Abstract

Single crystalline Cu2O film has been successfully synthesized on MgO(100) surface through laser molecular beam epitaxy. In situ reflection high-energy electron diffraction was employed to study the epitaxial growth of Cu2O. The composition and structure of the Cu2O were studied in detail by in situ X-ray photoelectron spectroscopy and transmission electron microscopy. Valence band structures of Cu2O/MgO heterojunction were investigated by in situ X-ray photoelectron spectroscopy and in situ ultraviolet photoemission spectroscopy. The valence band offset was found to be 0.54 eV. By alternative deposition, Cu2O-Au nanocomposites were prepared, which were characterized by in situ reflection high-energy electron diffraction, in situ X-ray photoelectron spectroscopy and transmission electron microscopy. Interestingly, below some critical content of Au, the epitaxial growth of Cu2O recovered after the deposition of Au. Due to the surface plasmon resonance of formed Au colloids, enhanced optical absorption at the wavelength from 600 nm to 800 nm was observed, which is in well agreement with the Mie theory. Depending on the pulses of Au, the position and the width of the absorption peaks can be easily changed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.  Jing, L.  Jin, H.  Xiaojian, T.  Yiwei, “Synthesis and enhanced photocatalytic activity of regularly shaped Cu2O nanowire polyhedra,” Nano Research 4(5), 448–459 (2011).
    [CrossRef]
  2. S.-O.  Kang, S.  Hong, J.  Choi, J.-S.  Kim, I.  Hwang, I.-S.  Byun, K.-S.  Yun, B. H.  Park, “Electrochemical growth and resistive switching of flat-surfaced and (111)-oriented Cu2O films,” Appl. Phys. Lett. 95(9), 092108 (2009).
    [CrossRef]
  3. W. T.  Kung, Y. H.  Pai, Y. K.  Hsu, C. H.  Lin, C. M.  Wang, “Surface Plasmon assisted CuxO photocatalyst for pure water splitting,” Opt. Express 21(S2), A221–A228 (2013).
    [CrossRef] [PubMed]
  4. P.  Poizot, S.  Laruelle, S.  Grugeon, L.  Dupont, J. -M.  Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,” Nature 407(6803), 496–499 (2000).
    [CrossRef] [PubMed]
  5. A. E.  Rakhshani, “Preparation, characteristics and photovoltaic properties of cuprous oxide-a review,” Solid-State Electron. 29(1), 7–17 (1986).
    [CrossRef]
  6. A.  Paracchino, V.  Laporte, K.  Sivula, M.  Grätzel, E.  Thimsen, “Highly active oxide photocathode for photoelectrochemical water reduction,” Nat. Mater. 10(6), 456–461 (2011).
    [CrossRef] [PubMed]
  7. C. J.  Dong, W. X.  Yu, M.  Xu, J. J.  Cao, C.  Chen, W. W.  Yu, Y. D.  Wang, “Valence band offset of Cu2O/In2O3 heterojunction determined by X-ray photoelectron spectroscopy,” J. Appl. Phys. 110(7), 073712 (2011).
    [CrossRef]
  8. L. M.  Wong, S. Y.  Chiam, J. Q.  Huang, S. J.  Wang, J. S.  Pan, W. K.  Chim, “Growth of Cu2O on Ga-doped ZnO and their interface energy alignment for thin film solar cells,” J. Appl. Phys. 108(3), 033702 (2010).
    [CrossRef]
  9. T.  Gershon, P.  Musselman, A.  Marin, R. H.  Friend, J. L.  MacManus-Driscoll, “Thin-film ZnO/Cu2O solar cells incorporating an organic buffer layer,” Sol. Energy Mater. Sol. Cells 96(1), 148–154 (2012).
  10. N.  Yuki, M.  Toshihiro, M.  Tadatsugu, “Effect of inserting a thin buffer layer on the efficiency in n-ZnO/p-Cu2O heterojunction solar cells,” J. Vac. Sci. Technol. A 30(4), 04D103–04D106 (2012).
  11. L. C.  Olsen, F. W.  Addis, W.  Miller, “Experimental and theoretical studies of Cu2O solar cells,” Sol. Cells 7(3), 247–279 (1982).
    [CrossRef]
  12. R.  Contreras-Caceres, C.  Dawson, P.  Formanek, D.  Fischer, F.  Simon, A.  Janke, P.  Uhlmann, M.  Stamm, “Polymers as templates for Au and Au@Ag bimetallic nanorods: UV−Vis and surface enhanced Raman spectroscopy,” Chem. Mater. 25(2), 158–169 (2013).
    [CrossRef]
  13. E.  Hutter, J.  Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
    [CrossRef]
  14. W. L.  Barnes, A.  Dereux, T. W.  Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  15. S. A.  Maier, P. G.  Kik, H. A.  Atwater, S.  Meltzer, E.  Harel, B. E.  Koel, A. A. G.  Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
    [CrossRef] [PubMed]
  16. S. I.  Bozhevolnyi, V. S.  Volkov, E.  Devaux, J. Y.  Laluet, T. W.  Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
    [CrossRef] [PubMed]
  17. J. M.  Pitarkel, V. M.  Silkin, E. V.  Chulkov, P. M.  Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(12), 1–87 (2007).
  18. L. H.  Qian, X. Q.  Yan, T.  Fujita, A.  Inoue, M. W.  Chen, “Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements,” Appl. Phys. Lett. 90(15), 153120 (2007).
    [CrossRef]
  19. X. Y  Lang, P. F.  Guan, L.  Zhang, T.  Fujita, M.W.  Chen. “Size dependence of molecular fluorescence enhancement of nanoporous gold,” Appl. Phys. Lett.96(7), 073701 (2010).
  20. J.  Pendry, “Playing tricks with light,” Science 285(5434), 1687–1688 (1999).
    [CrossRef]
  21. E.  Prodan, C.  Radloff, N. J.  Halas, P.  Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [CrossRef] [PubMed]
  22. P. R.  West, S.  Ishii, G. V.  Naik, N. K.  Emani, V. M.  Shalaev, A.  Boltasseva, “Searching for better plasmonic materials,” Laser & Photonics Reviews 4(6), 795–808 (2010).
    [CrossRef]
  23. A. C.  Jones, R. L.  Olmon, S. E.  Skrabalak, B. J.  Wiley, Y. N.  Xia, M. B.  Raschke, “Mid-IR plasmonics: Near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9(7), 2553–2558 (2009).
    [CrossRef] [PubMed]
  24. M. K.  Yu, J.  Park, S.  Jon, “Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy,” Theranostics 2(1), 3–44 (2012).
    [CrossRef] [PubMed]
  25. M. D.  Susman, Y.  Feldman, A.  Vaskevich, I.  Rubinstein, “Chemical deposition and stabilization of plasmonic copper nanoparticle films on transparent substrates,” Chem. Mater. 24(13), 2501–2508 (2012).
    [CrossRef]
  26. S.  Link, M. A.  El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19(3), 409–453 (2000).
    [CrossRef]
  27. F. F.  Ge, X. M.  Wang, Y. N.  Li, L. H.  Cao, H. L.  Zhang, H. B.  Wang, W. D.  Wu, “Controllable growth of nanocomposite films with metal nanocrystals sandwiched between dielectric superlattices,” J. Nanopart. Res. 13(12), 6447–6453 (2011).
    [CrossRef]
  28. A.  Kirfel, K. D.  Eichhorn, “Accurate structure analysis with synchrotron radiation, the electron density in Al2O3 and Cu2O,” Acta Crystallogr. A 46(4), 271–284 (1990).
    [CrossRef]
  29. S. R.  Barman, D. D.  Sarma, “Investigation of the L3-M45M45 Auger spectra of Cu, Cu2O and CuO,” J. Phys. Condens. Matter 4(37), 7607–7616 (1992).
    [CrossRef]
  30. S.  Poulston, P. M.  Parlett, P.  Stone, M.  Bowker, “Surface Oxidation and Reduction of CuO and Cu2O Studied Using XPS and XAES,” Surf. Interface Anal. 24(12), 811–820 (1996).
    [CrossRef]
  31. J. P.  Tobin, W.  Hirschwald, J.  Cunningham, “XPS and XAES studies of transient enhancement of Cu at CuO surfaces during vacuum outgassing,” Appl. Surf. Sci. 16(3–4), 441–452 (1983).
  32. S.  Kohiki, T.  Ohmura, K.  Kusao, “Appraisal of new charge correction method in X-ray photoelectron spectroscopy,” J. Electron. Spectrosc. 31(1), 85–90 (1983).
    [CrossRef]
  33. S. A.  Chambers, T.  Droubay, T. C.  Kaspar, M.  Gutowski, “Experimental determination of valence band maxima for SiTiO3, TiO2 and SrO and the associated valence band offsets with Si(001),” J. Vac. Sci. Technol. B 22(4), 2205–2216 (2004).
    [CrossRef]
  34. K.  Ozawa, Y.  Oba, K.  Edamoto, “Formation and characterization of the Cu2O overlayer on Zn-terminated ZnO(0001),” Surf. Sci. 603(13), 2163–2170 (2009).
    [CrossRef]
  35. I.  Masaya, S.  Ying, “Band Alignment at the Cu2O/ZnO Heterojunction,” Jpn. J. Appl. Phys. 50(6), 051002 (2011).
  36. E. A.  Kraut, R. W.  Grant, J. R.  Waldrop, S. P.  Kowalczyk, “Precise determination of the valence-band edge in X-ray photoemission spectra: Application to measurement of semiconductor interface potentials,” Phys. Rev. Lett. 44(24), 1620–1623 (1980).
    [CrossRef]
  37. A.  Mittiga, E.  Salza, F.  Sarto, M.  Tucci, R.  Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett. 88(16), 163502 (2006).
    [CrossRef]
  38. Y. F.  Li, B.  Yao, Y. M.  Lu, B. H.  Li, Y. Q.  Gai, C. X.  Cong, Z. Z.  Zhang, D. X.  Zhao, J. Y.  Zhang, D. Z.  Shen, X. W.  Fan, “Valence-band offset of epitaxial ZnO/MgO (111) heterojunction determined by x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 92(19), 192116 (2008).
    [CrossRef]
  39. X. M.  Wang, W. D.  Wu, Y. Y.  Wang, H. P.  Wang, F. F.  Ge, Y. J.  Tang, X.  Ju, “Ion-implanted mechanism of the deposition process for diamond-like carbon films,” Chin. Phys. Lett. 28(1), 016102 (2011).
    [CrossRef]
  40. J. F.  Ziegler, “The stopping of energetic light ions in elemental matter,” J. Appl. Phys. 85(3), 1249–1272 (1999).
    [CrossRef]
  41. M. P.  Seah, G. C.  Smith, M. T.  Anthony, “AES: Energy calibration of electron spectrometers.I-an absolute, traceable energy calibration and the provision of atomic reference line energies,” Surf. Interface Anal. 15(5), 293–308 (1990).
    [CrossRef]
  42. M.  Kuhn, T. K.  Sham, “Charge redistribution and electronic behavior in a series of Au-Cu alloys,” Phys. Rev. B Condens. Matter 49(3), 1647–1661 (1994).
    [CrossRef] [PubMed]
  43. K. L.  Kelly, E.  Coronado, L. L.  Zhao, G. C.  Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [CrossRef]
  44. B.  Zhang, M.  Price, G. S.  Hong, S. E.  Tabakman, H. L.  Wang, J. A.  Jarrell, J.  Feng, P. J.  Utz, H. J.  Dai, “Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence,” Nano Research 6(2), 113–120 (2013).
    [CrossRef]
  45. L.  Lei, Y.  Ke, Z. L.  Zhang, R.  Huang, J. Z.  Zhu, Y. T.  Wang, Z. Q.  Zhu, “Dual-mode protein detection based on Fe3O4–Au hybrid nanoparticles,” Nano Research 5(4), 272–282 (2012).
    [CrossRef]

2013 (3)

R.  Contreras-Caceres, C.  Dawson, P.  Formanek, D.  Fischer, F.  Simon, A.  Janke, P.  Uhlmann, M.  Stamm, “Polymers as templates for Au and Au@Ag bimetallic nanorods: UV−Vis and surface enhanced Raman spectroscopy,” Chem. Mater. 25(2), 158–169 (2013).
[CrossRef]

B.  Zhang, M.  Price, G. S.  Hong, S. E.  Tabakman, H. L.  Wang, J. A.  Jarrell, J.  Feng, P. J.  Utz, H. J.  Dai, “Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence,” Nano Research 6(2), 113–120 (2013).
[CrossRef]

W. T.  Kung, Y. H.  Pai, Y. K.  Hsu, C. H.  Lin, C. M.  Wang, “Surface Plasmon assisted CuxO photocatalyst for pure water splitting,” Opt. Express 21(S2), A221–A228 (2013).
[CrossRef] [PubMed]

2012 (5)

L.  Lei, Y.  Ke, Z. L.  Zhang, R.  Huang, J. Z.  Zhu, Y. T.  Wang, Z. Q.  Zhu, “Dual-mode protein detection based on Fe3O4–Au hybrid nanoparticles,” Nano Research 5(4), 272–282 (2012).
[CrossRef]

T.  Gershon, P.  Musselman, A.  Marin, R. H.  Friend, J. L.  MacManus-Driscoll, “Thin-film ZnO/Cu2O solar cells incorporating an organic buffer layer,” Sol. Energy Mater. Sol. Cells 96(1), 148–154 (2012).

N.  Yuki, M.  Toshihiro, M.  Tadatsugu, “Effect of inserting a thin buffer layer on the efficiency in n-ZnO/p-Cu2O heterojunction solar cells,” J. Vac. Sci. Technol. A 30(4), 04D103–04D106 (2012).

M. K.  Yu, J.  Park, S.  Jon, “Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy,” Theranostics 2(1), 3–44 (2012).
[CrossRef] [PubMed]

M. D.  Susman, Y.  Feldman, A.  Vaskevich, I.  Rubinstein, “Chemical deposition and stabilization of plasmonic copper nanoparticle films on transparent substrates,” Chem. Mater. 24(13), 2501–2508 (2012).
[CrossRef]

2011 (6)

F. F.  Ge, X. M.  Wang, Y. N.  Li, L. H.  Cao, H. L.  Zhang, H. B.  Wang, W. D.  Wu, “Controllable growth of nanocomposite films with metal nanocrystals sandwiched between dielectric superlattices,” J. Nanopart. Res. 13(12), 6447–6453 (2011).
[CrossRef]

I.  Masaya, S.  Ying, “Band Alignment at the Cu2O/ZnO Heterojunction,” Jpn. J. Appl. Phys. 50(6), 051002 (2011).

X. M.  Wang, W. D.  Wu, Y. Y.  Wang, H. P.  Wang, F. F.  Ge, Y. J.  Tang, X.  Ju, “Ion-implanted mechanism of the deposition process for diamond-like carbon films,” Chin. Phys. Lett. 28(1), 016102 (2011).
[CrossRef]

A.  Paracchino, V.  Laporte, K.  Sivula, M.  Grätzel, E.  Thimsen, “Highly active oxide photocathode for photoelectrochemical water reduction,” Nat. Mater. 10(6), 456–461 (2011).
[CrossRef] [PubMed]

C. J.  Dong, W. X.  Yu, M.  Xu, J. J.  Cao, C.  Chen, W. W.  Yu, Y. D.  Wang, “Valence band offset of Cu2O/In2O3 heterojunction determined by X-ray photoelectron spectroscopy,” J. Appl. Phys. 110(7), 073712 (2011).
[CrossRef]

S.  Jing, L.  Jin, H.  Xiaojian, T.  Yiwei, “Synthesis and enhanced photocatalytic activity of regularly shaped Cu2O nanowire polyhedra,” Nano Research 4(5), 448–459 (2011).
[CrossRef]

2010 (3)

L. M.  Wong, S. Y.  Chiam, J. Q.  Huang, S. J.  Wang, J. S.  Pan, W. K.  Chim, “Growth of Cu2O on Ga-doped ZnO and their interface energy alignment for thin film solar cells,” J. Appl. Phys. 108(3), 033702 (2010).
[CrossRef]

X. Y  Lang, P. F.  Guan, L.  Zhang, T.  Fujita, M.W.  Chen. “Size dependence of molecular fluorescence enhancement of nanoporous gold,” Appl. Phys. Lett.96(7), 073701 (2010).

P. R.  West, S.  Ishii, G. V.  Naik, N. K.  Emani, V. M.  Shalaev, A.  Boltasseva, “Searching for better plasmonic materials,” Laser & Photonics Reviews 4(6), 795–808 (2010).
[CrossRef]

2009 (3)

A. C.  Jones, R. L.  Olmon, S. E.  Skrabalak, B. J.  Wiley, Y. N.  Xia, M. B.  Raschke, “Mid-IR plasmonics: Near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9(7), 2553–2558 (2009).
[CrossRef] [PubMed]

K.  Ozawa, Y.  Oba, K.  Edamoto, “Formation and characterization of the Cu2O overlayer on Zn-terminated ZnO(0001),” Surf. Sci. 603(13), 2163–2170 (2009).
[CrossRef]

S.-O.  Kang, S.  Hong, J.  Choi, J.-S.  Kim, I.  Hwang, I.-S.  Byun, K.-S.  Yun, B. H.  Park, “Electrochemical growth and resistive switching of flat-surfaced and (111)-oriented Cu2O films,” Appl. Phys. Lett. 95(9), 092108 (2009).
[CrossRef]

2008 (1)

Y. F.  Li, B.  Yao, Y. M.  Lu, B. H.  Li, Y. Q.  Gai, C. X.  Cong, Z. Z.  Zhang, D. X.  Zhao, J. Y.  Zhang, D. Z.  Shen, X. W.  Fan, “Valence-band offset of epitaxial ZnO/MgO (111) heterojunction determined by x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 92(19), 192116 (2008).
[CrossRef]

2007 (2)

J. M.  Pitarkel, V. M.  Silkin, E. V.  Chulkov, P. M.  Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(12), 1–87 (2007).

L. H.  Qian, X. Q.  Yan, T.  Fujita, A.  Inoue, M. W.  Chen, “Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements,” Appl. Phys. Lett. 90(15), 153120 (2007).
[CrossRef]

2006 (2)

S. I.  Bozhevolnyi, V. S.  Volkov, E.  Devaux, J. Y.  Laluet, T. W.  Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

A.  Mittiga, E.  Salza, F.  Sarto, M.  Tucci, R.  Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett. 88(16), 163502 (2006).
[CrossRef]

2004 (2)

S. A.  Chambers, T.  Droubay, T. C.  Kaspar, M.  Gutowski, “Experimental determination of valence band maxima for SiTiO3, TiO2 and SrO and the associated valence band offsets with Si(001),” J. Vac. Sci. Technol. B 22(4), 2205–2216 (2004).
[CrossRef]

E.  Hutter, J.  Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[CrossRef]

2003 (4)

W. L.  Barnes, A.  Dereux, T. W.  Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

S. A.  Maier, P. G.  Kik, H. A.  Atwater, S.  Meltzer, E.  Harel, B. E.  Koel, A. A. G.  Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

E.  Prodan, C.  Radloff, N. J.  Halas, P.  Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

K. L.  Kelly, E.  Coronado, L. L.  Zhao, G. C.  Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

2000 (2)

P.  Poizot, S.  Laruelle, S.  Grugeon, L.  Dupont, J. -M.  Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,” Nature 407(6803), 496–499 (2000).
[CrossRef] [PubMed]

S.  Link, M. A.  El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19(3), 409–453 (2000).
[CrossRef]

1999 (2)

J. F.  Ziegler, “The stopping of energetic light ions in elemental matter,” J. Appl. Phys. 85(3), 1249–1272 (1999).
[CrossRef]

J.  Pendry, “Playing tricks with light,” Science 285(5434), 1687–1688 (1999).
[CrossRef]

1996 (1)

S.  Poulston, P. M.  Parlett, P.  Stone, M.  Bowker, “Surface Oxidation and Reduction of CuO and Cu2O Studied Using XPS and XAES,” Surf. Interface Anal. 24(12), 811–820 (1996).
[CrossRef]

1994 (1)

M.  Kuhn, T. K.  Sham, “Charge redistribution and electronic behavior in a series of Au-Cu alloys,” Phys. Rev. B Condens. Matter 49(3), 1647–1661 (1994).
[CrossRef] [PubMed]

1992 (1)

S. R.  Barman, D. D.  Sarma, “Investigation of the L3-M45M45 Auger spectra of Cu, Cu2O and CuO,” J. Phys. Condens. Matter 4(37), 7607–7616 (1992).
[CrossRef]

1990 (2)

M. P.  Seah, G. C.  Smith, M. T.  Anthony, “AES: Energy calibration of electron spectrometers.I-an absolute, traceable energy calibration and the provision of atomic reference line energies,” Surf. Interface Anal. 15(5), 293–308 (1990).
[CrossRef]

A.  Kirfel, K. D.  Eichhorn, “Accurate structure analysis with synchrotron radiation, the electron density in Al2O3 and Cu2O,” Acta Crystallogr. A 46(4), 271–284 (1990).
[CrossRef]

1986 (1)

A. E.  Rakhshani, “Preparation, characteristics and photovoltaic properties of cuprous oxide-a review,” Solid-State Electron. 29(1), 7–17 (1986).
[CrossRef]

1983 (2)

J. P.  Tobin, W.  Hirschwald, J.  Cunningham, “XPS and XAES studies of transient enhancement of Cu at CuO surfaces during vacuum outgassing,” Appl. Surf. Sci. 16(3–4), 441–452 (1983).

S.  Kohiki, T.  Ohmura, K.  Kusao, “Appraisal of new charge correction method in X-ray photoelectron spectroscopy,” J. Electron. Spectrosc. 31(1), 85–90 (1983).
[CrossRef]

1982 (1)

L. C.  Olsen, F. W.  Addis, W.  Miller, “Experimental and theoretical studies of Cu2O solar cells,” Sol. Cells 7(3), 247–279 (1982).
[CrossRef]

1980 (1)

E. A.  Kraut, R. W.  Grant, J. R.  Waldrop, S. P.  Kowalczyk, “Precise determination of the valence-band edge in X-ray photoemission spectra: Application to measurement of semiconductor interface potentials,” Phys. Rev. Lett. 44(24), 1620–1623 (1980).
[CrossRef]

Addis, F. W.

L. C.  Olsen, F. W.  Addis, W.  Miller, “Experimental and theoretical studies of Cu2O solar cells,” Sol. Cells 7(3), 247–279 (1982).
[CrossRef]

Anthony, M. T.

M. P.  Seah, G. C.  Smith, M. T.  Anthony, “AES: Energy calibration of electron spectrometers.I-an absolute, traceable energy calibration and the provision of atomic reference line energies,” Surf. Interface Anal. 15(5), 293–308 (1990).
[CrossRef]

Atwater, H. A.

S. A.  Maier, P. G.  Kik, H. A.  Atwater, S.  Meltzer, E.  Harel, B. E.  Koel, A. A. G.  Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Barman, S. R.

S. R.  Barman, D. D.  Sarma, “Investigation of the L3-M45M45 Auger spectra of Cu, Cu2O and CuO,” J. Phys. Condens. Matter 4(37), 7607–7616 (1992).
[CrossRef]

Barnes, W. L.

W. L.  Barnes, A.  Dereux, T. W.  Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Boltasseva, A.

P. R.  West, S.  Ishii, G. V.  Naik, N. K.  Emani, V. M.  Shalaev, A.  Boltasseva, “Searching for better plasmonic materials,” Laser & Photonics Reviews 4(6), 795–808 (2010).
[CrossRef]

Bowker, M.

S.  Poulston, P. M.  Parlett, P.  Stone, M.  Bowker, “Surface Oxidation and Reduction of CuO and Cu2O Studied Using XPS and XAES,” Surf. Interface Anal. 24(12), 811–820 (1996).
[CrossRef]

Bozhevolnyi, S. I.

S. I.  Bozhevolnyi, V. S.  Volkov, E.  Devaux, J. Y.  Laluet, T. W.  Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Byun, I.-S.

S.-O.  Kang, S.  Hong, J.  Choi, J.-S.  Kim, I.  Hwang, I.-S.  Byun, K.-S.  Yun, B. H.  Park, “Electrochemical growth and resistive switching of flat-surfaced and (111)-oriented Cu2O films,” Appl. Phys. Lett. 95(9), 092108 (2009).
[CrossRef]

Cao, J. J.

C. J.  Dong, W. X.  Yu, M.  Xu, J. J.  Cao, C.  Chen, W. W.  Yu, Y. D.  Wang, “Valence band offset of Cu2O/In2O3 heterojunction determined by X-ray photoelectron spectroscopy,” J. Appl. Phys. 110(7), 073712 (2011).
[CrossRef]

Cao, L. H.

F. F.  Ge, X. M.  Wang, Y. N.  Li, L. H.  Cao, H. L.  Zhang, H. B.  Wang, W. D.  Wu, “Controllable growth of nanocomposite films with metal nanocrystals sandwiched between dielectric superlattices,” J. Nanopart. Res. 13(12), 6447–6453 (2011).
[CrossRef]

Chambers, S. A.

S. A.  Chambers, T.  Droubay, T. C.  Kaspar, M.  Gutowski, “Experimental determination of valence band maxima for SiTiO3, TiO2 and SrO and the associated valence band offsets with Si(001),” J. Vac. Sci. Technol. B 22(4), 2205–2216 (2004).
[CrossRef]

Chen, C.

C. J.  Dong, W. X.  Yu, M.  Xu, J. J.  Cao, C.  Chen, W. W.  Yu, Y. D.  Wang, “Valence band offset of Cu2O/In2O3 heterojunction determined by X-ray photoelectron spectroscopy,” J. Appl. Phys. 110(7), 073712 (2011).
[CrossRef]

Chen, M. W.

L. H.  Qian, X. Q.  Yan, T.  Fujita, A.  Inoue, M. W.  Chen, “Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements,” Appl. Phys. Lett. 90(15), 153120 (2007).
[CrossRef]

Chen, M.W.

X. Y  Lang, P. F.  Guan, L.  Zhang, T.  Fujita, M.W.  Chen. “Size dependence of molecular fluorescence enhancement of nanoporous gold,” Appl. Phys. Lett.96(7), 073701 (2010).

Chiam, S. Y.

L. M.  Wong, S. Y.  Chiam, J. Q.  Huang, S. J.  Wang, J. S.  Pan, W. K.  Chim, “Growth of Cu2O on Ga-doped ZnO and their interface energy alignment for thin film solar cells,” J. Appl. Phys. 108(3), 033702 (2010).
[CrossRef]

Chim, W. K.

L. M.  Wong, S. Y.  Chiam, J. Q.  Huang, S. J.  Wang, J. S.  Pan, W. K.  Chim, “Growth of Cu2O on Ga-doped ZnO and their interface energy alignment for thin film solar cells,” J. Appl. Phys. 108(3), 033702 (2010).
[CrossRef]

Choi, J.

S.-O.  Kang, S.  Hong, J.  Choi, J.-S.  Kim, I.  Hwang, I.-S.  Byun, K.-S.  Yun, B. H.  Park, “Electrochemical growth and resistive switching of flat-surfaced and (111)-oriented Cu2O films,” Appl. Phys. Lett. 95(9), 092108 (2009).
[CrossRef]

Chulkov, E. V.

J. M.  Pitarkel, V. M.  Silkin, E. V.  Chulkov, P. M.  Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(12), 1–87 (2007).

Cong, C. X.

Y. F.  Li, B.  Yao, Y. M.  Lu, B. H.  Li, Y. Q.  Gai, C. X.  Cong, Z. Z.  Zhang, D. X.  Zhao, J. Y.  Zhang, D. Z.  Shen, X. W.  Fan, “Valence-band offset of epitaxial ZnO/MgO (111) heterojunction determined by x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 92(19), 192116 (2008).
[CrossRef]

Contreras-Caceres, R.

R.  Contreras-Caceres, C.  Dawson, P.  Formanek, D.  Fischer, F.  Simon, A.  Janke, P.  Uhlmann, M.  Stamm, “Polymers as templates for Au and Au@Ag bimetallic nanorods: UV−Vis and surface enhanced Raman spectroscopy,” Chem. Mater. 25(2), 158–169 (2013).
[CrossRef]

Coronado, E.

K. L.  Kelly, E.  Coronado, L. L.  Zhao, G. C.  Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Cunningham, J.

J. P.  Tobin, W.  Hirschwald, J.  Cunningham, “XPS and XAES studies of transient enhancement of Cu at CuO surfaces during vacuum outgassing,” Appl. Surf. Sci. 16(3–4), 441–452 (1983).

Dai, H. J.

B.  Zhang, M.  Price, G. S.  Hong, S. E.  Tabakman, H. L.  Wang, J. A.  Jarrell, J.  Feng, P. J.  Utz, H. J.  Dai, “Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence,” Nano Research 6(2), 113–120 (2013).
[CrossRef]

Dawson, C.

R.  Contreras-Caceres, C.  Dawson, P.  Formanek, D.  Fischer, F.  Simon, A.  Janke, P.  Uhlmann, M.  Stamm, “Polymers as templates for Au and Au@Ag bimetallic nanorods: UV−Vis and surface enhanced Raman spectroscopy,” Chem. Mater. 25(2), 158–169 (2013).
[CrossRef]

Dereux, A.

W. L.  Barnes, A.  Dereux, T. W.  Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Devaux, E.

S. I.  Bozhevolnyi, V. S.  Volkov, E.  Devaux, J. Y.  Laluet, T. W.  Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Dong, C. J.

C. J.  Dong, W. X.  Yu, M.  Xu, J. J.  Cao, C.  Chen, W. W.  Yu, Y. D.  Wang, “Valence band offset of Cu2O/In2O3 heterojunction determined by X-ray photoelectron spectroscopy,” J. Appl. Phys. 110(7), 073712 (2011).
[CrossRef]

Droubay, T.

S. A.  Chambers, T.  Droubay, T. C.  Kaspar, M.  Gutowski, “Experimental determination of valence band maxima for SiTiO3, TiO2 and SrO and the associated valence band offsets with Si(001),” J. Vac. Sci. Technol. B 22(4), 2205–2216 (2004).
[CrossRef]

Dupont, L.

P.  Poizot, S.  Laruelle, S.  Grugeon, L.  Dupont, J. -M.  Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,” Nature 407(6803), 496–499 (2000).
[CrossRef] [PubMed]

Ebbesen, T. W.

S. I.  Bozhevolnyi, V. S.  Volkov, E.  Devaux, J. Y.  Laluet, T. W.  Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

W. L.  Barnes, A.  Dereux, T. W.  Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Echenique, P. M.

J. M.  Pitarkel, V. M.  Silkin, E. V.  Chulkov, P. M.  Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(12), 1–87 (2007).

Edamoto, K.

K.  Ozawa, Y.  Oba, K.  Edamoto, “Formation and characterization of the Cu2O overlayer on Zn-terminated ZnO(0001),” Surf. Sci. 603(13), 2163–2170 (2009).
[CrossRef]

Eichhorn, K. D.

A.  Kirfel, K. D.  Eichhorn, “Accurate structure analysis with synchrotron radiation, the electron density in Al2O3 and Cu2O,” Acta Crystallogr. A 46(4), 271–284 (1990).
[CrossRef]

El-Sayed, M. A.

S.  Link, M. A.  El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19(3), 409–453 (2000).
[CrossRef]

Emani, N. K.

P. R.  West, S.  Ishii, G. V.  Naik, N. K.  Emani, V. M.  Shalaev, A.  Boltasseva, “Searching for better plasmonic materials,” Laser & Photonics Reviews 4(6), 795–808 (2010).
[CrossRef]

Fan, X. W.

Y. F.  Li, B.  Yao, Y. M.  Lu, B. H.  Li, Y. Q.  Gai, C. X.  Cong, Z. Z.  Zhang, D. X.  Zhao, J. Y.  Zhang, D. Z.  Shen, X. W.  Fan, “Valence-band offset of epitaxial ZnO/MgO (111) heterojunction determined by x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 92(19), 192116 (2008).
[CrossRef]

Feldman, Y.

M. D.  Susman, Y.  Feldman, A.  Vaskevich, I.  Rubinstein, “Chemical deposition and stabilization of plasmonic copper nanoparticle films on transparent substrates,” Chem. Mater. 24(13), 2501–2508 (2012).
[CrossRef]

Fendler, J.

E.  Hutter, J.  Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[CrossRef]

Feng, J.

B.  Zhang, M.  Price, G. S.  Hong, S. E.  Tabakman, H. L.  Wang, J. A.  Jarrell, J.  Feng, P. J.  Utz, H. J.  Dai, “Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence,” Nano Research 6(2), 113–120 (2013).
[CrossRef]

Fischer, D.

R.  Contreras-Caceres, C.  Dawson, P.  Formanek, D.  Fischer, F.  Simon, A.  Janke, P.  Uhlmann, M.  Stamm, “Polymers as templates for Au and Au@Ag bimetallic nanorods: UV−Vis and surface enhanced Raman spectroscopy,” Chem. Mater. 25(2), 158–169 (2013).
[CrossRef]

Formanek, P.

R.  Contreras-Caceres, C.  Dawson, P.  Formanek, D.  Fischer, F.  Simon, A.  Janke, P.  Uhlmann, M.  Stamm, “Polymers as templates for Au and Au@Ag bimetallic nanorods: UV−Vis and surface enhanced Raman spectroscopy,” Chem. Mater. 25(2), 158–169 (2013).
[CrossRef]

Friend, R. H.

T.  Gershon, P.  Musselman, A.  Marin, R. H.  Friend, J. L.  MacManus-Driscoll, “Thin-film ZnO/Cu2O solar cells incorporating an organic buffer layer,” Sol. Energy Mater. Sol. Cells 96(1), 148–154 (2012).

Fujita, T.

X. Y  Lang, P. F.  Guan, L.  Zhang, T.  Fujita, M.W.  Chen. “Size dependence of molecular fluorescence enhancement of nanoporous gold,” Appl. Phys. Lett.96(7), 073701 (2010).

L. H.  Qian, X. Q.  Yan, T.  Fujita, A.  Inoue, M. W.  Chen, “Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements,” Appl. Phys. Lett. 90(15), 153120 (2007).
[CrossRef]

Gai, Y. Q.

Y. F.  Li, B.  Yao, Y. M.  Lu, B. H.  Li, Y. Q.  Gai, C. X.  Cong, Z. Z.  Zhang, D. X.  Zhao, J. Y.  Zhang, D. Z.  Shen, X. W.  Fan, “Valence-band offset of epitaxial ZnO/MgO (111) heterojunction determined by x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 92(19), 192116 (2008).
[CrossRef]

Ge, F. F.

X. M.  Wang, W. D.  Wu, Y. Y.  Wang, H. P.  Wang, F. F.  Ge, Y. J.  Tang, X.  Ju, “Ion-implanted mechanism of the deposition process for diamond-like carbon films,” Chin. Phys. Lett. 28(1), 016102 (2011).
[CrossRef]

F. F.  Ge, X. M.  Wang, Y. N.  Li, L. H.  Cao, H. L.  Zhang, H. B.  Wang, W. D.  Wu, “Controllable growth of nanocomposite films with metal nanocrystals sandwiched between dielectric superlattices,” J. Nanopart. Res. 13(12), 6447–6453 (2011).
[CrossRef]

Gershon, T.

T.  Gershon, P.  Musselman, A.  Marin, R. H.  Friend, J. L.  MacManus-Driscoll, “Thin-film ZnO/Cu2O solar cells incorporating an organic buffer layer,” Sol. Energy Mater. Sol. Cells 96(1), 148–154 (2012).

Grant, R. W.

E. A.  Kraut, R. W.  Grant, J. R.  Waldrop, S. P.  Kowalczyk, “Precise determination of the valence-band edge in X-ray photoemission spectra: Application to measurement of semiconductor interface potentials,” Phys. Rev. Lett. 44(24), 1620–1623 (1980).
[CrossRef]

Grätzel, M.

A.  Paracchino, V.  Laporte, K.  Sivula, M.  Grätzel, E.  Thimsen, “Highly active oxide photocathode for photoelectrochemical water reduction,” Nat. Mater. 10(6), 456–461 (2011).
[CrossRef] [PubMed]

Grugeon, S.

P.  Poizot, S.  Laruelle, S.  Grugeon, L.  Dupont, J. -M.  Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,” Nature 407(6803), 496–499 (2000).
[CrossRef] [PubMed]

Guan, P. F.

X. Y  Lang, P. F.  Guan, L.  Zhang, T.  Fujita, M.W.  Chen. “Size dependence of molecular fluorescence enhancement of nanoporous gold,” Appl. Phys. Lett.96(7), 073701 (2010).

Gutowski, M.

S. A.  Chambers, T.  Droubay, T. C.  Kaspar, M.  Gutowski, “Experimental determination of valence band maxima for SiTiO3, TiO2 and SrO and the associated valence band offsets with Si(001),” J. Vac. Sci. Technol. B 22(4), 2205–2216 (2004).
[CrossRef]

Halas, N. J.

E.  Prodan, C.  Radloff, N. J.  Halas, P.  Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Harel, E.

S. A.  Maier, P. G.  Kik, H. A.  Atwater, S.  Meltzer, E.  Harel, B. E.  Koel, A. A. G.  Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Hirschwald, W.

J. P.  Tobin, W.  Hirschwald, J.  Cunningham, “XPS and XAES studies of transient enhancement of Cu at CuO surfaces during vacuum outgassing,” Appl. Surf. Sci. 16(3–4), 441–452 (1983).

Hong, G. S.

B.  Zhang, M.  Price, G. S.  Hong, S. E.  Tabakman, H. L.  Wang, J. A.  Jarrell, J.  Feng, P. J.  Utz, H. J.  Dai, “Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence,” Nano Research 6(2), 113–120 (2013).
[CrossRef]

Hong, S.

S.-O.  Kang, S.  Hong, J.  Choi, J.-S.  Kim, I.  Hwang, I.-S.  Byun, K.-S.  Yun, B. H.  Park, “Electrochemical growth and resistive switching of flat-surfaced and (111)-oriented Cu2O films,” Appl. Phys. Lett. 95(9), 092108 (2009).
[CrossRef]

Hsu, Y. K.

Huang, J. Q.

L. M.  Wong, S. Y.  Chiam, J. Q.  Huang, S. J.  Wang, J. S.  Pan, W. K.  Chim, “Growth of Cu2O on Ga-doped ZnO and their interface energy alignment for thin film solar cells,” J. Appl. Phys. 108(3), 033702 (2010).
[CrossRef]

Huang, R.

L.  Lei, Y.  Ke, Z. L.  Zhang, R.  Huang, J. Z.  Zhu, Y. T.  Wang, Z. Q.  Zhu, “Dual-mode protein detection based on Fe3O4–Au hybrid nanoparticles,” Nano Research 5(4), 272–282 (2012).
[CrossRef]

Hutter, E.

E.  Hutter, J.  Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[CrossRef]

Hwang, I.

S.-O.  Kang, S.  Hong, J.  Choi, J.-S.  Kim, I.  Hwang, I.-S.  Byun, K.-S.  Yun, B. H.  Park, “Electrochemical growth and resistive switching of flat-surfaced and (111)-oriented Cu2O films,” Appl. Phys. Lett. 95(9), 092108 (2009).
[CrossRef]

Inoue, A.

L. H.  Qian, X. Q.  Yan, T.  Fujita, A.  Inoue, M. W.  Chen, “Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements,” Appl. Phys. Lett. 90(15), 153120 (2007).
[CrossRef]

Ishii, S.

P. R.  West, S.  Ishii, G. V.  Naik, N. K.  Emani, V. M.  Shalaev, A.  Boltasseva, “Searching for better plasmonic materials,” Laser & Photonics Reviews 4(6), 795–808 (2010).
[CrossRef]

Janke, A.

R.  Contreras-Caceres, C.  Dawson, P.  Formanek, D.  Fischer, F.  Simon, A.  Janke, P.  Uhlmann, M.  Stamm, “Polymers as templates for Au and Au@Ag bimetallic nanorods: UV−Vis and surface enhanced Raman spectroscopy,” Chem. Mater. 25(2), 158–169 (2013).
[CrossRef]

Jarrell, J. A.

B.  Zhang, M.  Price, G. S.  Hong, S. E.  Tabakman, H. L.  Wang, J. A.  Jarrell, J.  Feng, P. J.  Utz, H. J.  Dai, “Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence,” Nano Research 6(2), 113–120 (2013).
[CrossRef]

Jin, L.

S.  Jing, L.  Jin, H.  Xiaojian, T.  Yiwei, “Synthesis and enhanced photocatalytic activity of regularly shaped Cu2O nanowire polyhedra,” Nano Research 4(5), 448–459 (2011).
[CrossRef]

Jing, S.

S.  Jing, L.  Jin, H.  Xiaojian, T.  Yiwei, “Synthesis and enhanced photocatalytic activity of regularly shaped Cu2O nanowire polyhedra,” Nano Research 4(5), 448–459 (2011).
[CrossRef]

Jon, S.

M. K.  Yu, J.  Park, S.  Jon, “Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy,” Theranostics 2(1), 3–44 (2012).
[CrossRef] [PubMed]

Jones, A. C.

A. C.  Jones, R. L.  Olmon, S. E.  Skrabalak, B. J.  Wiley, Y. N.  Xia, M. B.  Raschke, “Mid-IR plasmonics: Near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9(7), 2553–2558 (2009).
[CrossRef] [PubMed]

Ju, X.

X. M.  Wang, W. D.  Wu, Y. Y.  Wang, H. P.  Wang, F. F.  Ge, Y. J.  Tang, X.  Ju, “Ion-implanted mechanism of the deposition process for diamond-like carbon films,” Chin. Phys. Lett. 28(1), 016102 (2011).
[CrossRef]

Kang, S.-O.

S.-O.  Kang, S.  Hong, J.  Choi, J.-S.  Kim, I.  Hwang, I.-S.  Byun, K.-S.  Yun, B. H.  Park, “Electrochemical growth and resistive switching of flat-surfaced and (111)-oriented Cu2O films,” Appl. Phys. Lett. 95(9), 092108 (2009).
[CrossRef]

Kaspar, T. C.

S. A.  Chambers, T.  Droubay, T. C.  Kaspar, M.  Gutowski, “Experimental determination of valence band maxima for SiTiO3, TiO2 and SrO and the associated valence band offsets with Si(001),” J. Vac. Sci. Technol. B 22(4), 2205–2216 (2004).
[CrossRef]

Ke, Y.

L.  Lei, Y.  Ke, Z. L.  Zhang, R.  Huang, J. Z.  Zhu, Y. T.  Wang, Z. Q.  Zhu, “Dual-mode protein detection based on Fe3O4–Au hybrid nanoparticles,” Nano Research 5(4), 272–282 (2012).
[CrossRef]

Kelly, K. L.

K. L.  Kelly, E.  Coronado, L. L.  Zhao, G. C.  Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Kik, P. G.

S. A.  Maier, P. G.  Kik, H. A.  Atwater, S.  Meltzer, E.  Harel, B. E.  Koel, A. A. G.  Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Kim, J.-S.

S.-O.  Kang, S.  Hong, J.  Choi, J.-S.  Kim, I.  Hwang, I.-S.  Byun, K.-S.  Yun, B. H.  Park, “Electrochemical growth and resistive switching of flat-surfaced and (111)-oriented Cu2O films,” Appl. Phys. Lett. 95(9), 092108 (2009).
[CrossRef]

Kirfel, A.

A.  Kirfel, K. D.  Eichhorn, “Accurate structure analysis with synchrotron radiation, the electron density in Al2O3 and Cu2O,” Acta Crystallogr. A 46(4), 271–284 (1990).
[CrossRef]

Koel, B. E.

S. A.  Maier, P. G.  Kik, H. A.  Atwater, S.  Meltzer, E.  Harel, B. E.  Koel, A. A. G.  Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Kohiki, S.

S.  Kohiki, T.  Ohmura, K.  Kusao, “Appraisal of new charge correction method in X-ray photoelectron spectroscopy,” J. Electron. Spectrosc. 31(1), 85–90 (1983).
[CrossRef]

Kowalczyk, S. P.

E. A.  Kraut, R. W.  Grant, J. R.  Waldrop, S. P.  Kowalczyk, “Precise determination of the valence-band edge in X-ray photoemission spectra: Application to measurement of semiconductor interface potentials,” Phys. Rev. Lett. 44(24), 1620–1623 (1980).
[CrossRef]

Kraut, E. A.

E. A.  Kraut, R. W.  Grant, J. R.  Waldrop, S. P.  Kowalczyk, “Precise determination of the valence-band edge in X-ray photoemission spectra: Application to measurement of semiconductor interface potentials,” Phys. Rev. Lett. 44(24), 1620–1623 (1980).
[CrossRef]

Kuhn, M.

M.  Kuhn, T. K.  Sham, “Charge redistribution and electronic behavior in a series of Au-Cu alloys,” Phys. Rev. B Condens. Matter 49(3), 1647–1661 (1994).
[CrossRef] [PubMed]

Kung, W. T.

Kusao, K.

S.  Kohiki, T.  Ohmura, K.  Kusao, “Appraisal of new charge correction method in X-ray photoelectron spectroscopy,” J. Electron. Spectrosc. 31(1), 85–90 (1983).
[CrossRef]

Laluet, J. Y.

S. I.  Bozhevolnyi, V. S.  Volkov, E.  Devaux, J. Y.  Laluet, T. W.  Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Lang, X. Y

X. Y  Lang, P. F.  Guan, L.  Zhang, T.  Fujita, M.W.  Chen. “Size dependence of molecular fluorescence enhancement of nanoporous gold,” Appl. Phys. Lett.96(7), 073701 (2010).

Laporte, V.

A.  Paracchino, V.  Laporte, K.  Sivula, M.  Grätzel, E.  Thimsen, “Highly active oxide photocathode for photoelectrochemical water reduction,” Nat. Mater. 10(6), 456–461 (2011).
[CrossRef] [PubMed]

Laruelle, S.

P.  Poizot, S.  Laruelle, S.  Grugeon, L.  Dupont, J. -M.  Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,” Nature 407(6803), 496–499 (2000).
[CrossRef] [PubMed]

Lei, L.

L.  Lei, Y.  Ke, Z. L.  Zhang, R.  Huang, J. Z.  Zhu, Y. T.  Wang, Z. Q.  Zhu, “Dual-mode protein detection based on Fe3O4–Au hybrid nanoparticles,” Nano Research 5(4), 272–282 (2012).
[CrossRef]

Li, B. H.

Y. F.  Li, B.  Yao, Y. M.  Lu, B. H.  Li, Y. Q.  Gai, C. X.  Cong, Z. Z.  Zhang, D. X.  Zhao, J. Y.  Zhang, D. Z.  Shen, X. W.  Fan, “Valence-band offset of epitaxial ZnO/MgO (111) heterojunction determined by x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 92(19), 192116 (2008).
[CrossRef]

Li, Y. F.

Y. F.  Li, B.  Yao, Y. M.  Lu, B. H.  Li, Y. Q.  Gai, C. X.  Cong, Z. Z.  Zhang, D. X.  Zhao, J. Y.  Zhang, D. Z.  Shen, X. W.  Fan, “Valence-band offset of epitaxial ZnO/MgO (111) heterojunction determined by x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 92(19), 192116 (2008).
[CrossRef]

Li, Y. N.

F. F.  Ge, X. M.  Wang, Y. N.  Li, L. H.  Cao, H. L.  Zhang, H. B.  Wang, W. D.  Wu, “Controllable growth of nanocomposite films with metal nanocrystals sandwiched between dielectric superlattices,” J. Nanopart. Res. 13(12), 6447–6453 (2011).
[CrossRef]

Lin, C. H.

Link, S.

S.  Link, M. A.  El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19(3), 409–453 (2000).
[CrossRef]

Lu, Y. M.

Y. F.  Li, B.  Yao, Y. M.  Lu, B. H.  Li, Y. Q.  Gai, C. X.  Cong, Z. Z.  Zhang, D. X.  Zhao, J. Y.  Zhang, D. Z.  Shen, X. W.  Fan, “Valence-band offset of epitaxial ZnO/MgO (111) heterojunction determined by x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 92(19), 192116 (2008).
[CrossRef]

MacManus-Driscoll, J. L.

T.  Gershon, P.  Musselman, A.  Marin, R. H.  Friend, J. L.  MacManus-Driscoll, “Thin-film ZnO/Cu2O solar cells incorporating an organic buffer layer,” Sol. Energy Mater. Sol. Cells 96(1), 148–154 (2012).

Maier, S. A.

S. A.  Maier, P. G.  Kik, H. A.  Atwater, S.  Meltzer, E.  Harel, B. E.  Koel, A. A. G.  Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Marin, A.

T.  Gershon, P.  Musselman, A.  Marin, R. H.  Friend, J. L.  MacManus-Driscoll, “Thin-film ZnO/Cu2O solar cells incorporating an organic buffer layer,” Sol. Energy Mater. Sol. Cells 96(1), 148–154 (2012).

Masaya, I.

I.  Masaya, S.  Ying, “Band Alignment at the Cu2O/ZnO Heterojunction,” Jpn. J. Appl. Phys. 50(6), 051002 (2011).

Meltzer, S.

S. A.  Maier, P. G.  Kik, H. A.  Atwater, S.  Meltzer, E.  Harel, B. E.  Koel, A. A. G.  Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Miller, W.

L. C.  Olsen, F. W.  Addis, W.  Miller, “Experimental and theoretical studies of Cu2O solar cells,” Sol. Cells 7(3), 247–279 (1982).
[CrossRef]

Mittiga, A.

A.  Mittiga, E.  Salza, F.  Sarto, M.  Tucci, R.  Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett. 88(16), 163502 (2006).
[CrossRef]

Musselman, P.

T.  Gershon, P.  Musselman, A.  Marin, R. H.  Friend, J. L.  MacManus-Driscoll, “Thin-film ZnO/Cu2O solar cells incorporating an organic buffer layer,” Sol. Energy Mater. Sol. Cells 96(1), 148–154 (2012).

Naik, G. V.

P. R.  West, S.  Ishii, G. V.  Naik, N. K.  Emani, V. M.  Shalaev, A.  Boltasseva, “Searching for better plasmonic materials,” Laser & Photonics Reviews 4(6), 795–808 (2010).
[CrossRef]

Nordlander, P.

E.  Prodan, C.  Radloff, N. J.  Halas, P.  Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Oba, Y.

K.  Ozawa, Y.  Oba, K.  Edamoto, “Formation and characterization of the Cu2O overlayer on Zn-terminated ZnO(0001),” Surf. Sci. 603(13), 2163–2170 (2009).
[CrossRef]

Ohmura, T.

S.  Kohiki, T.  Ohmura, K.  Kusao, “Appraisal of new charge correction method in X-ray photoelectron spectroscopy,” J. Electron. Spectrosc. 31(1), 85–90 (1983).
[CrossRef]

Olmon, R. L.

A. C.  Jones, R. L.  Olmon, S. E.  Skrabalak, B. J.  Wiley, Y. N.  Xia, M. B.  Raschke, “Mid-IR plasmonics: Near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9(7), 2553–2558 (2009).
[CrossRef] [PubMed]

Olsen, L. C.

L. C.  Olsen, F. W.  Addis, W.  Miller, “Experimental and theoretical studies of Cu2O solar cells,” Sol. Cells 7(3), 247–279 (1982).
[CrossRef]

Ozawa, K.

K.  Ozawa, Y.  Oba, K.  Edamoto, “Formation and characterization of the Cu2O overlayer on Zn-terminated ZnO(0001),” Surf. Sci. 603(13), 2163–2170 (2009).
[CrossRef]

Pai, Y. H.

Pan, J. S.

L. M.  Wong, S. Y.  Chiam, J. Q.  Huang, S. J.  Wang, J. S.  Pan, W. K.  Chim, “Growth of Cu2O on Ga-doped ZnO and their interface energy alignment for thin film solar cells,” J. Appl. Phys. 108(3), 033702 (2010).
[CrossRef]

Paracchino, A.

A.  Paracchino, V.  Laporte, K.  Sivula, M.  Grätzel, E.  Thimsen, “Highly active oxide photocathode for photoelectrochemical water reduction,” Nat. Mater. 10(6), 456–461 (2011).
[CrossRef] [PubMed]

Park, B. H.

S.-O.  Kang, S.  Hong, J.  Choi, J.-S.  Kim, I.  Hwang, I.-S.  Byun, K.-S.  Yun, B. H.  Park, “Electrochemical growth and resistive switching of flat-surfaced and (111)-oriented Cu2O films,” Appl. Phys. Lett. 95(9), 092108 (2009).
[CrossRef]

Park, J.

M. K.  Yu, J.  Park, S.  Jon, “Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy,” Theranostics 2(1), 3–44 (2012).
[CrossRef] [PubMed]

Parlett, P. M.

S.  Poulston, P. M.  Parlett, P.  Stone, M.  Bowker, “Surface Oxidation and Reduction of CuO and Cu2O Studied Using XPS and XAES,” Surf. Interface Anal. 24(12), 811–820 (1996).
[CrossRef]

Pendry, J.

J.  Pendry, “Playing tricks with light,” Science 285(5434), 1687–1688 (1999).
[CrossRef]

Pitarkel, J. M.

J. M.  Pitarkel, V. M.  Silkin, E. V.  Chulkov, P. M.  Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(12), 1–87 (2007).

Poizot, P.

P.  Poizot, S.  Laruelle, S.  Grugeon, L.  Dupont, J. -M.  Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,” Nature 407(6803), 496–499 (2000).
[CrossRef] [PubMed]

Poulston, S.

S.  Poulston, P. M.  Parlett, P.  Stone, M.  Bowker, “Surface Oxidation and Reduction of CuO and Cu2O Studied Using XPS and XAES,” Surf. Interface Anal. 24(12), 811–820 (1996).
[CrossRef]

Price, M.

B.  Zhang, M.  Price, G. S.  Hong, S. E.  Tabakman, H. L.  Wang, J. A.  Jarrell, J.  Feng, P. J.  Utz, H. J.  Dai, “Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence,” Nano Research 6(2), 113–120 (2013).
[CrossRef]

Prodan, E.

E.  Prodan, C.  Radloff, N. J.  Halas, P.  Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Qian, L. H.

L. H.  Qian, X. Q.  Yan, T.  Fujita, A.  Inoue, M. W.  Chen, “Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements,” Appl. Phys. Lett. 90(15), 153120 (2007).
[CrossRef]

Radloff, C.

E.  Prodan, C.  Radloff, N. J.  Halas, P.  Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Rakhshani, A. E.

A. E.  Rakhshani, “Preparation, characteristics and photovoltaic properties of cuprous oxide-a review,” Solid-State Electron. 29(1), 7–17 (1986).
[CrossRef]

Raschke, M. B.

A. C.  Jones, R. L.  Olmon, S. E.  Skrabalak, B. J.  Wiley, Y. N.  Xia, M. B.  Raschke, “Mid-IR plasmonics: Near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9(7), 2553–2558 (2009).
[CrossRef] [PubMed]

Requicha, A. A. G.

S. A.  Maier, P. G.  Kik, H. A.  Atwater, S.  Meltzer, E.  Harel, B. E.  Koel, A. A. G.  Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Rubinstein, I.

M. D.  Susman, Y.  Feldman, A.  Vaskevich, I.  Rubinstein, “Chemical deposition and stabilization of plasmonic copper nanoparticle films on transparent substrates,” Chem. Mater. 24(13), 2501–2508 (2012).
[CrossRef]

Salza, E.

A.  Mittiga, E.  Salza, F.  Sarto, M.  Tucci, R.  Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett. 88(16), 163502 (2006).
[CrossRef]

Sarma, D. D.

S. R.  Barman, D. D.  Sarma, “Investigation of the L3-M45M45 Auger spectra of Cu, Cu2O and CuO,” J. Phys. Condens. Matter 4(37), 7607–7616 (1992).
[CrossRef]

Sarto, F.

A.  Mittiga, E.  Salza, F.  Sarto, M.  Tucci, R.  Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett. 88(16), 163502 (2006).
[CrossRef]

Schatz, G. C.

K. L.  Kelly, E.  Coronado, L. L.  Zhao, G. C.  Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Seah, M. P.

M. P.  Seah, G. C.  Smith, M. T.  Anthony, “AES: Energy calibration of electron spectrometers.I-an absolute, traceable energy calibration and the provision of atomic reference line energies,” Surf. Interface Anal. 15(5), 293–308 (1990).
[CrossRef]

Shalaev, V. M.

P. R.  West, S.  Ishii, G. V.  Naik, N. K.  Emani, V. M.  Shalaev, A.  Boltasseva, “Searching for better plasmonic materials,” Laser & Photonics Reviews 4(6), 795–808 (2010).
[CrossRef]

Sham, T. K.

M.  Kuhn, T. K.  Sham, “Charge redistribution and electronic behavior in a series of Au-Cu alloys,” Phys. Rev. B Condens. Matter 49(3), 1647–1661 (1994).
[CrossRef] [PubMed]

Shen, D. Z.

Y. F.  Li, B.  Yao, Y. M.  Lu, B. H.  Li, Y. Q.  Gai, C. X.  Cong, Z. Z.  Zhang, D. X.  Zhao, J. Y.  Zhang, D. Z.  Shen, X. W.  Fan, “Valence-band offset of epitaxial ZnO/MgO (111) heterojunction determined by x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 92(19), 192116 (2008).
[CrossRef]

Silkin, V. M.

J. M.  Pitarkel, V. M.  Silkin, E. V.  Chulkov, P. M.  Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(12), 1–87 (2007).

Simon, F.

R.  Contreras-Caceres, C.  Dawson, P.  Formanek, D.  Fischer, F.  Simon, A.  Janke, P.  Uhlmann, M.  Stamm, “Polymers as templates for Au and Au@Ag bimetallic nanorods: UV−Vis and surface enhanced Raman spectroscopy,” Chem. Mater. 25(2), 158–169 (2013).
[CrossRef]

Sivula, K.

A.  Paracchino, V.  Laporte, K.  Sivula, M.  Grätzel, E.  Thimsen, “Highly active oxide photocathode for photoelectrochemical water reduction,” Nat. Mater. 10(6), 456–461 (2011).
[CrossRef] [PubMed]

Skrabalak, S. E.

A. C.  Jones, R. L.  Olmon, S. E.  Skrabalak, B. J.  Wiley, Y. N.  Xia, M. B.  Raschke, “Mid-IR plasmonics: Near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9(7), 2553–2558 (2009).
[CrossRef] [PubMed]

Smith, G. C.

M. P.  Seah, G. C.  Smith, M. T.  Anthony, “AES: Energy calibration of electron spectrometers.I-an absolute, traceable energy calibration and the provision of atomic reference line energies,” Surf. Interface Anal. 15(5), 293–308 (1990).
[CrossRef]

Stamm, M.

R.  Contreras-Caceres, C.  Dawson, P.  Formanek, D.  Fischer, F.  Simon, A.  Janke, P.  Uhlmann, M.  Stamm, “Polymers as templates for Au and Au@Ag bimetallic nanorods: UV−Vis and surface enhanced Raman spectroscopy,” Chem. Mater. 25(2), 158–169 (2013).
[CrossRef]

Stone, P.

S.  Poulston, P. M.  Parlett, P.  Stone, M.  Bowker, “Surface Oxidation and Reduction of CuO and Cu2O Studied Using XPS and XAES,” Surf. Interface Anal. 24(12), 811–820 (1996).
[CrossRef]

Susman, M. D.

M. D.  Susman, Y.  Feldman, A.  Vaskevich, I.  Rubinstein, “Chemical deposition and stabilization of plasmonic copper nanoparticle films on transparent substrates,” Chem. Mater. 24(13), 2501–2508 (2012).
[CrossRef]

Tabakman, S. E.

B.  Zhang, M.  Price, G. S.  Hong, S. E.  Tabakman, H. L.  Wang, J. A.  Jarrell, J.  Feng, P. J.  Utz, H. J.  Dai, “Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence,” Nano Research 6(2), 113–120 (2013).
[CrossRef]

Tadatsugu, M.

N.  Yuki, M.  Toshihiro, M.  Tadatsugu, “Effect of inserting a thin buffer layer on the efficiency in n-ZnO/p-Cu2O heterojunction solar cells,” J. Vac. Sci. Technol. A 30(4), 04D103–04D106 (2012).

Tang, Y. J.

X. M.  Wang, W. D.  Wu, Y. Y.  Wang, H. P.  Wang, F. F.  Ge, Y. J.  Tang, X.  Ju, “Ion-implanted mechanism of the deposition process for diamond-like carbon films,” Chin. Phys. Lett. 28(1), 016102 (2011).
[CrossRef]

Tarascon, J. -M.

P.  Poizot, S.  Laruelle, S.  Grugeon, L.  Dupont, J. -M.  Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,” Nature 407(6803), 496–499 (2000).
[CrossRef] [PubMed]

Thimsen, E.

A.  Paracchino, V.  Laporte, K.  Sivula, M.  Grätzel, E.  Thimsen, “Highly active oxide photocathode for photoelectrochemical water reduction,” Nat. Mater. 10(6), 456–461 (2011).
[CrossRef] [PubMed]

Tobin, J. P.

J. P.  Tobin, W.  Hirschwald, J.  Cunningham, “XPS and XAES studies of transient enhancement of Cu at CuO surfaces during vacuum outgassing,” Appl. Surf. Sci. 16(3–4), 441–452 (1983).

Toshihiro, M.

N.  Yuki, M.  Toshihiro, M.  Tadatsugu, “Effect of inserting a thin buffer layer on the efficiency in n-ZnO/p-Cu2O heterojunction solar cells,” J. Vac. Sci. Technol. A 30(4), 04D103–04D106 (2012).

Tucci, M.

A.  Mittiga, E.  Salza, F.  Sarto, M.  Tucci, R.  Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett. 88(16), 163502 (2006).
[CrossRef]

Uhlmann, P.

R.  Contreras-Caceres, C.  Dawson, P.  Formanek, D.  Fischer, F.  Simon, A.  Janke, P.  Uhlmann, M.  Stamm, “Polymers as templates for Au and Au@Ag bimetallic nanorods: UV−Vis and surface enhanced Raman spectroscopy,” Chem. Mater. 25(2), 158–169 (2013).
[CrossRef]

Utz, P. J.

B.  Zhang, M.  Price, G. S.  Hong, S. E.  Tabakman, H. L.  Wang, J. A.  Jarrell, J.  Feng, P. J.  Utz, H. J.  Dai, “Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence,” Nano Research 6(2), 113–120 (2013).
[CrossRef]

Vasanthi, R.

A.  Mittiga, E.  Salza, F.  Sarto, M.  Tucci, R.  Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett. 88(16), 163502 (2006).
[CrossRef]

Vaskevich, A.

M. D.  Susman, Y.  Feldman, A.  Vaskevich, I.  Rubinstein, “Chemical deposition and stabilization of plasmonic copper nanoparticle films on transparent substrates,” Chem. Mater. 24(13), 2501–2508 (2012).
[CrossRef]

Volkov, V. S.

S. I.  Bozhevolnyi, V. S.  Volkov, E.  Devaux, J. Y.  Laluet, T. W.  Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Waldrop, J. R.

E. A.  Kraut, R. W.  Grant, J. R.  Waldrop, S. P.  Kowalczyk, “Precise determination of the valence-band edge in X-ray photoemission spectra: Application to measurement of semiconductor interface potentials,” Phys. Rev. Lett. 44(24), 1620–1623 (1980).
[CrossRef]

Wang, C. M.

Wang, H. B.

F. F.  Ge, X. M.  Wang, Y. N.  Li, L. H.  Cao, H. L.  Zhang, H. B.  Wang, W. D.  Wu, “Controllable growth of nanocomposite films with metal nanocrystals sandwiched between dielectric superlattices,” J. Nanopart. Res. 13(12), 6447–6453 (2011).
[CrossRef]

Wang, H. L.

B.  Zhang, M.  Price, G. S.  Hong, S. E.  Tabakman, H. L.  Wang, J. A.  Jarrell, J.  Feng, P. J.  Utz, H. J.  Dai, “Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence,” Nano Research 6(2), 113–120 (2013).
[CrossRef]

Wang, H. P.

X. M.  Wang, W. D.  Wu, Y. Y.  Wang, H. P.  Wang, F. F.  Ge, Y. J.  Tang, X.  Ju, “Ion-implanted mechanism of the deposition process for diamond-like carbon films,” Chin. Phys. Lett. 28(1), 016102 (2011).
[CrossRef]

Wang, S. J.

L. M.  Wong, S. Y.  Chiam, J. Q.  Huang, S. J.  Wang, J. S.  Pan, W. K.  Chim, “Growth of Cu2O on Ga-doped ZnO and their interface energy alignment for thin film solar cells,” J. Appl. Phys. 108(3), 033702 (2010).
[CrossRef]

Wang, X. M.

X. M.  Wang, W. D.  Wu, Y. Y.  Wang, H. P.  Wang, F. F.  Ge, Y. J.  Tang, X.  Ju, “Ion-implanted mechanism of the deposition process for diamond-like carbon films,” Chin. Phys. Lett. 28(1), 016102 (2011).
[CrossRef]

F. F.  Ge, X. M.  Wang, Y. N.  Li, L. H.  Cao, H. L.  Zhang, H. B.  Wang, W. D.  Wu, “Controllable growth of nanocomposite films with metal nanocrystals sandwiched between dielectric superlattices,” J. Nanopart. Res. 13(12), 6447–6453 (2011).
[CrossRef]

Wang, Y. D.

C. J.  Dong, W. X.  Yu, M.  Xu, J. J.  Cao, C.  Chen, W. W.  Yu, Y. D.  Wang, “Valence band offset of Cu2O/In2O3 heterojunction determined by X-ray photoelectron spectroscopy,” J. Appl. Phys. 110(7), 073712 (2011).
[CrossRef]

Wang, Y. T.

L.  Lei, Y.  Ke, Z. L.  Zhang, R.  Huang, J. Z.  Zhu, Y. T.  Wang, Z. Q.  Zhu, “Dual-mode protein detection based on Fe3O4–Au hybrid nanoparticles,” Nano Research 5(4), 272–282 (2012).
[CrossRef]

Wang, Y. Y.

X. M.  Wang, W. D.  Wu, Y. Y.  Wang, H. P.  Wang, F. F.  Ge, Y. J.  Tang, X.  Ju, “Ion-implanted mechanism of the deposition process for diamond-like carbon films,” Chin. Phys. Lett. 28(1), 016102 (2011).
[CrossRef]

West, P. R.

P. R.  West, S.  Ishii, G. V.  Naik, N. K.  Emani, V. M.  Shalaev, A.  Boltasseva, “Searching for better plasmonic materials,” Laser & Photonics Reviews 4(6), 795–808 (2010).
[CrossRef]

Wiley, B. J.

A. C.  Jones, R. L.  Olmon, S. E.  Skrabalak, B. J.  Wiley, Y. N.  Xia, M. B.  Raschke, “Mid-IR plasmonics: Near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9(7), 2553–2558 (2009).
[CrossRef] [PubMed]

Wong, L. M.

L. M.  Wong, S. Y.  Chiam, J. Q.  Huang, S. J.  Wang, J. S.  Pan, W. K.  Chim, “Growth of Cu2O on Ga-doped ZnO and their interface energy alignment for thin film solar cells,” J. Appl. Phys. 108(3), 033702 (2010).
[CrossRef]

Wu, W. D.

X. M.  Wang, W. D.  Wu, Y. Y.  Wang, H. P.  Wang, F. F.  Ge, Y. J.  Tang, X.  Ju, “Ion-implanted mechanism of the deposition process for diamond-like carbon films,” Chin. Phys. Lett. 28(1), 016102 (2011).
[CrossRef]

F. F.  Ge, X. M.  Wang, Y. N.  Li, L. H.  Cao, H. L.  Zhang, H. B.  Wang, W. D.  Wu, “Controllable growth of nanocomposite films with metal nanocrystals sandwiched between dielectric superlattices,” J. Nanopart. Res. 13(12), 6447–6453 (2011).
[CrossRef]

Xia, Y. N.

A. C.  Jones, R. L.  Olmon, S. E.  Skrabalak, B. J.  Wiley, Y. N.  Xia, M. B.  Raschke, “Mid-IR plasmonics: Near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9(7), 2553–2558 (2009).
[CrossRef] [PubMed]

Xiaojian, H.

S.  Jing, L.  Jin, H.  Xiaojian, T.  Yiwei, “Synthesis and enhanced photocatalytic activity of regularly shaped Cu2O nanowire polyhedra,” Nano Research 4(5), 448–459 (2011).
[CrossRef]

Xu, M.

C. J.  Dong, W. X.  Yu, M.  Xu, J. J.  Cao, C.  Chen, W. W.  Yu, Y. D.  Wang, “Valence band offset of Cu2O/In2O3 heterojunction determined by X-ray photoelectron spectroscopy,” J. Appl. Phys. 110(7), 073712 (2011).
[CrossRef]

Yan, X. Q.

L. H.  Qian, X. Q.  Yan, T.  Fujita, A.  Inoue, M. W.  Chen, “Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements,” Appl. Phys. Lett. 90(15), 153120 (2007).
[CrossRef]

Yao, B.

Y. F.  Li, B.  Yao, Y. M.  Lu, B. H.  Li, Y. Q.  Gai, C. X.  Cong, Z. Z.  Zhang, D. X.  Zhao, J. Y.  Zhang, D. Z.  Shen, X. W.  Fan, “Valence-band offset of epitaxial ZnO/MgO (111) heterojunction determined by x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 92(19), 192116 (2008).
[CrossRef]

Ying, S.

I.  Masaya, S.  Ying, “Band Alignment at the Cu2O/ZnO Heterojunction,” Jpn. J. Appl. Phys. 50(6), 051002 (2011).

Yiwei, T.

S.  Jing, L.  Jin, H.  Xiaojian, T.  Yiwei, “Synthesis and enhanced photocatalytic activity of regularly shaped Cu2O nanowire polyhedra,” Nano Research 4(5), 448–459 (2011).
[CrossRef]

Yu, M. K.

M. K.  Yu, J.  Park, S.  Jon, “Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy,” Theranostics 2(1), 3–44 (2012).
[CrossRef] [PubMed]

Yu, W. W.

C. J.  Dong, W. X.  Yu, M.  Xu, J. J.  Cao, C.  Chen, W. W.  Yu, Y. D.  Wang, “Valence band offset of Cu2O/In2O3 heterojunction determined by X-ray photoelectron spectroscopy,” J. Appl. Phys. 110(7), 073712 (2011).
[CrossRef]

Yu, W. X.

C. J.  Dong, W. X.  Yu, M.  Xu, J. J.  Cao, C.  Chen, W. W.  Yu, Y. D.  Wang, “Valence band offset of Cu2O/In2O3 heterojunction determined by X-ray photoelectron spectroscopy,” J. Appl. Phys. 110(7), 073712 (2011).
[CrossRef]

Yuki, N.

N.  Yuki, M.  Toshihiro, M.  Tadatsugu, “Effect of inserting a thin buffer layer on the efficiency in n-ZnO/p-Cu2O heterojunction solar cells,” J. Vac. Sci. Technol. A 30(4), 04D103–04D106 (2012).

Yun, K.-S.

S.-O.  Kang, S.  Hong, J.  Choi, J.-S.  Kim, I.  Hwang, I.-S.  Byun, K.-S.  Yun, B. H.  Park, “Electrochemical growth and resistive switching of flat-surfaced and (111)-oriented Cu2O films,” Appl. Phys. Lett. 95(9), 092108 (2009).
[CrossRef]

Zhang, B.

B.  Zhang, M.  Price, G. S.  Hong, S. E.  Tabakman, H. L.  Wang, J. A.  Jarrell, J.  Feng, P. J.  Utz, H. J.  Dai, “Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence,” Nano Research 6(2), 113–120 (2013).
[CrossRef]

Zhang, H. L.

F. F.  Ge, X. M.  Wang, Y. N.  Li, L. H.  Cao, H. L.  Zhang, H. B.  Wang, W. D.  Wu, “Controllable growth of nanocomposite films with metal nanocrystals sandwiched between dielectric superlattices,” J. Nanopart. Res. 13(12), 6447–6453 (2011).
[CrossRef]

Zhang, J. Y.

Y. F.  Li, B.  Yao, Y. M.  Lu, B. H.  Li, Y. Q.  Gai, C. X.  Cong, Z. Z.  Zhang, D. X.  Zhao, J. Y.  Zhang, D. Z.  Shen, X. W.  Fan, “Valence-band offset of epitaxial ZnO/MgO (111) heterojunction determined by x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 92(19), 192116 (2008).
[CrossRef]

Zhang, L.

X. Y  Lang, P. F.  Guan, L.  Zhang, T.  Fujita, M.W.  Chen. “Size dependence of molecular fluorescence enhancement of nanoporous gold,” Appl. Phys. Lett.96(7), 073701 (2010).

Zhang, Z. L.

L.  Lei, Y.  Ke, Z. L.  Zhang, R.  Huang, J. Z.  Zhu, Y. T.  Wang, Z. Q.  Zhu, “Dual-mode protein detection based on Fe3O4–Au hybrid nanoparticles,” Nano Research 5(4), 272–282 (2012).
[CrossRef]

Zhang, Z. Z.

Y. F.  Li, B.  Yao, Y. M.  Lu, B. H.  Li, Y. Q.  Gai, C. X.  Cong, Z. Z.  Zhang, D. X.  Zhao, J. Y.  Zhang, D. Z.  Shen, X. W.  Fan, “Valence-band offset of epitaxial ZnO/MgO (111) heterojunction determined by x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 92(19), 192116 (2008).
[CrossRef]

Zhao, D. X.

Y. F.  Li, B.  Yao, Y. M.  Lu, B. H.  Li, Y. Q.  Gai, C. X.  Cong, Z. Z.  Zhang, D. X.  Zhao, J. Y.  Zhang, D. Z.  Shen, X. W.  Fan, “Valence-band offset of epitaxial ZnO/MgO (111) heterojunction determined by x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 92(19), 192116 (2008).
[CrossRef]

Zhao, L. L.

K. L.  Kelly, E.  Coronado, L. L.  Zhao, G. C.  Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Zhu, J. Z.

L.  Lei, Y.  Ke, Z. L.  Zhang, R.  Huang, J. Z.  Zhu, Y. T.  Wang, Z. Q.  Zhu, “Dual-mode protein detection based on Fe3O4–Au hybrid nanoparticles,” Nano Research 5(4), 272–282 (2012).
[CrossRef]

Zhu, Z. Q.

L.  Lei, Y.  Ke, Z. L.  Zhang, R.  Huang, J. Z.  Zhu, Y. T.  Wang, Z. Q.  Zhu, “Dual-mode protein detection based on Fe3O4–Au hybrid nanoparticles,” Nano Research 5(4), 272–282 (2012).
[CrossRef]

Ziegler, J. F.

J. F.  Ziegler, “The stopping of energetic light ions in elemental matter,” J. Appl. Phys. 85(3), 1249–1272 (1999).
[CrossRef]

Acta Crystallogr. A (1)

A.  Kirfel, K. D.  Eichhorn, “Accurate structure analysis with synchrotron radiation, the electron density in Al2O3 and Cu2O,” Acta Crystallogr. A 46(4), 271–284 (1990).
[CrossRef]

Adv. Mater. (1)

E.  Hutter, J.  Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[CrossRef]

Appl. Phys. Lett. (5)

L. H.  Qian, X. Q.  Yan, T.  Fujita, A.  Inoue, M. W.  Chen, “Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements,” Appl. Phys. Lett. 90(15), 153120 (2007).
[CrossRef]

X. Y  Lang, P. F.  Guan, L.  Zhang, T.  Fujita, M.W.  Chen. “Size dependence of molecular fluorescence enhancement of nanoporous gold,” Appl. Phys. Lett.96(7), 073701 (2010).

A.  Mittiga, E.  Salza, F.  Sarto, M.  Tucci, R.  Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett. 88(16), 163502 (2006).
[CrossRef]

Y. F.  Li, B.  Yao, Y. M.  Lu, B. H.  Li, Y. Q.  Gai, C. X.  Cong, Z. Z.  Zhang, D. X.  Zhao, J. Y.  Zhang, D. Z.  Shen, X. W.  Fan, “Valence-band offset of epitaxial ZnO/MgO (111) heterojunction determined by x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 92(19), 192116 (2008).
[CrossRef]

S.-O.  Kang, S.  Hong, J.  Choi, J.-S.  Kim, I.  Hwang, I.-S.  Byun, K.-S.  Yun, B. H.  Park, “Electrochemical growth and resistive switching of flat-surfaced and (111)-oriented Cu2O films,” Appl. Phys. Lett. 95(9), 092108 (2009).
[CrossRef]

Appl. Surf. Sci. (1)

J. P.  Tobin, W.  Hirschwald, J.  Cunningham, “XPS and XAES studies of transient enhancement of Cu at CuO surfaces during vacuum outgassing,” Appl. Surf. Sci. 16(3–4), 441–452 (1983).

Chem. Mater. (2)

M. D.  Susman, Y.  Feldman, A.  Vaskevich, I.  Rubinstein, “Chemical deposition and stabilization of plasmonic copper nanoparticle films on transparent substrates,” Chem. Mater. 24(13), 2501–2508 (2012).
[CrossRef]

R.  Contreras-Caceres, C.  Dawson, P.  Formanek, D.  Fischer, F.  Simon, A.  Janke, P.  Uhlmann, M.  Stamm, “Polymers as templates for Au and Au@Ag bimetallic nanorods: UV−Vis and surface enhanced Raman spectroscopy,” Chem. Mater. 25(2), 158–169 (2013).
[CrossRef]

Chin. Phys. Lett. (1)

X. M.  Wang, W. D.  Wu, Y. Y.  Wang, H. P.  Wang, F. F.  Ge, Y. J.  Tang, X.  Ju, “Ion-implanted mechanism of the deposition process for diamond-like carbon films,” Chin. Phys. Lett. 28(1), 016102 (2011).
[CrossRef]

Int. Rev. Phys. Chem. (1)

S.  Link, M. A.  El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19(3), 409–453 (2000).
[CrossRef]

J. Appl. Phys. (3)

J. F.  Ziegler, “The stopping of energetic light ions in elemental matter,” J. Appl. Phys. 85(3), 1249–1272 (1999).
[CrossRef]

C. J.  Dong, W. X.  Yu, M.  Xu, J. J.  Cao, C.  Chen, W. W.  Yu, Y. D.  Wang, “Valence band offset of Cu2O/In2O3 heterojunction determined by X-ray photoelectron spectroscopy,” J. Appl. Phys. 110(7), 073712 (2011).
[CrossRef]

L. M.  Wong, S. Y.  Chiam, J. Q.  Huang, S. J.  Wang, J. S.  Pan, W. K.  Chim, “Growth of Cu2O on Ga-doped ZnO and their interface energy alignment for thin film solar cells,” J. Appl. Phys. 108(3), 033702 (2010).
[CrossRef]

J. Electron. Spectrosc. (1)

S.  Kohiki, T.  Ohmura, K.  Kusao, “Appraisal of new charge correction method in X-ray photoelectron spectroscopy,” J. Electron. Spectrosc. 31(1), 85–90 (1983).
[CrossRef]

J. Nanopart. Res. (1)

F. F.  Ge, X. M.  Wang, Y. N.  Li, L. H.  Cao, H. L.  Zhang, H. B.  Wang, W. D.  Wu, “Controllable growth of nanocomposite films with metal nanocrystals sandwiched between dielectric superlattices,” J. Nanopart. Res. 13(12), 6447–6453 (2011).
[CrossRef]

J. Phys. Chem. B (1)

K. L.  Kelly, E.  Coronado, L. L.  Zhao, G. C.  Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

J. Phys. Condens. Matter (1)

S. R.  Barman, D. D.  Sarma, “Investigation of the L3-M45M45 Auger spectra of Cu, Cu2O and CuO,” J. Phys. Condens. Matter 4(37), 7607–7616 (1992).
[CrossRef]

J. Vac. Sci. Technol. A (1)

N.  Yuki, M.  Toshihiro, M.  Tadatsugu, “Effect of inserting a thin buffer layer on the efficiency in n-ZnO/p-Cu2O heterojunction solar cells,” J. Vac. Sci. Technol. A 30(4), 04D103–04D106 (2012).

J. Vac. Sci. Technol. B (1)

S. A.  Chambers, T.  Droubay, T. C.  Kaspar, M.  Gutowski, “Experimental determination of valence band maxima for SiTiO3, TiO2 and SrO and the associated valence band offsets with Si(001),” J. Vac. Sci. Technol. B 22(4), 2205–2216 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (1)

I.  Masaya, S.  Ying, “Band Alignment at the Cu2O/ZnO Heterojunction,” Jpn. J. Appl. Phys. 50(6), 051002 (2011).

Laser & Photonics Reviews (1)

P. R.  West, S.  Ishii, G. V.  Naik, N. K.  Emani, V. M.  Shalaev, A.  Boltasseva, “Searching for better plasmonic materials,” Laser & Photonics Reviews 4(6), 795–808 (2010).
[CrossRef]

Nano Lett. (1)

A. C.  Jones, R. L.  Olmon, S. E.  Skrabalak, B. J.  Wiley, Y. N.  Xia, M. B.  Raschke, “Mid-IR plasmonics: Near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9(7), 2553–2558 (2009).
[CrossRef] [PubMed]

Nano Research (3)

B.  Zhang, M.  Price, G. S.  Hong, S. E.  Tabakman, H. L.  Wang, J. A.  Jarrell, J.  Feng, P. J.  Utz, H. J.  Dai, “Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence,” Nano Research 6(2), 113–120 (2013).
[CrossRef]

L.  Lei, Y.  Ke, Z. L.  Zhang, R.  Huang, J. Z.  Zhu, Y. T.  Wang, Z. Q.  Zhu, “Dual-mode protein detection based on Fe3O4–Au hybrid nanoparticles,” Nano Research 5(4), 272–282 (2012).
[CrossRef]

S.  Jing, L.  Jin, H.  Xiaojian, T.  Yiwei, “Synthesis and enhanced photocatalytic activity of regularly shaped Cu2O nanowire polyhedra,” Nano Research 4(5), 448–459 (2011).
[CrossRef]

Nat. Mater. (2)

A.  Paracchino, V.  Laporte, K.  Sivula, M.  Grätzel, E.  Thimsen, “Highly active oxide photocathode for photoelectrochemical water reduction,” Nat. Mater. 10(6), 456–461 (2011).
[CrossRef] [PubMed]

S. A.  Maier, P. G.  Kik, H. A.  Atwater, S.  Meltzer, E.  Harel, B. E.  Koel, A. A. G.  Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Nature (3)

S. I.  Bozhevolnyi, V. S.  Volkov, E.  Devaux, J. Y.  Laluet, T. W.  Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

W. L.  Barnes, A.  Dereux, T. W.  Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

P.  Poizot, S.  Laruelle, S.  Grugeon, L.  Dupont, J. -M.  Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,” Nature 407(6803), 496–499 (2000).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. B Condens. Matter (1)

M.  Kuhn, T. K.  Sham, “Charge redistribution and electronic behavior in a series of Au-Cu alloys,” Phys. Rev. B Condens. Matter 49(3), 1647–1661 (1994).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

E. A.  Kraut, R. W.  Grant, J. R.  Waldrop, S. P.  Kowalczyk, “Precise determination of the valence-band edge in X-ray photoemission spectra: Application to measurement of semiconductor interface potentials,” Phys. Rev. Lett. 44(24), 1620–1623 (1980).
[CrossRef]

Rep. Prog. Phys. (1)

J. M.  Pitarkel, V. M.  Silkin, E. V.  Chulkov, P. M.  Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(12), 1–87 (2007).

Science (2)

J.  Pendry, “Playing tricks with light,” Science 285(5434), 1687–1688 (1999).
[CrossRef]

E.  Prodan, C.  Radloff, N. J.  Halas, P.  Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Sol. Cells (1)

L. C.  Olsen, F. W.  Addis, W.  Miller, “Experimental and theoretical studies of Cu2O solar cells,” Sol. Cells 7(3), 247–279 (1982).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

T.  Gershon, P.  Musselman, A.  Marin, R. H.  Friend, J. L.  MacManus-Driscoll, “Thin-film ZnO/Cu2O solar cells incorporating an organic buffer layer,” Sol. Energy Mater. Sol. Cells 96(1), 148–154 (2012).

Solid-State Electron. (1)

A. E.  Rakhshani, “Preparation, characteristics and photovoltaic properties of cuprous oxide-a review,” Solid-State Electron. 29(1), 7–17 (1986).
[CrossRef]

Surf. Interface Anal. (2)

S.  Poulston, P. M.  Parlett, P.  Stone, M.  Bowker, “Surface Oxidation and Reduction of CuO and Cu2O Studied Using XPS and XAES,” Surf. Interface Anal. 24(12), 811–820 (1996).
[CrossRef]

M. P.  Seah, G. C.  Smith, M. T.  Anthony, “AES: Energy calibration of electron spectrometers.I-an absolute, traceable energy calibration and the provision of atomic reference line energies,” Surf. Interface Anal. 15(5), 293–308 (1990).
[CrossRef]

Surf. Sci. (1)

K.  Ozawa, Y.  Oba, K.  Edamoto, “Formation and characterization of the Cu2O overlayer on Zn-terminated ZnO(0001),” Surf. Sci. 603(13), 2163–2170 (2009).
[CrossRef]

Theranostics (1)

M. K.  Yu, J.  Park, S.  Jon, “Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy,” Theranostics 2(1), 3–44 (2012).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

A schematic diagram of Cu2O–Au nanocomposites.

Fig. 2
Fig. 2

Evolution of RHEED patterns during the growth of Cu2O: (a)MgO(100) surface before the deposition of Cu2O; (b) to (d) RHEED patterns of Cu2O after the deposition time of 1 min, 2 min and 5 min; (e)The RHEED pattern of Cu2O after the deposition time of 60 min and the corresponding the Cu2O [110] zone-axis pattern

Fig. 3
Fig. 3

(a)The cross-sectional TEM image of Cu2O film; (b)The corresponding high-resolution transmission electron microscopy (HRTEM) image and the insets show the FFT images.

Fig. 4
Fig. 4

In situ XPS survey scan of Cu2O film. The insert indicates the corresponding Cu 2p core level spectrum.

Fig. 5
Fig. 5

In situ XPS spectra recorded during the etching process of the Cu2O film: (a)before Ar ion sputtering, (b) to (e)Ar ion sputtering 10min, 20min, 30min and 50min, respectively.

Fig. 6
Fig. 6

(a)Valence band maximum measured by UPS and (b)Core level energy spectrum measured by XPS for Cu2O with nominal thickness of 42 nm. Core level energy spectrum measured by XPS for Cu2O film with nominal thickness of 1.5 nm on MgO(100) surface are indicated in (c) and (d). Core level energy spectrum measured by XPS for MgO(100) are shown in (e) and (f). Dotted curves are original date.

Fig. 7
Fig. 7

The schematic band diagram for Cu2O on MgO(100) heterojunction system.

Fig. 8
Fig. 8

The variation of RHEED patterns during the growth of Cu2O-Au nanocomposites. (a), (d), (g) and (j) RHEED patterns after the deposition of the first Cu2O layer for Cu2O-Au-50, Cu2O-Au-100, Cu2O-Au-500 and Cu2O-Au-1000, respectively. (b), (e), (h) and (k) RHEED patterns after the deposition of Au for Cu2O-Au-50, Cu2O-Au-100, Cu2O-Au-500 and Cu2O-Au-1000, respectively. (c), (f), (i) and (l) RHEED patterns after the deposition of the second Cu2O layer

Fig. 9
Fig. 9

TEM images of Cu2O-Au nanocomposites: (a)Cu2O-Au-50, (b)Cu2O-Au-100, (c)Cu2O-Au-500, (d)Cu2O-Au-1000. The insets show the corresponding FFT images for MgO substrate, the first Cu2O layer, the Au deposition layer and the second Cu2O layer, respectively.

Fig. 10
Fig. 10

HRTEM image of Cu2O-Au-100.

Fig. 11
Fig. 11

The survey scan of the entire binding energy of 0-1100 eV for Cu2O-Au nanocomposites.

Fig. 12
Fig. 12

Cu 2p and Au 4f high-resolution XPS spectra of Cu2O-Au nanocomposites.

Fig. 13
Fig. 13

UV-vis absorption spectra of Cu2O-Au nanocomposites.

Fig. 14
Fig. 14

The dielectric constant of Au vs. wavelength. The red line is 2 n d 2 , where n d is the refractive index of Cu2O.

Tables (2)

Tables Icon

Table 1 The experimental parameters for Cu2O and Cu2O-Au nanocomposites

Tables Icon

Table 2 Au:Cu atomic ratios of Cu2O-Au nanocomposites by in situ XPS

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E VBO = E CL +( E Mg 2p 3/2 MgO E V MgO )( E Cu 2p 3/2 Cu 2 O E V Cu 2 O )
ε eff = ε d +3p ε d ε m ε d ε m +2 ε d
α= 18π n d 3 λ [ p ε 2 ( ε 1 +2 n d 2 ) 2 + ε 2 2 ]

Metrics