Abstract

A new type of saturable absorber (SA) based on gold nanorods (GNRs) for all-fiber passively Q-switched erbium-doped fiber laser (EDFL) is realized experimentally. The longitudinal surface plasmon resonance (SPR) absorption of GNRs is used to induce Q-switching. By inserting the GNRs SA in an EDFL cavity pumped by a 980 nm laser diode, stable passive Q-switching is achieved with a threshold pump power of ~27 mW, and 4.8 μs pulses at 1560 nm with a repetition rate of 39.9 kHz are obtained for a pump power of ~275 mW.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Paschotta, R. Häring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, and D. J. Richardson, “Passively Q-switched 0.1-mJ fiber laser system at 1.53 mum,” Opt. Lett.24(6), 388–390 (1999).
    [CrossRef] [PubMed]
  2. C. E. Preda, G. Ravet, and P. Mégret, “Experimental demonstration of a passive all-fiber Q-switched erbium- and samarium-doped laser,” Opt. Lett.37(4), 629–631 (2012).
    [CrossRef] [PubMed]
  3. V. N. Filippov, A. N. Starodumov, and A. V. Kir’yanov, “All-fiber passively Q-switched low-threshold erbium laser,” Opt. Lett.26(6), 343–345 (2001).
    [CrossRef] [PubMed]
  4. J. Y. Huang, S. C. Huang, H. L. Chang, K. W. Su, Y. F. Chen, and K. F. Huang, “Passive Q switching of Er-Yb fiber laser with semiconductor saturable absorber,” Opt. Express16(5), 3002–3007 (2008).
    [CrossRef] [PubMed]
  5. D. P. Zhou, L. Wei, B. Dong, and W. K. Liu, “Tunable passively switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photon. Technol. Lett.22(1), 9–11 (2010).
    [CrossRef]
  6. S. Yamashita, “A tutorial on nonlinear photonic applications of carbon nanotube and graphene,” J. Lightwave Technol.30(4), 427–447 (2012).
    [CrossRef]
  7. D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98(7), 073106 (2011).
    [CrossRef]
  8. Z. L. Luo, M. Zhou, J. Weng, G. M. Huang, H. Y. Xu, C. C. Ye, and Z. P. Cai, “Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser,” Opt. Lett.35(21), 3709–3711 (2010).
    [CrossRef] [PubMed]
  9. Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
    [CrossRef] [PubMed]
  10. U. Keller, “Recent developments in compact ultrafast lasers,” Nature424(6950), 831–838 (2003).
    [CrossRef] [PubMed]
  11. Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44(6), 1082–1091 (2012).
    [CrossRef]
  12. T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett.101(15), 151122 (2012).
    [CrossRef]
  13. O. B. Joanna, G. Marta, K. Radoslaw, M. Katarzyna, and S. Marek, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C116(25), 13731–13737 (2012).
    [CrossRef]
  14. M. S. Dhoni and W. Ji, “Extension of discrete-dipole approximation model to compute nonlinear absorption in gold nanostructures,” J. Phys. Chem. C115(42), 20359–20366 (2011).
    [CrossRef]
  15. J. T. Lin, “Nonlinear optical theory and figure of merit of surface Plasmon resonance of gold nanorods,” J. Nanophoton.5(1), 051506 (2011).
    [CrossRef]
  16. J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett.96(26), 263103 (2010).
    [CrossRef]
  17. J. M. Lamarre, F. Billard, C. H. Kerboua, M. Lequime, S. Roorda, and L. Martinu, “Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix,” Opt. Commun.281(2), 331–340 (2008).
    [CrossRef]
  18. H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface Plasmon resonance in gold nanorods,” Appl. Phys. Lett.88(8), 083107 (2006).
    [CrossRef]
  19. Y. Tsutsui, T. Hayakawa, G. Kawamura, and M. Nogami, “Tuned longitudinal surface Plasmon resonance and third-order nonlinear optical properties of gold nanorods,” Nanotechnology22(27), 275203 (2011).
    [CrossRef] [PubMed]
  20. H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett.107(5), 057402 (2011).
    [CrossRef] [PubMed]
  21. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Ultrafast optical properties of gold nanoshells,” J. Opt. Soc. Am. B16(10), 1814–1823 (1999).
    [CrossRef]
  22. K. H. Kim, U. Griebner, and J. Herrmann, “Theory of passive mode locking of solid-state lasers using metal nanocomposites as slow saturable absorbers,” Opt. Lett.37(9), 1490–1492 (2012).
    [CrossRef] [PubMed]
  23. K. H. Kim, U. Griebner, and J. Herrmann, “Theory of passive mode-locking of semiconductor disk lasers in the blue spectral range by metal nanocomposites,” Opt. Express20(15), 16174–16179 (2012).
    [CrossRef]
  24. H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett.70(1), 1 (1997).
    [CrossRef]
  25. X. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y. J. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano6(3), 2804–2817 (2012).
    [CrossRef] [PubMed]
  26. H. J. Chen, L. Shao, Q. Li, and J. F. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev.42(7), 2679–2724 (2013).
    [CrossRef] [PubMed]
  27. Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber laser,” Appl. Phys. Lett.103(4), 041105 (2013).
    [CrossRef]
  28. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater.15(10), 1957–1962 (2003).
    [CrossRef]
  29. J. Liu, S. Wu, Q. H. Yang, and P. Wang, “Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser,” Opt. Lett.36(20), 4008–4010 (2011).
    [CrossRef] [PubMed]
  30. X. Chen, Y. T. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012).
    [CrossRef] [PubMed]

2013

H. J. Chen, L. Shao, Q. Li, and J. F. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev.42(7), 2679–2724 (2013).
[CrossRef] [PubMed]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber laser,” Appl. Phys. Lett.103(4), 041105 (2013).
[CrossRef]

2012

X. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y. J. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano6(3), 2804–2817 (2012).
[CrossRef] [PubMed]

K. H. Kim, U. Griebner, and J. Herrmann, “Theory of passive mode locking of solid-state lasers using metal nanocomposites as slow saturable absorbers,” Opt. Lett.37(9), 1490–1492 (2012).
[CrossRef] [PubMed]

K. H. Kim, U. Griebner, and J. Herrmann, “Theory of passive mode-locking of semiconductor disk lasers in the blue spectral range by metal nanocomposites,” Opt. Express20(15), 16174–16179 (2012).
[CrossRef]

X. Chen, Y. T. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

C. E. Preda, G. Ravet, and P. Mégret, “Experimental demonstration of a passive all-fiber Q-switched erbium- and samarium-doped laser,” Opt. Lett.37(4), 629–631 (2012).
[CrossRef] [PubMed]

S. Yamashita, “A tutorial on nonlinear photonic applications of carbon nanotube and graphene,” J. Lightwave Technol.30(4), 427–447 (2012).
[CrossRef]

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44(6), 1082–1091 (2012).
[CrossRef]

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett.101(15), 151122 (2012).
[CrossRef]

O. B. Joanna, G. Marta, K. Radoslaw, M. Katarzyna, and S. Marek, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C116(25), 13731–13737 (2012).
[CrossRef]

2011

M. S. Dhoni and W. Ji, “Extension of discrete-dipole approximation model to compute nonlinear absorption in gold nanostructures,” J. Phys. Chem. C115(42), 20359–20366 (2011).
[CrossRef]

J. T. Lin, “Nonlinear optical theory and figure of merit of surface Plasmon resonance of gold nanorods,” J. Nanophoton.5(1), 051506 (2011).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98(7), 073106 (2011).
[CrossRef]

J. Liu, S. Wu, Q. H. Yang, and P. Wang, “Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser,” Opt. Lett.36(20), 4008–4010 (2011).
[CrossRef] [PubMed]

Y. Tsutsui, T. Hayakawa, G. Kawamura, and M. Nogami, “Tuned longitudinal surface Plasmon resonance and third-order nonlinear optical properties of gold nanorods,” Nanotechnology22(27), 275203 (2011).
[CrossRef] [PubMed]

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett.107(5), 057402 (2011).
[CrossRef] [PubMed]

2010

D. P. Zhou, L. Wei, B. Dong, and W. K. Liu, “Tunable passively switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photon. Technol. Lett.22(1), 9–11 (2010).
[CrossRef]

Z. L. Luo, M. Zhou, J. Weng, G. M. Huang, H. Y. Xu, C. C. Ye, and Z. P. Cai, “Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser,” Opt. Lett.35(21), 3709–3711 (2010).
[CrossRef] [PubMed]

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett.96(26), 263103 (2010).
[CrossRef]

2008

J. M. Lamarre, F. Billard, C. H. Kerboua, M. Lequime, S. Roorda, and L. Martinu, “Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix,” Opt. Commun.281(2), 331–340 (2008).
[CrossRef]

J. Y. Huang, S. C. Huang, H. L. Chang, K. W. Su, Y. F. Chen, and K. F. Huang, “Passive Q switching of Er-Yb fiber laser with semiconductor saturable absorber,” Opt. Express16(5), 3002–3007 (2008).
[CrossRef] [PubMed]

2006

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface Plasmon resonance in gold nanorods,” Appl. Phys. Lett.88(8), 083107 (2006).
[CrossRef]

2003

U. Keller, “Recent developments in compact ultrafast lasers,” Nature424(6950), 831–838 (2003).
[CrossRef] [PubMed]

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater.15(10), 1957–1962 (2003).
[CrossRef]

2001

1999

1997

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett.70(1), 1 (1997).
[CrossRef]

Averitt, R. D.

Bachelier, G.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett.107(5), 057402 (2011).
[CrossRef] [PubMed]

Baida, H.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett.107(5), 057402 (2011).
[CrossRef] [PubMed]

Basko, D. M.

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Billard, F.

J. M. Lamarre, F. Billard, C. H. Kerboua, M. Lequime, S. Roorda, and L. Martinu, “Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix,” Opt. Commun.281(2), 331–340 (2008).
[CrossRef]

Bonaccorso, F.

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Caglayan, H.

X. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y. J. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano6(3), 2804–2817 (2012).
[CrossRef] [PubMed]

Cai, Z. P.

Chang, H. L.

Chen, H. J.

H. J. Chen, L. Shao, Q. Li, and J. F. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev.42(7), 2679–2724 (2013).
[CrossRef] [PubMed]

Chen, J.

X. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y. J. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano6(3), 2804–2817 (2012).
[CrossRef] [PubMed]

Chen, X.

X. Chen, Y. T. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

Chen, Y. F.

Chen, Y. T.

X. Chen, Y. T. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

Christofilos, D.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett.107(5), 057402 (2011).
[CrossRef] [PubMed]

Crut, A.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett.107(5), 057402 (2011).
[CrossRef] [PubMed]

Del Fatti, N.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett.107(5), 057402 (2011).
[CrossRef] [PubMed]

Dhoni, M. S.

M. S. Dhoni and W. Ji, “Extension of discrete-dipole approximation model to compute nonlinear absorption in gold nanostructures,” J. Phys. Chem. C115(42), 20359–20366 (2011).
[CrossRef]

Doan-Nguyen, V.

X. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y. J. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano6(3), 2804–2817 (2012).
[CrossRef] [PubMed]

Dong, B.

D. P. Zhou, L. Wei, B. Dong, and W. K. Liu, “Tunable passively switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photon. Technol. Lett.22(1), 9–11 (2010).
[CrossRef]

Elim, H. I.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface Plasmon resonance in gold nanorods,” Appl. Phys. Lett.88(8), 083107 (2006).
[CrossRef]

El-Sayed, M. A.

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater.15(10), 1957–1962 (2003).
[CrossRef]

Engheta, N.

X. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y. J. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano6(3), 2804–2817 (2012).
[CrossRef] [PubMed]

Feng, Y.

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber laser,” Appl. Phys. Lett.103(4), 041105 (2013).
[CrossRef]

Ferrari, A. C.

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44(6), 1082–1091 (2012).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98(7), 073106 (2011).
[CrossRef]

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Filippov, V. N.

Fu, J. S.

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett.70(1), 1 (1997).
[CrossRef]

Gini, E.

Griebner, U.

Halas, N. J.

Häring, R.

Hasan, T.

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44(6), 1082–1091 (2012).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98(7), 073106 (2011).
[CrossRef]

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Hayakawa, T.

Y. Tsutsui, T. Hayakawa, G. Kawamura, and M. Nogami, “Tuned longitudinal surface Plasmon resonance and third-order nonlinear optical properties of gold nanorods,” Nanotechnology22(27), 275203 (2011).
[CrossRef] [PubMed]

Herrmann, J.

Huang, G. M.

Huang, J. Y.

Huang, K. F.

Huang, S. C.

Ji, W.

M. S. Dhoni and W. Ji, “Extension of discrete-dipole approximation model to compute nonlinear absorption in gold nanostructures,” J. Phys. Chem. C115(42), 20359–20366 (2011).
[CrossRef]

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface Plasmon resonance in gold nanorods,” Appl. Phys. Lett.88(8), 083107 (2006).
[CrossRef]

Jia, Z. X.

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber laser,” Appl. Phys. Lett.103(4), 041105 (2013).
[CrossRef]

Jiang, T.

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett.101(15), 151122 (2012).
[CrossRef]

Jin, L. H.

X. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y. J. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano6(3), 2804–2817 (2012).
[CrossRef] [PubMed]

Joanna, O. B.

O. B. Joanna, G. Marta, K. Radoslaw, M. Katarzyna, and S. Marek, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C116(25), 13731–13737 (2012).
[CrossRef]

Kagan, C. R.

X. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y. J. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano6(3), 2804–2817 (2012).
[CrossRef] [PubMed]

Kang, Y. J.

X. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y. J. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano6(3), 2804–2817 (2012).
[CrossRef] [PubMed]

Kang, Z.

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber laser,” Appl. Phys. Lett.103(4), 041105 (2013).
[CrossRef]

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett.101(15), 151122 (2012).
[CrossRef]

Katarzyna, M.

O. B. Joanna, G. Marta, K. Radoslaw, M. Katarzyna, and S. Marek, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C116(25), 13731–13737 (2012).
[CrossRef]

Kawamura, G.

Y. Tsutsui, T. Hayakawa, G. Kawamura, and M. Nogami, “Tuned longitudinal surface Plasmon resonance and third-order nonlinear optical properties of gold nanorods,” Nanotechnology22(27), 275203 (2011).
[CrossRef] [PubMed]

Keller, U.

Kerboua, C. H.

J. M. Lamarre, F. Billard, C. H. Kerboua, M. Lequime, S. Roorda, and L. Martinu, “Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix,” Opt. Commun.281(2), 331–340 (2008).
[CrossRef]

Kim, K. H.

Kir’yanov, A. V.

Lamarre, J. M.

J. M. Lamarre, F. Billard, C. H. Kerboua, M. Lequime, S. Roorda, and L. Martinu, “Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix,” Opt. Commun.281(2), 331–340 (2008).
[CrossRef]

Lee, J. Y.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface Plasmon resonance in gold nanorods,” Appl. Phys. Lett.88(8), 083107 (2006).
[CrossRef]

Lequime, M.

J. M. Lamarre, F. Billard, C. H. Kerboua, M. Lequime, S. Roorda, and L. Martinu, “Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix,” Opt. Commun.281(2), 331–340 (2008).
[CrossRef]

Li, J.

J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett.96(26), 263103 (2010).
[CrossRef]

Li, Q.

H. J. Chen, L. Shao, Q. Li, and J. F. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev.42(7), 2679–2724 (2013).
[CrossRef] [PubMed]

Li, Z.-Y.

J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett.96(26), 263103 (2010).
[CrossRef]

Liao, H. B.

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett.70(1), 1 (1997).
[CrossRef]

Lin, J. T.

J. T. Lin, “Nonlinear optical theory and figure of merit of surface Plasmon resonance of gold nanorods,” J. Nanophoton.5(1), 051506 (2011).
[CrossRef]

Liu, J.

Liu, L.

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber laser,” Appl. Phys. Lett.103(4), 041105 (2013).
[CrossRef]

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett.101(15), 151122 (2012).
[CrossRef]

Liu, S.

J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett.96(26), 263103 (2010).
[CrossRef]

Liu, W. K.

D. P. Zhou, L. Wei, B. Dong, and W. K. Liu, “Tunable passively switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photon. Technol. Lett.22(1), 9–11 (2010).
[CrossRef]

Liu, Y.

J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett.96(26), 263103 (2010).
[CrossRef]

Luo, Z. L.

Maioli, P.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett.107(5), 057402 (2011).
[CrossRef] [PubMed]

Marek, S.

O. B. Joanna, G. Marta, K. Radoslaw, M. Katarzyna, and S. Marek, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C116(25), 13731–13737 (2012).
[CrossRef]

Marta, G.

O. B. Joanna, G. Marta, K. Radoslaw, M. Katarzyna, and S. Marek, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C116(25), 13731–13737 (2012).
[CrossRef]

Martinu, L.

J. M. Lamarre, F. Billard, C. H. Kerboua, M. Lequime, S. Roorda, and L. Martinu, “Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix,” Opt. Commun.281(2), 331–340 (2008).
[CrossRef]

Mégret, P.

Melchior, H.

Mi, J.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface Plasmon resonance in gold nanorods,” Appl. Phys. Lett.88(8), 083107 (2006).
[CrossRef]

Mongin, D.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett.107(5), 057402 (2011).
[CrossRef] [PubMed]

Murray, C. B.

X. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y. J. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano6(3), 2804–2817 (2012).
[CrossRef] [PubMed]

Nikoobakht, B.

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater.15(10), 1957–1962 (2003).
[CrossRef]

Nogami, M.

Y. Tsutsui, T. Hayakawa, G. Kawamura, and M. Nogami, “Tuned longitudinal surface Plasmon resonance and third-order nonlinear optical properties of gold nanorods,” Nanotechnology22(27), 275203 (2011).
[CrossRef] [PubMed]

Offerhaus, H. L.

Paschotta, R.

Popa, D.

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98(7), 073106 (2011).
[CrossRef]

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Preda, C. E.

Privitera, G.

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Qin, G. S.

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber laser,” Appl. Phys. Lett.103(4), 041105 (2013).
[CrossRef]

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett.101(15), 151122 (2012).
[CrossRef]

Qin, W. P.

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber laser,” Appl. Phys. Lett.103(4), 041105 (2013).
[CrossRef]

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett.101(15), 151122 (2012).
[CrossRef]

Qiu, M.

X. Chen, Y. T. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

Radoslaw, K.

O. B. Joanna, G. Marta, K. Radoslaw, M. Katarzyna, and S. Marek, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C116(25), 13731–13737 (2012).
[CrossRef]

Ravet, G.

Richardson, D. J.

Roorda, S.

J. M. Lamarre, F. Billard, C. H. Kerboua, M. Lequime, S. Roorda, and L. Martinu, “Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix,” Opt. Commun.281(2), 331–340 (2008).
[CrossRef]

Shao, L.

H. J. Chen, L. Shao, Q. Li, and J. F. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev.42(7), 2679–2724 (2013).
[CrossRef] [PubMed]

Sheng, P.

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett.70(1), 1 (1997).
[CrossRef]

Starodumov, A. N.

Su, K. W.

Sun, Z.

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44(6), 1082–1091 (2012).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98(7), 073106 (2011).
[CrossRef]

Sun, Z. P.

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Tian, Q. J.

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett.101(15), 151122 (2012).
[CrossRef]

Torrisi, F.

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98(7), 073106 (2011).
[CrossRef]

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Tsutsui, Y.

Y. Tsutsui, T. Hayakawa, G. Kawamura, and M. Nogami, “Tuned longitudinal surface Plasmon resonance and third-order nonlinear optical properties of gold nanorods,” Nanotechnology22(27), 275203 (2011).
[CrossRef] [PubMed]

Vallée, F.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett.107(5), 057402 (2011).
[CrossRef] [PubMed]

Wang, F.

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98(7), 073106 (2011).
[CrossRef]

Wang, F. Q.

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Wang, J. F.

H. J. Chen, L. Shao, Q. Li, and J. F. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev.42(7), 2679–2724 (2013).
[CrossRef] [PubMed]

Wang, P.

Wei, L.

D. P. Zhou, L. Wei, B. Dong, and W. K. Liu, “Tunable passively switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photon. Technol. Lett.22(1), 9–11 (2010).
[CrossRef]

Weng, J.

Westcott, S. L.

Wong, G. K. L.

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett.70(1), 1 (1997).
[CrossRef]

Wu, S.

Xiao, R. F.

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett.70(1), 1 (1997).
[CrossRef]

Xing, G. Z.

X. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y. J. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano6(3), 2804–2817 (2012).
[CrossRef] [PubMed]

Xu, H. Y.

Xu, Y.

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber laser,” Appl. Phys. Lett.103(4), 041105 (2013).
[CrossRef]

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett.101(15), 151122 (2012).
[CrossRef]

Yamashita, S.

Yan, M.

X. Chen, Y. T. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

Yang, J.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface Plasmon resonance in gold nanorods,” Appl. Phys. Lett.88(8), 083107 (2006).
[CrossRef]

Yang, Q. H.

Yang, R. Y.

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett.101(15), 151122 (2012).
[CrossRef]

Ye, C. C.

Ye, X. C.

X. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y. J. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano6(3), 2804–2817 (2012).
[CrossRef] [PubMed]

Yu, P.

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett.70(1), 1 (1997).
[CrossRef]

Zhang, L.

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber laser,” Appl. Phys. Lett.103(4), 041105 (2013).
[CrossRef]

Zhao, D.

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber laser,” Appl. Phys. Lett.103(4), 041105 (2013).
[CrossRef]

Zheng, C.

X. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y. J. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano6(3), 2804–2817 (2012).
[CrossRef] [PubMed]

Zhou, D. P.

D. P. Zhou, L. Wei, B. Dong, and W. K. Liu, “Tunable passively switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photon. Technol. Lett.22(1), 9–11 (2010).
[CrossRef]

Zhou, F.

J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett.96(26), 263103 (2010).
[CrossRef]

Zhou, M.

ACS Nano

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

X. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y. J. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano6(3), 2804–2817 (2012).
[CrossRef] [PubMed]

X. Chen, Y. T. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett.

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber laser,” Appl. Phys. Lett.103(4), 041105 (2013).
[CrossRef]

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett.70(1), 1 (1997).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98(7), 073106 (2011).
[CrossRef]

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett.101(15), 151122 (2012).
[CrossRef]

J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett.96(26), 263103 (2010).
[CrossRef]

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface Plasmon resonance in gold nanorods,” Appl. Phys. Lett.88(8), 083107 (2006).
[CrossRef]

Chem. Mater.

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater.15(10), 1957–1962 (2003).
[CrossRef]

Chem. Soc. Rev.

H. J. Chen, L. Shao, Q. Li, and J. F. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev.42(7), 2679–2724 (2013).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett.

D. P. Zhou, L. Wei, B. Dong, and W. K. Liu, “Tunable passively switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photon. Technol. Lett.22(1), 9–11 (2010).
[CrossRef]

J. Lightwave Technol.

J. Nanophoton.

J. T. Lin, “Nonlinear optical theory and figure of merit of surface Plasmon resonance of gold nanorods,” J. Nanophoton.5(1), 051506 (2011).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. C

O. B. Joanna, G. Marta, K. Radoslaw, M. Katarzyna, and S. Marek, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C116(25), 13731–13737 (2012).
[CrossRef]

M. S. Dhoni and W. Ji, “Extension of discrete-dipole approximation model to compute nonlinear absorption in gold nanostructures,” J. Phys. Chem. C115(42), 20359–20366 (2011).
[CrossRef]

Nanotechnology

Y. Tsutsui, T. Hayakawa, G. Kawamura, and M. Nogami, “Tuned longitudinal surface Plasmon resonance and third-order nonlinear optical properties of gold nanorods,” Nanotechnology22(27), 275203 (2011).
[CrossRef] [PubMed]

Nature

U. Keller, “Recent developments in compact ultrafast lasers,” Nature424(6950), 831–838 (2003).
[CrossRef] [PubMed]

Opt. Commun.

J. M. Lamarre, F. Billard, C. H. Kerboua, M. Lequime, S. Roorda, and L. Martinu, “Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix,” Opt. Commun.281(2), 331–340 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett.107(5), 057402 (2011).
[CrossRef] [PubMed]

Physica E

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44(6), 1082–1091 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) TEM image of the GNRs, the inset of Fig. 1(a): Photograph of the aqueous solution of GNRs. (b) Aspect ratio distribution of GNRs. (c) AFM image of GNRs-NaCMC film (the scan range is 20 × 20 μm). (d) Absorption spectra of NaCMC with and without GNRs.

Fig. 2
Fig. 2

Transmission ratio of GNRs-NaCMC film as a function of pump peak power density.

Fig. 3
Fig. 3

Experimental setup of GNRs-NaCMC SA based Q-switched ring cavity fiber laser.

Fig. 4
Fig. 4

(a) Emission spectrum, (b) pulse train, and (c) single pulse profile of the Q-switched EDFL for a pump power of 275 mW. (d) Pulse duration and repetition rate as a function of pump power.

Fig. 5
Fig. 5

Output power of the Q-switched fibre laser as a function of the pump power.

Metrics