. P. Puzzo, A. Chutinan, L. D. Bonifacio, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystals,” Adv. Mater.22(5), 611–616 (2010).
[CrossRef] [PubMed]

C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, “Evaporation-induced self-assembly: Nanostructures made easy,” Adv. Mater.11(7), 579–585 (1999).
[CrossRef]

D. Fattakhova-Rohlfing, T. Brezesinski, J. Rathuoský, A. Feldhoff, T. Oekermann, M. Wark, and B. Smarsly, “Transparent conducting films of indium tin oxide with 3D mesopore architecture,” Adv. Mater.18(22), 2980–2983 (2006).
[CrossRef]

Analyst (Lond.) (1)

T. Suzuki, H. Ueno, J. Nemoto, Y. Fujii, M. Hoshino, and M. Kaneko, “Wide range ammonia concentration analyzer utilizing a new principle of photoelectrochemical reaction at a nanoporous TiO2 photoanaode,” Analyst (Lond.)134(8), 1541–1543 (2009).
[CrossRef]

J. Am. Ceram. Soc. (1)

T. G. Conti, A. J. Chiquito, R. O. da Silva, E. Longo, and E. R. Leite, “Electrical properties of highly conducting SnO2:Sb nanocrystals synthesized using a nonaqueous sol-gel method,” J. Am. Ceram. Soc.93(11), 3862–3866 (2010).
[CrossRef]

J. Mater. Chem. (2)

J. I. L. Chen, G. von Freymann, S. Y. Choi, V. Kitaev, and G. A. Ozin, “Slow photons in the fast lane in chemistry,” J. Mater. Chem.18(4), 369–373 (2008).
[CrossRef]

D. P. Puzzo, L. D. Bonifacio, J. Oreopoulos, C. M. Yip, I. Manners, and G. A. Ozin, “Color from colorless nanomaterials: Bragg reflectors made of nanoparticles,” J. Mater. Chem.19(21), 3500–3506 (2009).
[CrossRef]

J. Vac. Sci. Technol. A (1)

K. J. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A13(3), 1032–1035 (1995).
[CrossRef]

J.Photochem. Photobiol. A (1)

H. Lin, T. Jin, A. Dmytruk, M. Saito, and T. Yazawa, “Preparation of a porous ITO electrode,” J.Photochem. Photobiol. A164(1–3), 173–177 (2004).
[CrossRef]

Langmuir (1)

M. E. Calvo, O. Sánchez-Sobrado, S. Colodrero, and H. Míguez, “Control over the Structural and Optical Features of Nanoparticle-Based One-Dimensional Photonic Crystals,” Langmuir25(4), 2443–2448 (2009).
[CrossRef] [PubMed]

Nanophotonics (1)

S. Shen and S. S. Mao, “Nanostructure designs for effective solar-to-hydrogen conversion,” Nanophotonics1(1), 31–50 (2012).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

P. G. O’Brien, Y. Yang, A. Chutinan, P. Mahtani, K. Leong, D. P. Puzzo, L. D. Bonifacio, C. Lin, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystal solar spectrum splitters made of alternating sputtered indium-tin oxide and spin-coated silica nanoparticle layers for enhanced photovoltaics,” Sol. Energy Mater. Sol. Cells102, 173–183 (2012).
[CrossRef]

Thin Solid Films (1)

C. Goebbert, R. Nonninger, M. A. Aegerter, and H. Schmidt, “Wet chemical deposition of ATO and ITO coatings using crystalline nanoparticles redispersable in solutions,” Thin Solid Films351(1–2), 79–84 (1999).
[CrossRef]

Other (2)

M. F. Roscheisen and B. M. Sager, “Nanostructured transparent conducting electrode,” U.S. Pat. No. 7,594,982, (January 6, 2003).

J. D. Joannopoulos, S. G. Johnson, R. D. Meade, and J. N. Winn, Photonic Crystals, Molding the Flow of Light second edition, (Princeton University Press 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Top-view SEM images of (a) a bare silica NP film and (b) a n-TC film prepared by sputtering 10nm of ITO onto a SiO2 nanoparticle film. Cross-sectional SEM images of a n-TC films prepared by alternately spin-coating films from a SiO2 nanoparticle dispersion with a deionized water:Ludox concentration of (c) [3:1] and (d) [5:1] and sputter-depositing ITO films, repeated five times over. TOF-SIMs depth profiles for the samples in (c) and (d) are shown overlaying their cross-sectional SEM image (rotated by 90°) in (e) and (f), respectively; the vertical scale represents the signal counts.

Fig. 2
Fig. 2

The transmittance spectra of n-TC films with 1- or 5- layers prepared from dispersions with deionized water:Ludox concentrations of (a) [3:1] and (b) [5:1] and sputtered ITO. The transmittance of a bare glass substrate is plotted as the dashed line.

Fig. 3
Fig. 3

The sheet resistances of nanoporous transparent conducting films with 1-, 3- or 5- layers prepared from dispersions with deionized water:Ludox concentrations of [3:1] and [5:1] and from SnO2 NPs with and without the addition of sputtered ITO.

Fig. 4
Fig. 4

Cross-sectional SEM images of n-STCPCs made from alternating layers of SnO2 and SiO2 NP films prepared from dispersions with deionized water:Ludox concentrations of (a) [5:1] and (b) [3:1]. The top and bottom layers in the 1DPC are comprised of SnO2 and SiO2 nanoparticles, respectively. (c) The reflection spectra of the n-STCPCs shown in (a) and (b). A Bragg-reflector made of alternating layers of SnO2 and SiO2 NP films (d) and a n-STCPC made similarly to the Bragg-reflector shown in (d) but with 10nm of ITO sputtered on top of each NP film within the structure (e). The transmittance spectra of the NP Bragg-stack shown in (d) when air, water, and toluene are the surrounding medium is plotted as the solid, dashed and dotted light-blue lines, respectively (f). Likewise, the transmittance spectra of the n-STCPC shown in (e) when air, water, and toluene are the surrounding medium is plotted as the solid, dashed and dotted black lines, respectively. It can be noted that the SEM image of the 1DPC with sputtered ITO (e) is clearer than that of the 1DPC without sputtered ITO (d) because the Bragg-reflector without sputtered ITO charges to a greater extent during SEM imaging.

Metrics