Abstract

InP thin films have been grown on InP/Si substrate by epitaxial lateral overgrowth (ELOG). The nature, origin and filtering of extended defects in ELOG layers grown from single and double openings in SiO2 mask have been investigated. Whereas ELOG layers grown from double openings occasionally exhibit threading dislocations (TDs) at certain points of coalescence, TDs are completely absent in ELOG from single openings. Furthermore, stacking faults (SFs) observed in ELOG layers grown from both opening types originate not from coalescence, but possibly from formation during early stages of ELOG or simply propagate from the seed layer through the mask openings. A model describing their propagation is devised and applied to the existent conditions, showing that SFs can effectively be filtered under certain conditions. ELOG layers grown from identical patterns on InP substrate contained no defects, indicating that the defect-forming mechanism is in any case not inherent to ELOG itself.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Kunert, I. Németh, S. Reinhard, K. Volz, and W. Stolz, “Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate,” Thin Solid Films517(1), 140–143 (2008).
    [CrossRef]
  2. R. Loo, G. Wang, T. Orzali, N. Waldron, C. Merckling, M. R. Leys, O. Richard, H. Bender, P. Eyben, W. Vandervorst, and M. Caymax, “Selective area growth of InP on On-Axis Si(001) substrates with low antiphase boundary formation,” J. Electrochem. Soc.159(3), H260–H265 (2012).
    [CrossRef]
  3. Y. Nakamura, T. Miwa, and M. Ichikawa, “Nanocontact heteroepitaxy of thin GaSb and AlGaSb films on Si substrates using ultrahigh-density nanodot seeds,” Nanotechnology22(26), 265301 (2011).
    [CrossRef] [PubMed]
  4. M. Sugiyama, Y. Kondo, M. Takenaka, S. Takagi, and Y. Nakano, “Uniformity improvement of selectively-grown InGaAs micro-discs on Si,” J. Cryst. Growth352(1), 229–234 (2012).
    [CrossRef]
  5. K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth315(1), 37–47 (2011).
    [CrossRef]
  6. J. Bowers, D. Liang, A. Fang, H. Park, R. Jones, and M. Paniccia, “Hybrid silicon lasers,” Opt. Photonics News21(5), 28–33 (2010).
    [CrossRef]
  7. M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated Inp/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
    [CrossRef]
  8. K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci Rep2, 349 (2012).
    [CrossRef] [PubMed]
  9. M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-μm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett.60(4), 472 (1992).
    [CrossRef]
  10. S. Mahajan, “Defects in semiconductors and their effects,” Acta Mater.48(1), 137–149 (2000).
    [CrossRef]
  11. A. Krost, M. Grundmann, D. Bimberg, and H. Cerva, “InP on patterned Si(001): defect reduction by application of the necking mechanism,” J. Cryst. Growth124(1-4), 207–212 (1992).
    [CrossRef]
  12. Y. S. Chang, S. Naritsuka, and T. Nishinaga, “Effect of growth temperature on epitaxial lateral overgrowth of GaAs on Si substrate,” J. Cryst. Growth174(1-4), 630–634 (1997).
    [CrossRef]
  13. T. Paskova, D. Hommel, P. P. Paskov, V. Darakchieva, B. Monemar, M. Bockowski, T. Suski, I. Grzegory, F. Tuomisto, K. Saarinen, N. Ashkenov, and M. Schubert, “Effect of high-temperature annealing on the residual strain and bending of freestanding GaN films grown by hydride vapor phase epitaxy,” Appl. Phys. Lett.88(14), 141909 (2006).
    [CrossRef]
  14. C. Junesand, C. Hu, Z. Wang, W. Metaferia, P. Dagur, G. Pozina, L. Hultman, and S. Lourdudoss, “Effect of the surface morphology of seed and mask layers on Inp grown on Si by epitaxial lateral overgrowth,” J. Electron. Mater.41(9), 2345–2349 (2012).
    [CrossRef]
  15. D. K. Biegelsen, F. A. Ponce, A. J. Smith, and J. C. Tramontana, “Initial stages of epitaxial growth of GaAs on (100) silicon,” J. Appl. Phys.61(5), 1856 (1987).
    [CrossRef]
  16. F. Ernst and P. Pirouz, “Formation of planar defects in the epitaxial growth of GaP on Si substrate by metal organic chemical-vapor deposition,” J. Appl. Phys.64(9), 4526–4530 (1988).
    [CrossRef]
  17. Y. Chen, X. W. Lin, Z. Liliental-Weber, J. Washburn, J. F. Klem, and J. Y. Tsao, “Dislocation formation mechanism in strained InxGa1−xAs islands grown on GaAs(001) substrates,” Appl. Phys. Lett.68(1), 111 (1996).
    [CrossRef]
  18. J. Zou, X. Z. Liao, D. J. H. Cockayne, and Z. M. Jiang, “Alternative mechanism for misfit dislocation generation during high-temperature Ge(Si)/Si (001) island growth,” Appl. Phys. Lett.81(11), 1996–1998 (2002).
    [CrossRef]
  19. F. Olsson, M. Xie, S. Lourdudoss, I. Prieto, and P. Postigo, “Epitaxial lateral overgrowth of InP on Si from nano-openings: Theoretical and experimental indication for defect filtering throughout the grown layer,” J. Appl. Phys.104(9), 093112 (2008).
    [CrossRef]
  20. A. S. Jordan, G. T. Brown, B. Cockayne, D. Brasen, and W. Bonner, “An analysis of dislocation reduction by impurity hardening in the liquid-encapsulated Czochralski growth of 〈111〉 InP,” J. Appl. Phys.58(11), 4383 (1985).
    [CrossRef]
  21. I. Yonenaga and K. Sumino, “Dislocation velocity in indium phosphide,” Appl. Phys. Lett.58(1), 48 (1991).
    [CrossRef]
  22. H. Suzuki, “Chemical interaction of solute atoms with dislocations,” Sci. Rep. Res. Inst. Tohoku Univ. [Med]A4, 455–463 (1952).
  23. D. B. Holt, “Transmission electron microscope observations on gap electroluminescent diode materials,” J. Mater. Sci.7(3), 265–278 (1972).
    [CrossRef]
  24. M. S. Abrahams, “Mechanism of thermal annihilation of stacking faults in Gaas,” J. Appl. Phys.41(6), 2358 (1970).
    [CrossRef]
  25. C. Junesand, M.-H. Gau, Y.-T. Sun, S. Loududoss, I. Lo, J. Jimenez, P. A. Postigo, F. M. M. Sánchez, J. Hernandez, S. Molina, A. Abdessamad, G. Pozina, L. Hultman, and P. Pirouz, “Defect reduction in heteroepitaxial InP on Si by epitaxial lateral overgrowth,” Manuscript, submitted to Materials Express (2013).
  26. R. S. Barnes, “The climb of edge dislocations in face-centred cubic crystals,” Acta Metall.2(3), 380–385 (1954).
    [CrossRef]
  27. A. Beyer, I. Németh, S. Liebich, J. Ohlmann, W. Stolz, and K. Volz, “Influence of crystal polarity on crystal defects in GaP grown on exact Si (001),” J. Appl. Phys.109(8), 083529 (2011).
    [CrossRef]
  28. Z. Wang, C. Junesand, W. Metaferia, C. Hu, L. Wosinski, and S. Lourdudoss, “III–Vs on Si for photonic applications—A monolithic approach,” Mater. Sci. Eng. B177(17), 1551–1557 (2012).
    [CrossRef]
  29. L. H. Kuo, L. Salamanca-Riba, B. J. Wu, G. M. Haugen, J. M. DePuydt, G. Hofler, and H. Cheng, “Generation of degradation defects, stacking faults, and misfit dislocations in ZnSe-based films grown on GaAs,” J. Vac. Sci. Technol. B13(4), 1694 (1995).
    [CrossRef]
  30. T. Walter and D. Gerthsen, “TEM analysis of epitaxial semiconductor layers with high stacking fault densities considering artifacts induced by the cross-section geometry,” Ultramicroscopy81(3-4), 279–288 (2000).
    [CrossRef] [PubMed]
  31. K. Nozawa and Y. Horikoshi, “Effects of annealing on the structural properties of Gaas on Si(100) grown at a low temperature by migration-enhanced epitaxy,” Jpn. J. Appl. Phys.29(Part 2, No. 4), L540–L543 (1990).
    [CrossRef]

2012 (6)

R. Loo, G. Wang, T. Orzali, N. Waldron, C. Merckling, M. R. Leys, O. Richard, H. Bender, P. Eyben, W. Vandervorst, and M. Caymax, “Selective area growth of InP on On-Axis Si(001) substrates with low antiphase boundary formation,” J. Electrochem. Soc.159(3), H260–H265 (2012).
[CrossRef]

M. Sugiyama, Y. Kondo, M. Takenaka, S. Takagi, and Y. Nakano, “Uniformity improvement of selectively-grown InGaAs micro-discs on Si,” J. Cryst. Growth352(1), 229–234 (2012).
[CrossRef]

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated Inp/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci Rep2, 349 (2012).
[CrossRef] [PubMed]

C. Junesand, C. Hu, Z. Wang, W. Metaferia, P. Dagur, G. Pozina, L. Hultman, and S. Lourdudoss, “Effect of the surface morphology of seed and mask layers on Inp grown on Si by epitaxial lateral overgrowth,” J. Electron. Mater.41(9), 2345–2349 (2012).
[CrossRef]

Z. Wang, C. Junesand, W. Metaferia, C. Hu, L. Wosinski, and S. Lourdudoss, “III–Vs on Si for photonic applications—A monolithic approach,” Mater. Sci. Eng. B177(17), 1551–1557 (2012).
[CrossRef]

2011 (3)

A. Beyer, I. Németh, S. Liebich, J. Ohlmann, W. Stolz, and K. Volz, “Influence of crystal polarity on crystal defects in GaP grown on exact Si (001),” J. Appl. Phys.109(8), 083529 (2011).
[CrossRef]

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth315(1), 37–47 (2011).
[CrossRef]

Y. Nakamura, T. Miwa, and M. Ichikawa, “Nanocontact heteroepitaxy of thin GaSb and AlGaSb films on Si substrates using ultrahigh-density nanodot seeds,” Nanotechnology22(26), 265301 (2011).
[CrossRef] [PubMed]

2010 (1)

J. Bowers, D. Liang, A. Fang, H. Park, R. Jones, and M. Paniccia, “Hybrid silicon lasers,” Opt. Photonics News21(5), 28–33 (2010).
[CrossRef]

2008 (2)

B. Kunert, I. Németh, S. Reinhard, K. Volz, and W. Stolz, “Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate,” Thin Solid Films517(1), 140–143 (2008).
[CrossRef]

F. Olsson, M. Xie, S. Lourdudoss, I. Prieto, and P. Postigo, “Epitaxial lateral overgrowth of InP on Si from nano-openings: Theoretical and experimental indication for defect filtering throughout the grown layer,” J. Appl. Phys.104(9), 093112 (2008).
[CrossRef]

2006 (1)

T. Paskova, D. Hommel, P. P. Paskov, V. Darakchieva, B. Monemar, M. Bockowski, T. Suski, I. Grzegory, F. Tuomisto, K. Saarinen, N. Ashkenov, and M. Schubert, “Effect of high-temperature annealing on the residual strain and bending of freestanding GaN films grown by hydride vapor phase epitaxy,” Appl. Phys. Lett.88(14), 141909 (2006).
[CrossRef]

2002 (1)

J. Zou, X. Z. Liao, D. J. H. Cockayne, and Z. M. Jiang, “Alternative mechanism for misfit dislocation generation during high-temperature Ge(Si)/Si (001) island growth,” Appl. Phys. Lett.81(11), 1996–1998 (2002).
[CrossRef]

2000 (2)

S. Mahajan, “Defects in semiconductors and their effects,” Acta Mater.48(1), 137–149 (2000).
[CrossRef]

T. Walter and D. Gerthsen, “TEM analysis of epitaxial semiconductor layers with high stacking fault densities considering artifacts induced by the cross-section geometry,” Ultramicroscopy81(3-4), 279–288 (2000).
[CrossRef] [PubMed]

1997 (1)

Y. S. Chang, S. Naritsuka, and T. Nishinaga, “Effect of growth temperature on epitaxial lateral overgrowth of GaAs on Si substrate,” J. Cryst. Growth174(1-4), 630–634 (1997).
[CrossRef]

1996 (1)

Y. Chen, X. W. Lin, Z. Liliental-Weber, J. Washburn, J. F. Klem, and J. Y. Tsao, “Dislocation formation mechanism in strained InxGa1−xAs islands grown on GaAs(001) substrates,” Appl. Phys. Lett.68(1), 111 (1996).
[CrossRef]

1995 (1)

L. H. Kuo, L. Salamanca-Riba, B. J. Wu, G. M. Haugen, J. M. DePuydt, G. Hofler, and H. Cheng, “Generation of degradation defects, stacking faults, and misfit dislocations in ZnSe-based films grown on GaAs,” J. Vac. Sci. Technol. B13(4), 1694 (1995).
[CrossRef]

1992 (2)

A. Krost, M. Grundmann, D. Bimberg, and H. Cerva, “InP on patterned Si(001): defect reduction by application of the necking mechanism,” J. Cryst. Growth124(1-4), 207–212 (1992).
[CrossRef]

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-μm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett.60(4), 472 (1992).
[CrossRef]

1991 (1)

I. Yonenaga and K. Sumino, “Dislocation velocity in indium phosphide,” Appl. Phys. Lett.58(1), 48 (1991).
[CrossRef]

1990 (1)

K. Nozawa and Y. Horikoshi, “Effects of annealing on the structural properties of Gaas on Si(100) grown at a low temperature by migration-enhanced epitaxy,” Jpn. J. Appl. Phys.29(Part 2, No. 4), L540–L543 (1990).
[CrossRef]

1988 (1)

F. Ernst and P. Pirouz, “Formation of planar defects in the epitaxial growth of GaP on Si substrate by metal organic chemical-vapor deposition,” J. Appl. Phys.64(9), 4526–4530 (1988).
[CrossRef]

1987 (1)

D. K. Biegelsen, F. A. Ponce, A. J. Smith, and J. C. Tramontana, “Initial stages of epitaxial growth of GaAs on (100) silicon,” J. Appl. Phys.61(5), 1856 (1987).
[CrossRef]

1985 (1)

A. S. Jordan, G. T. Brown, B. Cockayne, D. Brasen, and W. Bonner, “An analysis of dislocation reduction by impurity hardening in the liquid-encapsulated Czochralski growth of 〈111〉 InP,” J. Appl. Phys.58(11), 4383 (1985).
[CrossRef]

1972 (1)

D. B. Holt, “Transmission electron microscope observations on gap electroluminescent diode materials,” J. Mater. Sci.7(3), 265–278 (1972).
[CrossRef]

1970 (1)

M. S. Abrahams, “Mechanism of thermal annihilation of stacking faults in Gaas,” J. Appl. Phys.41(6), 2358 (1970).
[CrossRef]

1954 (1)

R. S. Barnes, “The climb of edge dislocations in face-centred cubic crystals,” Acta Metall.2(3), 380–385 (1954).
[CrossRef]

1952 (1)

H. Suzuki, “Chemical interaction of solute atoms with dislocations,” Sci. Rep. Res. Inst. Tohoku Univ. [Med]A4, 455–463 (1952).

Abrahams, M. S.

M. S. Abrahams, “Mechanism of thermal annihilation of stacking faults in Gaas,” J. Appl. Phys.41(6), 2358 (1970).
[CrossRef]

Arakawa, Y.

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci Rep2, 349 (2012).
[CrossRef] [PubMed]

Ashkenov, N.

T. Paskova, D. Hommel, P. P. Paskov, V. Darakchieva, B. Monemar, M. Bockowski, T. Suski, I. Grzegory, F. Tuomisto, K. Saarinen, N. Ashkenov, and M. Schubert, “Effect of high-temperature annealing on the residual strain and bending of freestanding GaN films grown by hydride vapor phase epitaxy,” Appl. Phys. Lett.88(14), 141909 (2006).
[CrossRef]

Barnes, R. S.

R. S. Barnes, “The climb of edge dislocations in face-centred cubic crystals,” Acta Metall.2(3), 380–385 (1954).
[CrossRef]

Bender, H.

R. Loo, G. Wang, T. Orzali, N. Waldron, C. Merckling, M. R. Leys, O. Richard, H. Bender, P. Eyben, W. Vandervorst, and M. Caymax, “Selective area growth of InP on On-Axis Si(001) substrates with low antiphase boundary formation,” J. Electrochem. Soc.159(3), H260–H265 (2012).
[CrossRef]

Beyer, A.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth315(1), 37–47 (2011).
[CrossRef]

A. Beyer, I. Németh, S. Liebich, J. Ohlmann, W. Stolz, and K. Volz, “Influence of crystal polarity on crystal defects in GaP grown on exact Si (001),” J. Appl. Phys.109(8), 083529 (2011).
[CrossRef]

Biegelsen, D. K.

D. K. Biegelsen, F. A. Ponce, A. J. Smith, and J. C. Tramontana, “Initial stages of epitaxial growth of GaAs on (100) silicon,” J. Appl. Phys.61(5), 1856 (1987).
[CrossRef]

Bimberg, D.

A. Krost, M. Grundmann, D. Bimberg, and H. Cerva, “InP on patterned Si(001): defect reduction by application of the necking mechanism,” J. Cryst. Growth124(1-4), 207–212 (1992).
[CrossRef]

Bockowski, M.

T. Paskova, D. Hommel, P. P. Paskov, V. Darakchieva, B. Monemar, M. Bockowski, T. Suski, I. Grzegory, F. Tuomisto, K. Saarinen, N. Ashkenov, and M. Schubert, “Effect of high-temperature annealing on the residual strain and bending of freestanding GaN films grown by hydride vapor phase epitaxy,” Appl. Phys. Lett.88(14), 141909 (2006).
[CrossRef]

Bonner, W.

A. S. Jordan, G. T. Brown, B. Cockayne, D. Brasen, and W. Bonner, “An analysis of dislocation reduction by impurity hardening in the liquid-encapsulated Czochralski growth of 〈111〉 InP,” J. Appl. Phys.58(11), 4383 (1985).
[CrossRef]

Bowers, J.

J. Bowers, D. Liang, A. Fang, H. Park, R. Jones, and M. Paniccia, “Hybrid silicon lasers,” Opt. Photonics News21(5), 28–33 (2010).
[CrossRef]

Brasen, D.

A. S. Jordan, G. T. Brown, B. Cockayne, D. Brasen, and W. Bonner, “An analysis of dislocation reduction by impurity hardening in the liquid-encapsulated Czochralski growth of 〈111〉 InP,” J. Appl. Phys.58(11), 4383 (1985).
[CrossRef]

Brown, G. T.

A. S. Jordan, G. T. Brown, B. Cockayne, D. Brasen, and W. Bonner, “An analysis of dislocation reduction by impurity hardening in the liquid-encapsulated Czochralski growth of 〈111〉 InP,” J. Appl. Phys.58(11), 4383 (1985).
[CrossRef]

Caymax, M.

R. Loo, G. Wang, T. Orzali, N. Waldron, C. Merckling, M. R. Leys, O. Richard, H. Bender, P. Eyben, W. Vandervorst, and M. Caymax, “Selective area growth of InP on On-Axis Si(001) substrates with low antiphase boundary formation,” J. Electrochem. Soc.159(3), H260–H265 (2012).
[CrossRef]

Cerva, H.

A. Krost, M. Grundmann, D. Bimberg, and H. Cerva, “InP on patterned Si(001): defect reduction by application of the necking mechanism,” J. Cryst. Growth124(1-4), 207–212 (1992).
[CrossRef]

Chang, Y. S.

Y. S. Chang, S. Naritsuka, and T. Nishinaga, “Effect of growth temperature on epitaxial lateral overgrowth of GaAs on Si substrate,” J. Cryst. Growth174(1-4), 630–634 (1997).
[CrossRef]

Chen, Y.

Y. Chen, X. W. Lin, Z. Liliental-Weber, J. Washburn, J. F. Klem, and J. Y. Tsao, “Dislocation formation mechanism in strained InxGa1−xAs islands grown on GaAs(001) substrates,” Appl. Phys. Lett.68(1), 111 (1996).
[CrossRef]

Cheng, H.

L. H. Kuo, L. Salamanca-Riba, B. J. Wu, G. M. Haugen, J. M. DePuydt, G. Hofler, and H. Cheng, “Generation of degradation defects, stacking faults, and misfit dislocations in ZnSe-based films grown on GaAs,” J. Vac. Sci. Technol. B13(4), 1694 (1995).
[CrossRef]

Cockayne, B.

A. S. Jordan, G. T. Brown, B. Cockayne, D. Brasen, and W. Bonner, “An analysis of dislocation reduction by impurity hardening in the liquid-encapsulated Czochralski growth of 〈111〉 InP,” J. Appl. Phys.58(11), 4383 (1985).
[CrossRef]

Cockayne, D. J. H.

J. Zou, X. Z. Liao, D. J. H. Cockayne, and Z. M. Jiang, “Alternative mechanism for misfit dislocation generation during high-temperature Ge(Si)/Si (001) island growth,” Appl. Phys. Lett.81(11), 1996–1998 (2002).
[CrossRef]

Dagur, P.

C. Junesand, C. Hu, Z. Wang, W. Metaferia, P. Dagur, G. Pozina, L. Hultman, and S. Lourdudoss, “Effect of the surface morphology of seed and mask layers on Inp grown on Si by epitaxial lateral overgrowth,” J. Electron. Mater.41(9), 2345–2349 (2012).
[CrossRef]

Darakchieva, V.

T. Paskova, D. Hommel, P. P. Paskov, V. Darakchieva, B. Monemar, M. Bockowski, T. Suski, I. Grzegory, F. Tuomisto, K. Saarinen, N. Ashkenov, and M. Schubert, “Effect of high-temperature annealing on the residual strain and bending of freestanding GaN films grown by hydride vapor phase epitaxy,” Appl. Phys. Lett.88(14), 141909 (2006).
[CrossRef]

de Valicourt, G.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated Inp/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

DePuydt, J. M.

L. H. Kuo, L. Salamanca-Riba, B. J. Wu, G. M. Haugen, J. M. DePuydt, G. Hofler, and H. Cheng, “Generation of degradation defects, stacking faults, and misfit dislocations in ZnSe-based films grown on GaAs,” J. Vac. Sci. Technol. B13(4), 1694 (1995).
[CrossRef]

Duan, G. H.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated Inp/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Ernst, F.

F. Ernst and P. Pirouz, “Formation of planar defects in the epitaxial growth of GaP on Si substrate by metal organic chemical-vapor deposition,” J. Appl. Phys.64(9), 4526–4530 (1988).
[CrossRef]

Eyben, P.

R. Loo, G. Wang, T. Orzali, N. Waldron, C. Merckling, M. R. Leys, O. Richard, H. Bender, P. Eyben, W. Vandervorst, and M. Caymax, “Selective area growth of InP on On-Axis Si(001) substrates with low antiphase boundary formation,” J. Electrochem. Soc.159(3), H260–H265 (2012).
[CrossRef]

Fang, A.

J. Bowers, D. Liang, A. Fang, H. Park, R. Jones, and M. Paniccia, “Hybrid silicon lasers,” Opt. Photonics News21(5), 28–33 (2010).
[CrossRef]

Fedeli, J.-M.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated Inp/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Gerthsen, D.

T. Walter and D. Gerthsen, “TEM analysis of epitaxial semiconductor layers with high stacking fault densities considering artifacts induced by the cross-section geometry,” Ultramicroscopy81(3-4), 279–288 (2000).
[CrossRef] [PubMed]

Grundmann, M.

A. Krost, M. Grundmann, D. Bimberg, and H. Cerva, “InP on patterned Si(001): defect reduction by application of the necking mechanism,” J. Cryst. Growth124(1-4), 207–212 (1992).
[CrossRef]

Grzegory, I.

T. Paskova, D. Hommel, P. P. Paskov, V. Darakchieva, B. Monemar, M. Bockowski, T. Suski, I. Grzegory, F. Tuomisto, K. Saarinen, N. Ashkenov, and M. Schubert, “Effect of high-temperature annealing on the residual strain and bending of freestanding GaN films grown by hydride vapor phase epitaxy,” Appl. Phys. Lett.88(14), 141909 (2006).
[CrossRef]

Haugen, G. M.

L. H. Kuo, L. Salamanca-Riba, B. J. Wu, G. M. Haugen, J. M. DePuydt, G. Hofler, and H. Cheng, “Generation of degradation defects, stacking faults, and misfit dislocations in ZnSe-based films grown on GaAs,” J. Vac. Sci. Technol. B13(4), 1694 (1995).
[CrossRef]

Hofler, G.

L. H. Kuo, L. Salamanca-Riba, B. J. Wu, G. M. Haugen, J. M. DePuydt, G. Hofler, and H. Cheng, “Generation of degradation defects, stacking faults, and misfit dislocations in ZnSe-based films grown on GaAs,” J. Vac. Sci. Technol. B13(4), 1694 (1995).
[CrossRef]

Holt, D. B.

D. B. Holt, “Transmission electron microscope observations on gap electroluminescent diode materials,” J. Mater. Sci.7(3), 265–278 (1972).
[CrossRef]

Hommel, D.

T. Paskova, D. Hommel, P. P. Paskov, V. Darakchieva, B. Monemar, M. Bockowski, T. Suski, I. Grzegory, F. Tuomisto, K. Saarinen, N. Ashkenov, and M. Schubert, “Effect of high-temperature annealing on the residual strain and bending of freestanding GaN films grown by hydride vapor phase epitaxy,” Appl. Phys. Lett.88(14), 141909 (2006).
[CrossRef]

Horikoshi, Y.

K. Nozawa and Y. Horikoshi, “Effects of annealing on the structural properties of Gaas on Si(100) grown at a low temperature by migration-enhanced epitaxy,” Jpn. J. Appl. Phys.29(Part 2, No. 4), L540–L543 (1990).
[CrossRef]

Hu, C.

Z. Wang, C. Junesand, W. Metaferia, C. Hu, L. Wosinski, and S. Lourdudoss, “III–Vs on Si for photonic applications—A monolithic approach,” Mater. Sci. Eng. B177(17), 1551–1557 (2012).
[CrossRef]

C. Junesand, C. Hu, Z. Wang, W. Metaferia, P. Dagur, G. Pozina, L. Hultman, and S. Lourdudoss, “Effect of the surface morphology of seed and mask layers on Inp grown on Si by epitaxial lateral overgrowth,” J. Electron. Mater.41(9), 2345–2349 (2012).
[CrossRef]

Hultman, L.

C. Junesand, C. Hu, Z. Wang, W. Metaferia, P. Dagur, G. Pozina, L. Hultman, and S. Lourdudoss, “Effect of the surface morphology of seed and mask layers on Inp grown on Si by epitaxial lateral overgrowth,” J. Electron. Mater.41(9), 2345–2349 (2012).
[CrossRef]

Ichikawa, M.

Y. Nakamura, T. Miwa, and M. Ichikawa, “Nanocontact heteroepitaxy of thin GaSb and AlGaSb films on Si substrates using ultrahigh-density nanodot seeds,” Nanotechnology22(26), 265301 (2011).
[CrossRef] [PubMed]

Itoh, Y.

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-μm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett.60(4), 472 (1992).
[CrossRef]

Jany, C.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated Inp/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Jiang, Z. M.

J. Zou, X. Z. Liao, D. J. H. Cockayne, and Z. M. Jiang, “Alternative mechanism for misfit dislocation generation during high-temperature Ge(Si)/Si (001) island growth,” Appl. Phys. Lett.81(11), 1996–1998 (2002).
[CrossRef]

Jones, R.

J. Bowers, D. Liang, A. Fang, H. Park, R. Jones, and M. Paniccia, “Hybrid silicon lasers,” Opt. Photonics News21(5), 28–33 (2010).
[CrossRef]

Jordan, A. S.

A. S. Jordan, G. T. Brown, B. Cockayne, D. Brasen, and W. Bonner, “An analysis of dislocation reduction by impurity hardening in the liquid-encapsulated Czochralski growth of 〈111〉 InP,” J. Appl. Phys.58(11), 4383 (1985).
[CrossRef]

Junesand, C.

Z. Wang, C. Junesand, W. Metaferia, C. Hu, L. Wosinski, and S. Lourdudoss, “III–Vs on Si for photonic applications—A monolithic approach,” Mater. Sci. Eng. B177(17), 1551–1557 (2012).
[CrossRef]

C. Junesand, C. Hu, Z. Wang, W. Metaferia, P. Dagur, G. Pozina, L. Hultman, and S. Lourdudoss, “Effect of the surface morphology of seed and mask layers on Inp grown on Si by epitaxial lateral overgrowth,” J. Electron. Mater.41(9), 2345–2349 (2012).
[CrossRef]

Keyvaninia, S.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated Inp/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Klem, J. F.

Y. Chen, X. W. Lin, Z. Liliental-Weber, J. Washburn, J. F. Klem, and J. Y. Tsao, “Dislocation formation mechanism in strained InxGa1−xAs islands grown on GaAs(001) substrates,” Appl. Phys. Lett.68(1), 111 (1996).
[CrossRef]

Kondo, Y.

M. Sugiyama, Y. Kondo, M. Takenaka, S. Takagi, and Y. Nakano, “Uniformity improvement of selectively-grown InGaAs micro-discs on Si,” J. Cryst. Growth352(1), 229–234 (2012).
[CrossRef]

Krost, A.

A. Krost, M. Grundmann, D. Bimberg, and H. Cerva, “InP on patterned Si(001): defect reduction by application of the necking mechanism,” J. Cryst. Growth124(1-4), 207–212 (1992).
[CrossRef]

Kunert, B.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth315(1), 37–47 (2011).
[CrossRef]

B. Kunert, I. Németh, S. Reinhard, K. Volz, and W. Stolz, “Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate,” Thin Solid Films517(1), 140–143 (2008).
[CrossRef]

Kuo, L. H.

L. H. Kuo, L. Salamanca-Riba, B. J. Wu, G. M. Haugen, J. M. DePuydt, G. Hofler, and H. Cheng, “Generation of degradation defects, stacking faults, and misfit dislocations in ZnSe-based films grown on GaAs,” J. Vac. Sci. Technol. B13(4), 1694 (1995).
[CrossRef]

Lamponi, M.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated Inp/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Lelarge, F.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated Inp/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Leys, M. R.

R. Loo, G. Wang, T. Orzali, N. Waldron, C. Merckling, M. R. Leys, O. Richard, H. Bender, P. Eyben, W. Vandervorst, and M. Caymax, “Selective area growth of InP on On-Axis Si(001) substrates with low antiphase boundary formation,” J. Electrochem. Soc.159(3), H260–H265 (2012).
[CrossRef]

Liang, D.

J. Bowers, D. Liang, A. Fang, H. Park, R. Jones, and M. Paniccia, “Hybrid silicon lasers,” Opt. Photonics News21(5), 28–33 (2010).
[CrossRef]

Liao, X. Z.

J. Zou, X. Z. Liao, D. J. H. Cockayne, and Z. M. Jiang, “Alternative mechanism for misfit dislocation generation during high-temperature Ge(Si)/Si (001) island growth,” Appl. Phys. Lett.81(11), 1996–1998 (2002).
[CrossRef]

Liebich, S.

A. Beyer, I. Németh, S. Liebich, J. Ohlmann, W. Stolz, and K. Volz, “Influence of crystal polarity on crystal defects in GaP grown on exact Si (001),” J. Appl. Phys.109(8), 083529 (2011).
[CrossRef]

Liliental-Weber, Z.

Y. Chen, X. W. Lin, Z. Liliental-Weber, J. Washburn, J. F. Klem, and J. Y. Tsao, “Dislocation formation mechanism in strained InxGa1−xAs islands grown on GaAs(001) substrates,” Appl. Phys. Lett.68(1), 111 (1996).
[CrossRef]

Lin, X. W.

Y. Chen, X. W. Lin, Z. Liliental-Weber, J. Washburn, J. F. Klem, and J. Y. Tsao, “Dislocation formation mechanism in strained InxGa1−xAs islands grown on GaAs(001) substrates,” Appl. Phys. Lett.68(1), 111 (1996).
[CrossRef]

Loo, R.

R. Loo, G. Wang, T. Orzali, N. Waldron, C. Merckling, M. R. Leys, O. Richard, H. Bender, P. Eyben, W. Vandervorst, and M. Caymax, “Selective area growth of InP on On-Axis Si(001) substrates with low antiphase boundary formation,” J. Electrochem. Soc.159(3), H260–H265 (2012).
[CrossRef]

Lourdudoss, S.

C. Junesand, C. Hu, Z. Wang, W. Metaferia, P. Dagur, G. Pozina, L. Hultman, and S. Lourdudoss, “Effect of the surface morphology of seed and mask layers on Inp grown on Si by epitaxial lateral overgrowth,” J. Electron. Mater.41(9), 2345–2349 (2012).
[CrossRef]

Z. Wang, C. Junesand, W. Metaferia, C. Hu, L. Wosinski, and S. Lourdudoss, “III–Vs on Si for photonic applications—A monolithic approach,” Mater. Sci. Eng. B177(17), 1551–1557 (2012).
[CrossRef]

F. Olsson, M. Xie, S. Lourdudoss, I. Prieto, and P. Postigo, “Epitaxial lateral overgrowth of InP on Si from nano-openings: Theoretical and experimental indication for defect filtering throughout the grown layer,” J. Appl. Phys.104(9), 093112 (2008).
[CrossRef]

Mahajan, S.

S. Mahajan, “Defects in semiconductors and their effects,” Acta Mater.48(1), 137–149 (2000).
[CrossRef]

Merckling, C.

R. Loo, G. Wang, T. Orzali, N. Waldron, C. Merckling, M. R. Leys, O. Richard, H. Bender, P. Eyben, W. Vandervorst, and M. Caymax, “Selective area growth of InP on On-Axis Si(001) substrates with low antiphase boundary formation,” J. Electrochem. Soc.159(3), H260–H265 (2012).
[CrossRef]

Messaoudene, S.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated Inp/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Metaferia, W.

C. Junesand, C. Hu, Z. Wang, W. Metaferia, P. Dagur, G. Pozina, L. Hultman, and S. Lourdudoss, “Effect of the surface morphology of seed and mask layers on Inp grown on Si by epitaxial lateral overgrowth,” J. Electron. Mater.41(9), 2345–2349 (2012).
[CrossRef]

Z. Wang, C. Junesand, W. Metaferia, C. Hu, L. Wosinski, and S. Lourdudoss, “III–Vs on Si for photonic applications—A monolithic approach,” Mater. Sci. Eng. B177(17), 1551–1557 (2012).
[CrossRef]

Miwa, T.

Y. Nakamura, T. Miwa, and M. Ichikawa, “Nanocontact heteroepitaxy of thin GaSb and AlGaSb films on Si substrates using ultrahigh-density nanodot seeds,” Nanotechnology22(26), 265301 (2011).
[CrossRef] [PubMed]

Monemar, B.

T. Paskova, D. Hommel, P. P. Paskov, V. Darakchieva, B. Monemar, M. Bockowski, T. Suski, I. Grzegory, F. Tuomisto, K. Saarinen, N. Ashkenov, and M. Schubert, “Effect of high-temperature annealing on the residual strain and bending of freestanding GaN films grown by hydride vapor phase epitaxy,” Appl. Phys. Lett.88(14), 141909 (2006).
[CrossRef]

Mori, H.

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-μm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett.60(4), 472 (1992).
[CrossRef]

Nakamura, Y.

Y. Nakamura, T. Miwa, and M. Ichikawa, “Nanocontact heteroepitaxy of thin GaSb and AlGaSb films on Si substrates using ultrahigh-density nanodot seeds,” Nanotechnology22(26), 265301 (2011).
[CrossRef] [PubMed]

Nakano, Y.

M. Sugiyama, Y. Kondo, M. Takenaka, S. Takagi, and Y. Nakano, “Uniformity improvement of selectively-grown InGaAs micro-discs on Si,” J. Cryst. Growth352(1), 229–234 (2012).
[CrossRef]

Naritsuka, S.

Y. S. Chang, S. Naritsuka, and T. Nishinaga, “Effect of growth temperature on epitaxial lateral overgrowth of GaAs on Si substrate,” J. Cryst. Growth174(1-4), 630–634 (1997).
[CrossRef]

Németh, I.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth315(1), 37–47 (2011).
[CrossRef]

A. Beyer, I. Németh, S. Liebich, J. Ohlmann, W. Stolz, and K. Volz, “Influence of crystal polarity on crystal defects in GaP grown on exact Si (001),” J. Appl. Phys.109(8), 083529 (2011).
[CrossRef]

B. Kunert, I. Németh, S. Reinhard, K. Volz, and W. Stolz, “Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate,” Thin Solid Films517(1), 140–143 (2008).
[CrossRef]

Nishinaga, T.

Y. S. Chang, S. Naritsuka, and T. Nishinaga, “Effect of growth temperature on epitaxial lateral overgrowth of GaAs on Si substrate,” J. Cryst. Growth174(1-4), 630–634 (1997).
[CrossRef]

Nozawa, K.

K. Nozawa and Y. Horikoshi, “Effects of annealing on the structural properties of Gaas on Si(100) grown at a low temperature by migration-enhanced epitaxy,” Jpn. J. Appl. Phys.29(Part 2, No. 4), L540–L543 (1990).
[CrossRef]

Ohlmann, J.

A. Beyer, I. Németh, S. Liebich, J. Ohlmann, W. Stolz, and K. Volz, “Influence of crystal polarity on crystal defects in GaP grown on exact Si (001),” J. Appl. Phys.109(8), 083529 (2011).
[CrossRef]

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth315(1), 37–47 (2011).
[CrossRef]

Olsson, F.

F. Olsson, M. Xie, S. Lourdudoss, I. Prieto, and P. Postigo, “Epitaxial lateral overgrowth of InP on Si from nano-openings: Theoretical and experimental indication for defect filtering throughout the grown layer,” J. Appl. Phys.104(9), 093112 (2008).
[CrossRef]

Orzali, T.

R. Loo, G. Wang, T. Orzali, N. Waldron, C. Merckling, M. R. Leys, O. Richard, H. Bender, P. Eyben, W. Vandervorst, and M. Caymax, “Selective area growth of InP on On-Axis Si(001) substrates with low antiphase boundary formation,” J. Electrochem. Soc.159(3), H260–H265 (2012).
[CrossRef]

Paniccia, M.

J. Bowers, D. Liang, A. Fang, H. Park, R. Jones, and M. Paniccia, “Hybrid silicon lasers,” Opt. Photonics News21(5), 28–33 (2010).
[CrossRef]

Park, H.

J. Bowers, D. Liang, A. Fang, H. Park, R. Jones, and M. Paniccia, “Hybrid silicon lasers,” Opt. Photonics News21(5), 28–33 (2010).
[CrossRef]

Paskov, P. P.

T. Paskova, D. Hommel, P. P. Paskov, V. Darakchieva, B. Monemar, M. Bockowski, T. Suski, I. Grzegory, F. Tuomisto, K. Saarinen, N. Ashkenov, and M. Schubert, “Effect of high-temperature annealing on the residual strain and bending of freestanding GaN films grown by hydride vapor phase epitaxy,” Appl. Phys. Lett.88(14), 141909 (2006).
[CrossRef]

Paskova, T.

T. Paskova, D. Hommel, P. P. Paskov, V. Darakchieva, B. Monemar, M. Bockowski, T. Suski, I. Grzegory, F. Tuomisto, K. Saarinen, N. Ashkenov, and M. Schubert, “Effect of high-temperature annealing on the residual strain and bending of freestanding GaN films grown by hydride vapor phase epitaxy,” Appl. Phys. Lett.88(14), 141909 (2006).
[CrossRef]

Pirouz, P.

F. Ernst and P. Pirouz, “Formation of planar defects in the epitaxial growth of GaP on Si substrate by metal organic chemical-vapor deposition,” J. Appl. Phys.64(9), 4526–4530 (1988).
[CrossRef]

Poingt, F.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated Inp/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Ponce, F. A.

D. K. Biegelsen, F. A. Ponce, A. J. Smith, and J. C. Tramontana, “Initial stages of epitaxial growth of GaAs on (100) silicon,” J. Appl. Phys.61(5), 1856 (1987).
[CrossRef]

Postigo, P.

F. Olsson, M. Xie, S. Lourdudoss, I. Prieto, and P. Postigo, “Epitaxial lateral overgrowth of InP on Si from nano-openings: Theoretical and experimental indication for defect filtering throughout the grown layer,” J. Appl. Phys.104(9), 093112 (2008).
[CrossRef]

Pozina, G.

C. Junesand, C. Hu, Z. Wang, W. Metaferia, P. Dagur, G. Pozina, L. Hultman, and S. Lourdudoss, “Effect of the surface morphology of seed and mask layers on Inp grown on Si by epitaxial lateral overgrowth,” J. Electron. Mater.41(9), 2345–2349 (2012).
[CrossRef]

Prieto, I.

F. Olsson, M. Xie, S. Lourdudoss, I. Prieto, and P. Postigo, “Epitaxial lateral overgrowth of InP on Si from nano-openings: Theoretical and experimental indication for defect filtering throughout the grown layer,” J. Appl. Phys.104(9), 093112 (2008).
[CrossRef]

Reinhard, S.

B. Kunert, I. Németh, S. Reinhard, K. Volz, and W. Stolz, “Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate,” Thin Solid Films517(1), 140–143 (2008).
[CrossRef]

Richard, O.

R. Loo, G. Wang, T. Orzali, N. Waldron, C. Merckling, M. R. Leys, O. Richard, H. Bender, P. Eyben, W. Vandervorst, and M. Caymax, “Selective area growth of InP on On-Axis Si(001) substrates with low antiphase boundary formation,” J. Electrochem. Soc.159(3), H260–H265 (2012).
[CrossRef]

Roelkens, G.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated Inp/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Saarinen, K.

T. Paskova, D. Hommel, P. P. Paskov, V. Darakchieva, B. Monemar, M. Bockowski, T. Suski, I. Grzegory, F. Tuomisto, K. Saarinen, N. Ashkenov, and M. Schubert, “Effect of high-temperature annealing on the residual strain and bending of freestanding GaN films grown by hydride vapor phase epitaxy,” Appl. Phys. Lett.88(14), 141909 (2006).
[CrossRef]

Sakai, Y.

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-μm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett.60(4), 472 (1992).
[CrossRef]

Salamanca-Riba, L.

L. H. Kuo, L. Salamanca-Riba, B. J. Wu, G. M. Haugen, J. M. DePuydt, G. Hofler, and H. Cheng, “Generation of degradation defects, stacking faults, and misfit dislocations in ZnSe-based films grown on GaAs,” J. Vac. Sci. Technol. B13(4), 1694 (1995).
[CrossRef]

Schubert, M.

T. Paskova, D. Hommel, P. P. Paskov, V. Darakchieva, B. Monemar, M. Bockowski, T. Suski, I. Grzegory, F. Tuomisto, K. Saarinen, N. Ashkenov, and M. Schubert, “Effect of high-temperature annealing on the residual strain and bending of freestanding GaN films grown by hydride vapor phase epitaxy,” Appl. Phys. Lett.88(14), 141909 (2006).
[CrossRef]

Smith, A. J.

D. K. Biegelsen, F. A. Ponce, A. J. Smith, and J. C. Tramontana, “Initial stages of epitaxial growth of GaAs on (100) silicon,” J. Appl. Phys.61(5), 1856 (1987).
[CrossRef]

Stolz, W.

A. Beyer, I. Németh, S. Liebich, J. Ohlmann, W. Stolz, and K. Volz, “Influence of crystal polarity on crystal defects in GaP grown on exact Si (001),” J. Appl. Phys.109(8), 083529 (2011).
[CrossRef]

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth315(1), 37–47 (2011).
[CrossRef]

B. Kunert, I. Németh, S. Reinhard, K. Volz, and W. Stolz, “Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate,” Thin Solid Films517(1), 140–143 (2008).
[CrossRef]

Sugiyama, M.

M. Sugiyama, Y. Kondo, M. Takenaka, S. Takagi, and Y. Nakano, “Uniformity improvement of selectively-grown InGaAs micro-discs on Si,” J. Cryst. Growth352(1), 229–234 (2012).
[CrossRef]

Sugo, M.

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-μm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett.60(4), 472 (1992).
[CrossRef]

Sumino, K.

I. Yonenaga and K. Sumino, “Dislocation velocity in indium phosphide,” Appl. Phys. Lett.58(1), 48 (1991).
[CrossRef]

Suski, T.

T. Paskova, D. Hommel, P. P. Paskov, V. Darakchieva, B. Monemar, M. Bockowski, T. Suski, I. Grzegory, F. Tuomisto, K. Saarinen, N. Ashkenov, and M. Schubert, “Effect of high-temperature annealing on the residual strain and bending of freestanding GaN films grown by hydride vapor phase epitaxy,” Appl. Phys. Lett.88(14), 141909 (2006).
[CrossRef]

Suzuki, H.

H. Suzuki, “Chemical interaction of solute atoms with dislocations,” Sci. Rep. Res. Inst. Tohoku Univ. [Med]A4, 455–463 (1952).

Takagi, S.

M. Sugiyama, Y. Kondo, M. Takenaka, S. Takagi, and Y. Nakano, “Uniformity improvement of selectively-grown InGaAs micro-discs on Si,” J. Cryst. Growth352(1), 229–234 (2012).
[CrossRef]

Takenaka, M.

M. Sugiyama, Y. Kondo, M. Takenaka, S. Takagi, and Y. Nakano, “Uniformity improvement of selectively-grown InGaAs micro-discs on Si,” J. Cryst. Growth352(1), 229–234 (2012).
[CrossRef]

Tanabe, K.

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci Rep2, 349 (2012).
[CrossRef] [PubMed]

Tramontana, J. C.

D. K. Biegelsen, F. A. Ponce, A. J. Smith, and J. C. Tramontana, “Initial stages of epitaxial growth of GaAs on (100) silicon,” J. Appl. Phys.61(5), 1856 (1987).
[CrossRef]

Tsao, J. Y.

Y. Chen, X. W. Lin, Z. Liliental-Weber, J. Washburn, J. F. Klem, and J. Y. Tsao, “Dislocation formation mechanism in strained InxGa1−xAs islands grown on GaAs(001) substrates,” Appl. Phys. Lett.68(1), 111 (1996).
[CrossRef]

Tuomisto, F.

T. Paskova, D. Hommel, P. P. Paskov, V. Darakchieva, B. Monemar, M. Bockowski, T. Suski, I. Grzegory, F. Tuomisto, K. Saarinen, N. Ashkenov, and M. Schubert, “Effect of high-temperature annealing on the residual strain and bending of freestanding GaN films grown by hydride vapor phase epitaxy,” Appl. Phys. Lett.88(14), 141909 (2006).
[CrossRef]

Van Thourhout, D.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated Inp/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Vandervorst, W.

R. Loo, G. Wang, T. Orzali, N. Waldron, C. Merckling, M. R. Leys, O. Richard, H. Bender, P. Eyben, W. Vandervorst, and M. Caymax, “Selective area growth of InP on On-Axis Si(001) substrates with low antiphase boundary formation,” J. Electrochem. Soc.159(3), H260–H265 (2012).
[CrossRef]

Volz, K.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth315(1), 37–47 (2011).
[CrossRef]

A. Beyer, I. Németh, S. Liebich, J. Ohlmann, W. Stolz, and K. Volz, “Influence of crystal polarity on crystal defects in GaP grown on exact Si (001),” J. Appl. Phys.109(8), 083529 (2011).
[CrossRef]

B. Kunert, I. Németh, S. Reinhard, K. Volz, and W. Stolz, “Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate,” Thin Solid Films517(1), 140–143 (2008).
[CrossRef]

Waldron, N.

R. Loo, G. Wang, T. Orzali, N. Waldron, C. Merckling, M. R. Leys, O. Richard, H. Bender, P. Eyben, W. Vandervorst, and M. Caymax, “Selective area growth of InP on On-Axis Si(001) substrates with low antiphase boundary formation,” J. Electrochem. Soc.159(3), H260–H265 (2012).
[CrossRef]

Walter, T.

T. Walter and D. Gerthsen, “TEM analysis of epitaxial semiconductor layers with high stacking fault densities considering artifacts induced by the cross-section geometry,” Ultramicroscopy81(3-4), 279–288 (2000).
[CrossRef] [PubMed]

Wang, G.

R. Loo, G. Wang, T. Orzali, N. Waldron, C. Merckling, M. R. Leys, O. Richard, H. Bender, P. Eyben, W. Vandervorst, and M. Caymax, “Selective area growth of InP on On-Axis Si(001) substrates with low antiphase boundary formation,” J. Electrochem. Soc.159(3), H260–H265 (2012).
[CrossRef]

Wang, Z.

Z. Wang, C. Junesand, W. Metaferia, C. Hu, L. Wosinski, and S. Lourdudoss, “III–Vs on Si for photonic applications—A monolithic approach,” Mater. Sci. Eng. B177(17), 1551–1557 (2012).
[CrossRef]

C. Junesand, C. Hu, Z. Wang, W. Metaferia, P. Dagur, G. Pozina, L. Hultman, and S. Lourdudoss, “Effect of the surface morphology of seed and mask layers on Inp grown on Si by epitaxial lateral overgrowth,” J. Electron. Mater.41(9), 2345–2349 (2012).
[CrossRef]

Washburn, J.

Y. Chen, X. W. Lin, Z. Liliental-Weber, J. Washburn, J. F. Klem, and J. Y. Tsao, “Dislocation formation mechanism in strained InxGa1−xAs islands grown on GaAs(001) substrates,” Appl. Phys. Lett.68(1), 111 (1996).
[CrossRef]

Watanabe, K.

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci Rep2, 349 (2012).
[CrossRef] [PubMed]

Witte, W.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth315(1), 37–47 (2011).
[CrossRef]

Wosinski, L.

Z. Wang, C. Junesand, W. Metaferia, C. Hu, L. Wosinski, and S. Lourdudoss, “III–Vs on Si for photonic applications—A monolithic approach,” Mater. Sci. Eng. B177(17), 1551–1557 (2012).
[CrossRef]

Wu, B. J.

L. H. Kuo, L. Salamanca-Riba, B. J. Wu, G. M. Haugen, J. M. DePuydt, G. Hofler, and H. Cheng, “Generation of degradation defects, stacking faults, and misfit dislocations in ZnSe-based films grown on GaAs,” J. Vac. Sci. Technol. B13(4), 1694 (1995).
[CrossRef]

Xie, M.

F. Olsson, M. Xie, S. Lourdudoss, I. Prieto, and P. Postigo, “Epitaxial lateral overgrowth of InP on Si from nano-openings: Theoretical and experimental indication for defect filtering throughout the grown layer,” J. Appl. Phys.104(9), 093112 (2008).
[CrossRef]

Yonenaga, I.

I. Yonenaga and K. Sumino, “Dislocation velocity in indium phosphide,” Appl. Phys. Lett.58(1), 48 (1991).
[CrossRef]

Zou, J.

J. Zou, X. Z. Liao, D. J. H. Cockayne, and Z. M. Jiang, “Alternative mechanism for misfit dislocation generation during high-temperature Ge(Si)/Si (001) island growth,” Appl. Phys. Lett.81(11), 1996–1998 (2002).
[CrossRef]

Acta Mater. (1)

S. Mahajan, “Defects in semiconductors and their effects,” Acta Mater.48(1), 137–149 (2000).
[CrossRef]

Acta Metall. (1)

R. S. Barnes, “The climb of edge dislocations in face-centred cubic crystals,” Acta Metall.2(3), 380–385 (1954).
[CrossRef]

Appl. Phys. Lett. (5)

I. Yonenaga and K. Sumino, “Dislocation velocity in indium phosphide,” Appl. Phys. Lett.58(1), 48 (1991).
[CrossRef]

T. Paskova, D. Hommel, P. P. Paskov, V. Darakchieva, B. Monemar, M. Bockowski, T. Suski, I. Grzegory, F. Tuomisto, K. Saarinen, N. Ashkenov, and M. Schubert, “Effect of high-temperature annealing on the residual strain and bending of freestanding GaN films grown by hydride vapor phase epitaxy,” Appl. Phys. Lett.88(14), 141909 (2006).
[CrossRef]

Y. Chen, X. W. Lin, Z. Liliental-Weber, J. Washburn, J. F. Klem, and J. Y. Tsao, “Dislocation formation mechanism in strained InxGa1−xAs islands grown on GaAs(001) substrates,” Appl. Phys. Lett.68(1), 111 (1996).
[CrossRef]

J. Zou, X. Z. Liao, D. J. H. Cockayne, and Z. M. Jiang, “Alternative mechanism for misfit dislocation generation during high-temperature Ge(Si)/Si (001) island growth,” Appl. Phys. Lett.81(11), 1996–1998 (2002).
[CrossRef]

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-μm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett.60(4), 472 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated Inp/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

J. Appl. Phys. (6)

F. Olsson, M. Xie, S. Lourdudoss, I. Prieto, and P. Postigo, “Epitaxial lateral overgrowth of InP on Si from nano-openings: Theoretical and experimental indication for defect filtering throughout the grown layer,” J. Appl. Phys.104(9), 093112 (2008).
[CrossRef]

A. S. Jordan, G. T. Brown, B. Cockayne, D. Brasen, and W. Bonner, “An analysis of dislocation reduction by impurity hardening in the liquid-encapsulated Czochralski growth of 〈111〉 InP,” J. Appl. Phys.58(11), 4383 (1985).
[CrossRef]

D. K. Biegelsen, F. A. Ponce, A. J. Smith, and J. C. Tramontana, “Initial stages of epitaxial growth of GaAs on (100) silicon,” J. Appl. Phys.61(5), 1856 (1987).
[CrossRef]

F. Ernst and P. Pirouz, “Formation of planar defects in the epitaxial growth of GaP on Si substrate by metal organic chemical-vapor deposition,” J. Appl. Phys.64(9), 4526–4530 (1988).
[CrossRef]

A. Beyer, I. Németh, S. Liebich, J. Ohlmann, W. Stolz, and K. Volz, “Influence of crystal polarity on crystal defects in GaP grown on exact Si (001),” J. Appl. Phys.109(8), 083529 (2011).
[CrossRef]

M. S. Abrahams, “Mechanism of thermal annihilation of stacking faults in Gaas,” J. Appl. Phys.41(6), 2358 (1970).
[CrossRef]

J. Cryst. Growth (4)

A. Krost, M. Grundmann, D. Bimberg, and H. Cerva, “InP on patterned Si(001): defect reduction by application of the necking mechanism,” J. Cryst. Growth124(1-4), 207–212 (1992).
[CrossRef]

Y. S. Chang, S. Naritsuka, and T. Nishinaga, “Effect of growth temperature on epitaxial lateral overgrowth of GaAs on Si substrate,” J. Cryst. Growth174(1-4), 630–634 (1997).
[CrossRef]

M. Sugiyama, Y. Kondo, M. Takenaka, S. Takagi, and Y. Nakano, “Uniformity improvement of selectively-grown InGaAs micro-discs on Si,” J. Cryst. Growth352(1), 229–234 (2012).
[CrossRef]

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth315(1), 37–47 (2011).
[CrossRef]

J. Electrochem. Soc. (1)

R. Loo, G. Wang, T. Orzali, N. Waldron, C. Merckling, M. R. Leys, O. Richard, H. Bender, P. Eyben, W. Vandervorst, and M. Caymax, “Selective area growth of InP on On-Axis Si(001) substrates with low antiphase boundary formation,” J. Electrochem. Soc.159(3), H260–H265 (2012).
[CrossRef]

J. Electron. Mater. (1)

C. Junesand, C. Hu, Z. Wang, W. Metaferia, P. Dagur, G. Pozina, L. Hultman, and S. Lourdudoss, “Effect of the surface morphology of seed and mask layers on Inp grown on Si by epitaxial lateral overgrowth,” J. Electron. Mater.41(9), 2345–2349 (2012).
[CrossRef]

J. Mater. Sci. (1)

D. B. Holt, “Transmission electron microscope observations on gap electroluminescent diode materials,” J. Mater. Sci.7(3), 265–278 (1972).
[CrossRef]

J. Vac. Sci. Technol. B (1)

L. H. Kuo, L. Salamanca-Riba, B. J. Wu, G. M. Haugen, J. M. DePuydt, G. Hofler, and H. Cheng, “Generation of degradation defects, stacking faults, and misfit dislocations in ZnSe-based films grown on GaAs,” J. Vac. Sci. Technol. B13(4), 1694 (1995).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Nozawa and Y. Horikoshi, “Effects of annealing on the structural properties of Gaas on Si(100) grown at a low temperature by migration-enhanced epitaxy,” Jpn. J. Appl. Phys.29(Part 2, No. 4), L540–L543 (1990).
[CrossRef]

Mater. Sci. Eng. B (1)

Z. Wang, C. Junesand, W. Metaferia, C. Hu, L. Wosinski, and S. Lourdudoss, “III–Vs on Si for photonic applications—A monolithic approach,” Mater. Sci. Eng. B177(17), 1551–1557 (2012).
[CrossRef]

Nanotechnology (1)

Y. Nakamura, T. Miwa, and M. Ichikawa, “Nanocontact heteroepitaxy of thin GaSb and AlGaSb films on Si substrates using ultrahigh-density nanodot seeds,” Nanotechnology22(26), 265301 (2011).
[CrossRef] [PubMed]

Opt. Photonics News (1)

J. Bowers, D. Liang, A. Fang, H. Park, R. Jones, and M. Paniccia, “Hybrid silicon lasers,” Opt. Photonics News21(5), 28–33 (2010).
[CrossRef]

Sci Rep (1)

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci Rep2, 349 (2012).
[CrossRef] [PubMed]

Sci. Rep. Res. Inst. Tohoku Univ. [Med] (1)

H. Suzuki, “Chemical interaction of solute atoms with dislocations,” Sci. Rep. Res. Inst. Tohoku Univ. [Med]A4, 455–463 (1952).

Thin Solid Films (1)

B. Kunert, I. Németh, S. Reinhard, K. Volz, and W. Stolz, “Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate,” Thin Solid Films517(1), 140–143 (2008).
[CrossRef]

Ultramicroscopy (1)

T. Walter and D. Gerthsen, “TEM analysis of epitaxial semiconductor layers with high stacking fault densities considering artifacts induced by the cross-section geometry,” Ultramicroscopy81(3-4), 279–288 (2000).
[CrossRef] [PubMed]

Other (1)

C. Junesand, M.-H. Gau, Y.-T. Sun, S. Loududoss, I. Lo, J. Jimenez, P. A. Postigo, F. M. M. Sánchez, J. Hernandez, S. Molina, A. Abdessamad, G. Pozina, L. Hultman, and P. Pirouz, “Defect reduction in heteroepitaxial InP on Si by epitaxial lateral overgrowth,” Manuscript, submitted to Materials Express (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Mask opening schematic of (a) double openings and (b) single openings. In the case of double openings, angle α was 30° and 60°, and separation s was 300, 500 and 1000 nm whereas in the case of single openings, width w was 250 and 400 nm, and the angle α was 30°.

Fig. 2
Fig. 2

SEM image of InP:S ELOG on InP/Si of samples (a) B-s500-w300-α30 and (b) B-s300-w300-α60. (c) and (d): PCL maps corresponding to the SEM images in (a) and (b), respectively.

Fig. 3
Fig. 3

Cross-sectional TEM images of InP:S ELOG on InP/Si of (a) B-s500-w300-α30-and (b) – (c) B-s1000-w300-α30. The images were taken in bright field mode under two beam condition tilted off a [100] zone axis. The diffraction vector g was [400] in (a) and (b), and [040] in (c). The vectors u and v denote directions rotated ~40° clockwise from [1-10] and [110] respectively.

Fig. 4
Fig. 4

Cross-sectional TEM images of InP:S ELOG on InP/Si of samples: (a) B-s300-w300-α60 and (b) – (c) B-s500-w300-α60. The images were taken in bright field mode under two beam condition tilted off a [100] zone axis. The diffraction vector g was [400] in all cases. The vectors u and v denote directions rotated ~50° clockwise from [1-10] and [110] respectively.

Fig. 5
Fig. 5

(a) SEM images, from left to right, of InP:S ELOG grown on InP substrate of samples A-w300-α30 (leftmost), A-w500-α30, A-w1000-α30, A-s300-w300-α30, A-s500-w300-α30 and A-s1000-w300-α30 (rightmost). (b) PCL maps of the same in the same order. The black spots in the rightmost layer in the PCL map correspond to the white particles visible in the SEM image and have no association with the ELOG.

Fig. 6
Fig. 6

Cross-sectional TEM images of InP:S ELOG on InP of (a) A-s500-w300-α30 and (b) A-s1000-w300-α30. The dark curved lines correspond to thickness fringes and are not defects. The images were taken in bright field mode under two beam condition tilted off a [100] zone axis. The diffraction vector g was [400] in both cases. The vectors u and v denote directions rotated ~40° clockwise from [1-10] and [110] respectively. Prior to TEM characterization, the SiO2 mask was removed by wet etch with HF.

Fig. 7
Fig. 7

(a) SEM image and (b) PCL map of InP:S ELOG on InP/Si of sample C-w250-α30.

Fig. 8
Fig. 8

(a) SEM image and (b) PCL map of InP:S ELOG on InP/Si of sample C-w400-α30.

Fig. 9
Fig. 9

SEM images of u. d. InP ELOG on InP/Si of samples (a) D-w250-α30 and (b) D-w400-α30.

Fig. 10
Fig. 10

Cross-section TEM image of (a) u. d. InP ELOG layer grown on InP/Si of sample D-w250-α30 (Stacking faults are indicated with asterisks), and (b) InP:S ELOG on InP/Si of sample C-w250-α30 with propagating stacking faults designated. The contrast causes the openings to appear narrower than in reality. The images were taken in bright field mode along a [110] zone axis.

Fig. 11
Fig. 11

Model displaying a SF propagation or non-propagation through an opening of width of w at an angle 30° off [110]. The mask thickness, h, with respect to w is in (a) insufficient to block the SF and in (b) sufficient to block the SF.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

r= h sinθcosφ
r = w sin( 90°αarctan( tanφ cosφ ) )
r 2 = r 2 + h 2
h=w 1 ( sin( 90 ° αarctan( tanφ cosθ ) ) ) 2 ( 1 ( sin( θ )cos( φ ) ) 2 1 )
β= 90 ° αarctan( tanφ cosθ )>0°

Metrics