Abstract

Eu3+ doped fiber-based germanotellurite (NZPGT) glasses with medium-low maximum phonon energy of 782 cm−1 have been fabricated and characterized. Judd-Ofelt intensity parameters Ω2 (6.25 × 10−20 cm2) and Ω4 (1.77 × 10−20 cm2) indicate a high asymmetrical and covalent environment around Eu3+ in the optical glasses. The spontaneous emission probability of the dominant transition 5D07F2 peaking at 612.5 nm and the corresponding maximum stimulated emission cross-section were derived to be 445.7 s−1 and 2.05 × 10−21 cm2, respectively, confirming the effectiveness of the red fluorescence emission. The quantum yield was derived to be 12% under 391 nm LED excitation, and approximately 88% photons have been demonstrated in wavelength range of 600−720 nm, indicating that Eu3+ doped NZPGT glasses under proper excitation conditions are promising optical materials for fiber-based irradiation light sources that are competent to activate diverse photodynamic therapy photosensitizers.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Amato, “Cancer therapy. Hope for a magic bullet that moves at the speed of light,” Science262(5130), 32–33 (1993).
    [CrossRef] [PubMed]
  2. D. E. J. G. J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer3(5), 380–387 (2003).
    [CrossRef] [PubMed]
  3. A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer6(7), 535–545 (2006).
    [CrossRef] [PubMed]
  4. Q. Chen, S. D. Shetty, L. Heads, F. Bolin, B. C. Wilson, M. S. Patterson, L. T. Sirls Ii, D. Schultz, J. C. Cerny, and F. W. Hetzel, “Photodynamic therapy in prostate cancer: optical dosimetry and response of normal tissue,” Proc. SPIE1881, 231–235 (1993).
    [CrossRef]
  5. R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem.47(1), 555–606 (1996).
    [CrossRef] [PubMed]
  6. J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev.110(5), 2795–2838 (2010).
    [CrossRef] [PubMed]
  7. S. Yano, S. Hirohara, M. Obata, Y. Hagiya, S.- Ogura, A. Ikeda, H. Kataoka, M. Tanaka, and T. Joh, “Current states and future views in photodynamic therapy,” J. Photochem. Photobiol. Chem.12(1), 46–67 (2011).
    [CrossRef]
  8. L. Brancaleon and H. Moseley, “Laser and non-laser light sources for photodynamic therapy,” Lasers Med. Sci.17(3), 173–186 (2002).
    [CrossRef] [PubMed]
  9. T. S. Mang, “Lasers and light sources for PDT: past, present and future,” Photodiagn. Photodyn.1(1), 43–48 (2004).
    [CrossRef]
  10. R. A. Weiss, D. H. McDaniel, R. G. Geronemus, M. A. Weiss, K. L. Beasley, G. M. Munavalli, and S. G. Bellew, “Clinical experience with light-emitting diode (LED) photomodulation,” Dermatol. Surg.31(9 Pt 2), 1199–1205 (2005).
    [PubMed]
  11. P. Babilas, E. Kohl, T. Maisch, H. Bäcker, B. Gross, A. L. Branzan, W. Bäumler, M. Landthaler, S. Karrer, and R. M. Szeimies, “In vitro and in vivo comparison of two different light sources for topical photodynamic therapy,” Br. J. Dermatol.154(4), 712–718 (2006).
    [PubMed]
  12. B. J. Chen, L. F. Shen, E. Y. B. Pun, and H. Lin, “Sm3+-doped germanate glass channel waveguide as light source for minimally invasive photodynamic therapy surgery,” Opt. Express20(2), 879–889 (2012).
    [CrossRef] [PubMed]
  13. J. Yang, B. J. Chen, E. Y. B. Pun, B. Zhai, and H. Lin, “Pr3+-doped heavy metal germanium tellurite glasses for irradiative light source in minimally invasive photodynamic therapy surgery,” Opt. Express21(1), 1030–1040 (2013).
    [CrossRef] [PubMed]
  14. I. V. Kityk, J. Wasylak, D. Dorosz, and J. Kucharski, “Eu3+-doped glass materials for red luminescence,” Opt. Laser Technol.33(3), 157–160 (2001).
    [CrossRef]
  15. A. H. Krumpel, E. V. D. Kolk, P. Dorenbos, P. Boutinaud, E. Cavalli, and M. Bettinelli, “Energy level diagram for lanthanide-doped lanthanum orthovanadate,” Mater. Sci. Eng. B-Adv.146, 114–120 (2008).
  16. E. Cavalli, A. Belletti, R. Mahiou, and P. Boutinaud, “Luminescence properties of Ba2NaNb5O15 crystals activated with Sm3+, Eu3+, Tb3+ or Dy3+ ions,” J. Lumin.130(4), 733–736 (2010).
    [CrossRef]
  17. C. E. Secu, R. F. Negrea, and M. Secu, “Eu3+ probe ion for rare-earth dopant site structure in sol-gel derived LiYF4 oxyfluoride glass-ceramic,” Opt. Mater.35(12), 2456–2460 (2013).
    [CrossRef]
  18. V. A. G. Rivera, S. P. A. Osorio, Y. Ledemi, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Localized surface plasmon resonance interaction with Er3+-doped tellurite glass,” Opt. Express18(24), 25321–25328 (2010).
    [CrossRef] [PubMed]
  19. E. Friedman and J. L. Miller, Photonics Rules of Thumb: Optics, Electro-Optics, Fiber Optics, and Lasers (McGraw-Hill, 2004), Chap. 10.
  20. L. Petit, T. Cardinal, J. J. Videau, G. Le Flem, Y. Guyot, G. Boulon, M. Couzi, and T. Buffeteau, “Effect of the introduction of Na2B4O7 on erbium luminescence in tellurite glasses,” J. Non-Cryst. Solids298(1), 76–88 (2002).
    [CrossRef]
  21. J. Ozdanova, H. Ticha, and L. Tichy, “Optical band gap and Raman spectra in some (Bi2O3)x(WO3)y(TeO2)100−x−y and (PbO)x(WO3)y(TeO2)100−x−y glasses,” J. Non-Cryst. Solids355(45-47), 2318–2322 (2009).
    [CrossRef]
  22. N. Manikandan, A. Ryasnyanskiy, and J. Toulouse, “Thermal and optical properties of TeO2−ZnO−BaO glasses,” J. Non-Cryst. Solids358(5), 947–951 (2012).
    [CrossRef]
  23. X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express18(25), 26635–26646 (2010).
    [CrossRef] [PubMed]
  24. X. Hu, G. Guery, J. Boerstler, J. D. Musgraves, D. Vanderveer, P. Wachtel, and K. Richardson, “Influence of Bi2O3 content on the crystallization behavior of TeO2−Bi2O3−ZnO glass system,” J. Non-Cryst. Solids358(5), 952–958 (2012).
    [CrossRef]
  25. G. Monteiro, L. F. Santos, J. C. G. Pereira, and R. M. Almeida, “Optical and spectroscopic properties of germanotellurite glasses,” J. Non-Cryst. Solids357(14), 2695–2701 (2011).
    [CrossRef]
  26. K. Driesen, V. K. Tikhomirov, and C. Görller-Walrand, “Eu3+ as a probe for rare-earth dopant site structure in nano-glass-ceramics,” J. Appl. Phys.102(2), 024312–024317 (2007).
    [CrossRef]
  27. W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys.49(10), 4412–4423 (1968).
    [CrossRef]
  28. I. V. Kityk, J. Wasylak, D. Dorosz, J. Kucharski, S. Benet, and H. Kaddouri, “PbO−Bi2O3−Ga2O3−BaO glasses doped by Er3+ as novel materials for IR emission,” Opt. Laser Technol.33(7), 511–514 (2001).
    [CrossRef]
  29. A. Wojciechowski, I. V. Kityk, G. Lakshminarayana, I. Fuks-Janczarek, J. Berdowski, E. Berdowska, and Z. Tylczyński, “Laser-induced optical effects in triglycine-zinc chloride single crystals,” Physica B405(13), 2827–2830 (2010).
    [CrossRef]
  30. G. Lakshminarayana, E. M. Weis, A. C. Lira, U. Caldiño, D. J. Williams, and M. P. Hehlen, “Cross relaxation in rare-earth-doped oxyfluoride glasses,” J. Lumin.139, 132–142 (2013).
    [CrossRef]
  31. M. Dejneka, E. Snitzer, and R. E. Riman, “Blue, green and red fluorescence and energy transfer of Eu3+ in fluoride glasses,” J. Lumin.65(5), 227–245 (1995).
    [CrossRef]
  32. C. E. Secu, D. Predoi, M. Secu, M. Cernea, and G. Aldica, “Structural investigations of sol-gel derived silicate gels using Eu3+ ion-probe luminescence,” Opt. Mater.31(11), 1745–1748 (2009).
    [CrossRef]
  33. Y. Gandhi, I. V. Kityk, M. G. Brik, P. R. Rao, and N. Veeraiah, “Influence of tungsten on the emission features of Nd3+, Sm3+ and Eu3+ ions in ZnF2−WO3−TeO2 glasses,” J. Alloy. Comp.508(2), 278–291 (2010).
    [CrossRef]
  34. V. P. Tuyen, T. Hayakawa, M. Nogami, J. R. Duclère, and P. Thomas, “Fluorescence line narrowing spectroscopy of Eu3+ in zinc-thallium-tellurite glass,” J. Solid State Chem.183(11), 2714–2719 (2010).
    [CrossRef]
  35. R. Chakrabarti, M. Das, B. Karmakar, K. Annapurna, and S. Buddhudu, “Emission analysis of Eu3+:CaO−La2O3−B2O3 glass,” J. Non-Cryst. Solids353(13-15), 1422–1426 (2007).
    [CrossRef]
  36. A. M. Babu, B. C. Jamalaiah, T. Suhasini, T. S. Rao, and L. R. Moorthy, “Optical properties of Eu3+ ions in lead tungstate tellurite glasses,” Solid State Sci.13(3), 574–578 (2011).
    [CrossRef]
  37. M. P. Hehlen, M. G. Brik, and K. W. Krämer, “50th anniversary of the Judd-Ofelt theory: An experimentalist's view of the formalism and its application,” J. Lumin.136, 221–239 (2013).
    [CrossRef]
  38. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+,” J. Chem. Phys.49(10), 4450–4455 (1968).
    [CrossRef]
  39. M. A. K. Elfayoumi, M. Farouk, M. G. Brik, and M. M. Elokr, “Spectroscopic studies of Sm3+ and Eu3+ co-doped lithium borate glass,” J. Alloy. Comp.492(1-2), 712–716 (2010).
    [CrossRef]
  40. Y. Dwivedi and S. B. Rai, “Optical properties of Eu3+ in oxyfluoroborate glass and its nanocrystalline glass,” Opt. Mater.31(1), 87–93 (2008).
    [CrossRef]
  41. D. Uma Maheswari, J. Suresh Kumar, L. R. Moorthy, K. Jang, and M. Jayasimhadri, “Emission properties of Eu3+ ions in alkali tellurofluorophosphate glasses,” Physica B403(10-11), 1690–1694 (2008).
    [CrossRef]
  42. T. G. V. M. Rao, A. Rupesh Kumar, K. Neeraja, N. Veeraiah, and M. Rami Reddy, “Optical and structural investigation of Eu3+ ions in Nd3+ co-doped magnesium lead borosilicate glasses,” J. Alloy. Comp.557, 209–217 (2013).
    [CrossRef]
  43. K. Linganna and C. K. Jayasankar, “Optical properties of Eu3+ ions in phosphate glasses,” Spectrochim. Acta [A]97, 788–797 (2012).
    [CrossRef]
  44. A. Ivankov, J. Seekamp, and W. Bauhofer, “Optical properties of Eu3+-doped zinc borate glasses,” J. Lumin.121(1), 123–131 (2006).
    [CrossRef]
  45. K. K. Mahato, S. B. Rai, and A. Rai, “Optical studies of Eu3+ doped oxyfluoroborate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc.60(4), 979–985 (2004).
    [CrossRef] [PubMed]
  46. V. R. Kumar and N. Veeraiah, “Optical absorption and photoluminescence properties of Eu3+-doped ZnF2−PbO−TeO2 glasses,” J. Mater. Sci.33(10), 2659–2662 (1998).
    [CrossRef]
  47. C. A. Morton, “Methyl aminolevulinate (Metvix) photodynamic therapy - practical pearls,” J. Dermatolog. Treat.14(Suppl 3), 23–26 (2003).
    [PubMed]
  48. M. Khurana, H. A. Collins, A. Karotki, H. L. Anderson, D. T. Cramb, and B. C. Wilson, “Quantitative in vitro demonstration of two-photon photodynamic therapy using photofrin and visudyne,” Photochem. Photobiol.83(6), 1441–1448 (2007).
    [CrossRef] [PubMed]

2013 (5)

C. E. Secu, R. F. Negrea, and M. Secu, “Eu3+ probe ion for rare-earth dopant site structure in sol-gel derived LiYF4 oxyfluoride glass-ceramic,” Opt. Mater.35(12), 2456–2460 (2013).
[CrossRef]

G. Lakshminarayana, E. M. Weis, A. C. Lira, U. Caldiño, D. J. Williams, and M. P. Hehlen, “Cross relaxation in rare-earth-doped oxyfluoride glasses,” J. Lumin.139, 132–142 (2013).
[CrossRef]

M. P. Hehlen, M. G. Brik, and K. W. Krämer, “50th anniversary of the Judd-Ofelt theory: An experimentalist's view of the formalism and its application,” J. Lumin.136, 221–239 (2013).
[CrossRef]

T. G. V. M. Rao, A. Rupesh Kumar, K. Neeraja, N. Veeraiah, and M. Rami Reddy, “Optical and structural investigation of Eu3+ ions in Nd3+ co-doped magnesium lead borosilicate glasses,” J. Alloy. Comp.557, 209–217 (2013).
[CrossRef]

J. Yang, B. J. Chen, E. Y. B. Pun, B. Zhai, and H. Lin, “Pr3+-doped heavy metal germanium tellurite glasses for irradiative light source in minimally invasive photodynamic therapy surgery,” Opt. Express21(1), 1030–1040 (2013).
[CrossRef] [PubMed]

2012 (4)

B. J. Chen, L. F. Shen, E. Y. B. Pun, and H. Lin, “Sm3+-doped germanate glass channel waveguide as light source for minimally invasive photodynamic therapy surgery,” Opt. Express20(2), 879–889 (2012).
[CrossRef] [PubMed]

K. Linganna and C. K. Jayasankar, “Optical properties of Eu3+ ions in phosphate glasses,” Spectrochim. Acta [A]97, 788–797 (2012).
[CrossRef]

N. Manikandan, A. Ryasnyanskiy, and J. Toulouse, “Thermal and optical properties of TeO2−ZnO−BaO glasses,” J. Non-Cryst. Solids358(5), 947–951 (2012).
[CrossRef]

X. Hu, G. Guery, J. Boerstler, J. D. Musgraves, D. Vanderveer, P. Wachtel, and K. Richardson, “Influence of Bi2O3 content on the crystallization behavior of TeO2−Bi2O3−ZnO glass system,” J. Non-Cryst. Solids358(5), 952–958 (2012).
[CrossRef]

2011 (3)

G. Monteiro, L. F. Santos, J. C. G. Pereira, and R. M. Almeida, “Optical and spectroscopic properties of germanotellurite glasses,” J. Non-Cryst. Solids357(14), 2695–2701 (2011).
[CrossRef]

S. Yano, S. Hirohara, M. Obata, Y. Hagiya, S.- Ogura, A. Ikeda, H. Kataoka, M. Tanaka, and T. Joh, “Current states and future views in photodynamic therapy,” J. Photochem. Photobiol. Chem.12(1), 46–67 (2011).
[CrossRef]

A. M. Babu, B. C. Jamalaiah, T. Suhasini, T. S. Rao, and L. R. Moorthy, “Optical properties of Eu3+ ions in lead tungstate tellurite glasses,” Solid State Sci.13(3), 574–578 (2011).
[CrossRef]

2010 (8)

V. A. G. Rivera, S. P. A. Osorio, Y. Ledemi, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Localized surface plasmon resonance interaction with Er3+-doped tellurite glass,” Opt. Express18(24), 25321–25328 (2010).
[CrossRef] [PubMed]

X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express18(25), 26635–26646 (2010).
[CrossRef] [PubMed]

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev.110(5), 2795–2838 (2010).
[CrossRef] [PubMed]

E. Cavalli, A. Belletti, R. Mahiou, and P. Boutinaud, “Luminescence properties of Ba2NaNb5O15 crystals activated with Sm3+, Eu3+, Tb3+ or Dy3+ ions,” J. Lumin.130(4), 733–736 (2010).
[CrossRef]

M. A. K. Elfayoumi, M. Farouk, M. G. Brik, and M. M. Elokr, “Spectroscopic studies of Sm3+ and Eu3+ co-doped lithium borate glass,” J. Alloy. Comp.492(1-2), 712–716 (2010).
[CrossRef]

A. Wojciechowski, I. V. Kityk, G. Lakshminarayana, I. Fuks-Janczarek, J. Berdowski, E. Berdowska, and Z. Tylczyński, “Laser-induced optical effects in triglycine-zinc chloride single crystals,” Physica B405(13), 2827–2830 (2010).
[CrossRef]

Y. Gandhi, I. V. Kityk, M. G. Brik, P. R. Rao, and N. Veeraiah, “Influence of tungsten on the emission features of Nd3+, Sm3+ and Eu3+ ions in ZnF2−WO3−TeO2 glasses,” J. Alloy. Comp.508(2), 278–291 (2010).
[CrossRef]

V. P. Tuyen, T. Hayakawa, M. Nogami, J. R. Duclère, and P. Thomas, “Fluorescence line narrowing spectroscopy of Eu3+ in zinc-thallium-tellurite glass,” J. Solid State Chem.183(11), 2714–2719 (2010).
[CrossRef]

2009 (2)

C. E. Secu, D. Predoi, M. Secu, M. Cernea, and G. Aldica, “Structural investigations of sol-gel derived silicate gels using Eu3+ ion-probe luminescence,” Opt. Mater.31(11), 1745–1748 (2009).
[CrossRef]

J. Ozdanova, H. Ticha, and L. Tichy, “Optical band gap and Raman spectra in some (Bi2O3)x(WO3)y(TeO2)100−x−y and (PbO)x(WO3)y(TeO2)100−x−y glasses,” J. Non-Cryst. Solids355(45-47), 2318–2322 (2009).
[CrossRef]

2008 (3)

Y. Dwivedi and S. B. Rai, “Optical properties of Eu3+ in oxyfluoroborate glass and its nanocrystalline glass,” Opt. Mater.31(1), 87–93 (2008).
[CrossRef]

D. Uma Maheswari, J. Suresh Kumar, L. R. Moorthy, K. Jang, and M. Jayasimhadri, “Emission properties of Eu3+ ions in alkali tellurofluorophosphate glasses,” Physica B403(10-11), 1690–1694 (2008).
[CrossRef]

A. H. Krumpel, E. V. D. Kolk, P. Dorenbos, P. Boutinaud, E. Cavalli, and M. Bettinelli, “Energy level diagram for lanthanide-doped lanthanum orthovanadate,” Mater. Sci. Eng. B-Adv.146, 114–120 (2008).

2007 (3)

R. Chakrabarti, M. Das, B. Karmakar, K. Annapurna, and S. Buddhudu, “Emission analysis of Eu3+:CaO−La2O3−B2O3 glass,” J. Non-Cryst. Solids353(13-15), 1422–1426 (2007).
[CrossRef]

K. Driesen, V. K. Tikhomirov, and C. Görller-Walrand, “Eu3+ as a probe for rare-earth dopant site structure in nano-glass-ceramics,” J. Appl. Phys.102(2), 024312–024317 (2007).
[CrossRef]

M. Khurana, H. A. Collins, A. Karotki, H. L. Anderson, D. T. Cramb, and B. C. Wilson, “Quantitative in vitro demonstration of two-photon photodynamic therapy using photofrin and visudyne,” Photochem. Photobiol.83(6), 1441–1448 (2007).
[CrossRef] [PubMed]

2006 (3)

A. Ivankov, J. Seekamp, and W. Bauhofer, “Optical properties of Eu3+-doped zinc borate glasses,” J. Lumin.121(1), 123–131 (2006).
[CrossRef]

P. Babilas, E. Kohl, T. Maisch, H. Bäcker, B. Gross, A. L. Branzan, W. Bäumler, M. Landthaler, S. Karrer, and R. M. Szeimies, “In vitro and in vivo comparison of two different light sources for topical photodynamic therapy,” Br. J. Dermatol.154(4), 712–718 (2006).
[PubMed]

A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer6(7), 535–545 (2006).
[CrossRef] [PubMed]

2005 (1)

R. A. Weiss, D. H. McDaniel, R. G. Geronemus, M. A. Weiss, K. L. Beasley, G. M. Munavalli, and S. G. Bellew, “Clinical experience with light-emitting diode (LED) photomodulation,” Dermatol. Surg.31(9 Pt 2), 1199–1205 (2005).
[PubMed]

2004 (2)

T. S. Mang, “Lasers and light sources for PDT: past, present and future,” Photodiagn. Photodyn.1(1), 43–48 (2004).
[CrossRef]

K. K. Mahato, S. B. Rai, and A. Rai, “Optical studies of Eu3+ doped oxyfluoroborate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc.60(4), 979–985 (2004).
[CrossRef] [PubMed]

2003 (2)

C. A. Morton, “Methyl aminolevulinate (Metvix) photodynamic therapy - practical pearls,” J. Dermatolog. Treat.14(Suppl 3), 23–26 (2003).
[PubMed]

D. E. J. G. J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer3(5), 380–387 (2003).
[CrossRef] [PubMed]

2002 (2)

L. Brancaleon and H. Moseley, “Laser and non-laser light sources for photodynamic therapy,” Lasers Med. Sci.17(3), 173–186 (2002).
[CrossRef] [PubMed]

L. Petit, T. Cardinal, J. J. Videau, G. Le Flem, Y. Guyot, G. Boulon, M. Couzi, and T. Buffeteau, “Effect of the introduction of Na2B4O7 on erbium luminescence in tellurite glasses,” J. Non-Cryst. Solids298(1), 76–88 (2002).
[CrossRef]

2001 (2)

I. V. Kityk, J. Wasylak, D. Dorosz, and J. Kucharski, “Eu3+-doped glass materials for red luminescence,” Opt. Laser Technol.33(3), 157–160 (2001).
[CrossRef]

I. V. Kityk, J. Wasylak, D. Dorosz, J. Kucharski, S. Benet, and H. Kaddouri, “PbO−Bi2O3−Ga2O3−BaO glasses doped by Er3+ as novel materials for IR emission,” Opt. Laser Technol.33(7), 511–514 (2001).
[CrossRef]

1998 (1)

V. R. Kumar and N. Veeraiah, “Optical absorption and photoluminescence properties of Eu3+-doped ZnF2−PbO−TeO2 glasses,” J. Mater. Sci.33(10), 2659–2662 (1998).
[CrossRef]

1996 (1)

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem.47(1), 555–606 (1996).
[CrossRef] [PubMed]

1995 (1)

M. Dejneka, E. Snitzer, and R. E. Riman, “Blue, green and red fluorescence and energy transfer of Eu3+ in fluoride glasses,” J. Lumin.65(5), 227–245 (1995).
[CrossRef]

1993 (2)

I. Amato, “Cancer therapy. Hope for a magic bullet that moves at the speed of light,” Science262(5130), 32–33 (1993).
[CrossRef] [PubMed]

Q. Chen, S. D. Shetty, L. Heads, F. Bolin, B. C. Wilson, M. S. Patterson, L. T. Sirls Ii, D. Schultz, J. C. Cerny, and F. W. Hetzel, “Photodynamic therapy in prostate cancer: optical dosimetry and response of normal tissue,” Proc. SPIE1881, 231–235 (1993).
[CrossRef]

1968 (2)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys.49(10), 4412–4423 (1968).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+,” J. Chem. Phys.49(10), 4450–4455 (1968).
[CrossRef]

Aldica, G.

C. E. Secu, D. Predoi, M. Secu, M. Cernea, and G. Aldica, “Structural investigations of sol-gel derived silicate gels using Eu3+ ion-probe luminescence,” Opt. Mater.31(11), 1745–1748 (2009).
[CrossRef]

Almeida, R. M.

G. Monteiro, L. F. Santos, J. C. G. Pereira, and R. M. Almeida, “Optical and spectroscopic properties of germanotellurite glasses,” J. Non-Cryst. Solids357(14), 2695–2701 (2011).
[CrossRef]

Amato, I.

I. Amato, “Cancer therapy. Hope for a magic bullet that moves at the speed of light,” Science262(5130), 32–33 (1993).
[CrossRef] [PubMed]

Anderson, H. L.

M. Khurana, H. A. Collins, A. Karotki, H. L. Anderson, D. T. Cramb, and B. C. Wilson, “Quantitative in vitro demonstration of two-photon photodynamic therapy using photofrin and visudyne,” Photochem. Photobiol.83(6), 1441–1448 (2007).
[CrossRef] [PubMed]

Annapurna, K.

R. Chakrabarti, M. Das, B. Karmakar, K. Annapurna, and S. Buddhudu, “Emission analysis of Eu3+:CaO−La2O3−B2O3 glass,” J. Non-Cryst. Solids353(13-15), 1422–1426 (2007).
[CrossRef]

Babilas, P.

P. Babilas, E. Kohl, T. Maisch, H. Bäcker, B. Gross, A. L. Branzan, W. Bäumler, M. Landthaler, S. Karrer, and R. M. Szeimies, “In vitro and in vivo comparison of two different light sources for topical photodynamic therapy,” Br. J. Dermatol.154(4), 712–718 (2006).
[PubMed]

Babu, A. M.

A. M. Babu, B. C. Jamalaiah, T. Suhasini, T. S. Rao, and L. R. Moorthy, “Optical properties of Eu3+ ions in lead tungstate tellurite glasses,” Solid State Sci.13(3), 574–578 (2011).
[CrossRef]

Bäcker, H.

P. Babilas, E. Kohl, T. Maisch, H. Bäcker, B. Gross, A. L. Branzan, W. Bäumler, M. Landthaler, S. Karrer, and R. M. Szeimies, “In vitro and in vivo comparison of two different light sources for topical photodynamic therapy,” Br. J. Dermatol.154(4), 712–718 (2006).
[PubMed]

Bauhofer, W.

A. Ivankov, J. Seekamp, and W. Bauhofer, “Optical properties of Eu3+-doped zinc borate glasses,” J. Lumin.121(1), 123–131 (2006).
[CrossRef]

Bäumler, W.

P. Babilas, E. Kohl, T. Maisch, H. Bäcker, B. Gross, A. L. Branzan, W. Bäumler, M. Landthaler, S. Karrer, and R. M. Szeimies, “In vitro and in vivo comparison of two different light sources for topical photodynamic therapy,” Br. J. Dermatol.154(4), 712–718 (2006).
[PubMed]

Beasley, K. L.

R. A. Weiss, D. H. McDaniel, R. G. Geronemus, M. A. Weiss, K. L. Beasley, G. M. Munavalli, and S. G. Bellew, “Clinical experience with light-emitting diode (LED) photomodulation,” Dermatol. Surg.31(9 Pt 2), 1199–1205 (2005).
[PubMed]

Belletti, A.

E. Cavalli, A. Belletti, R. Mahiou, and P. Boutinaud, “Luminescence properties of Ba2NaNb5O15 crystals activated with Sm3+, Eu3+, Tb3+ or Dy3+ ions,” J. Lumin.130(4), 733–736 (2010).
[CrossRef]

Bellew, S. G.

R. A. Weiss, D. H. McDaniel, R. G. Geronemus, M. A. Weiss, K. L. Beasley, G. M. Munavalli, and S. G. Bellew, “Clinical experience with light-emitting diode (LED) photomodulation,” Dermatol. Surg.31(9 Pt 2), 1199–1205 (2005).
[PubMed]

Benet, S.

I. V. Kityk, J. Wasylak, D. Dorosz, J. Kucharski, S. Benet, and H. Kaddouri, “PbO−Bi2O3−Ga2O3−BaO glasses doped by Er3+ as novel materials for IR emission,” Opt. Laser Technol.33(7), 511–514 (2001).
[CrossRef]

Berdowska, E.

A. Wojciechowski, I. V. Kityk, G. Lakshminarayana, I. Fuks-Janczarek, J. Berdowski, E. Berdowska, and Z. Tylczyński, “Laser-induced optical effects in triglycine-zinc chloride single crystals,” Physica B405(13), 2827–2830 (2010).
[CrossRef]

Berdowski, J.

A. Wojciechowski, I. V. Kityk, G. Lakshminarayana, I. Fuks-Janczarek, J. Berdowski, E. Berdowska, and Z. Tylczyński, “Laser-induced optical effects in triglycine-zinc chloride single crystals,” Physica B405(13), 2827–2830 (2010).
[CrossRef]

Bettinelli, M.

A. H. Krumpel, E. V. D. Kolk, P. Dorenbos, P. Boutinaud, E. Cavalli, and M. Bettinelli, “Energy level diagram for lanthanide-doped lanthanum orthovanadate,” Mater. Sci. Eng. B-Adv.146, 114–120 (2008).

Boerstler, J.

X. Hu, G. Guery, J. Boerstler, J. D. Musgraves, D. Vanderveer, P. Wachtel, and K. Richardson, “Influence of Bi2O3 content on the crystallization behavior of TeO2−Bi2O3−ZnO glass system,” J. Non-Cryst. Solids358(5), 952–958 (2012).
[CrossRef]

Bolin, F.

Q. Chen, S. D. Shetty, L. Heads, F. Bolin, B. C. Wilson, M. S. Patterson, L. T. Sirls Ii, D. Schultz, J. C. Cerny, and F. W. Hetzel, “Photodynamic therapy in prostate cancer: optical dosimetry and response of normal tissue,” Proc. SPIE1881, 231–235 (1993).
[CrossRef]

Boulon, G.

L. Petit, T. Cardinal, J. J. Videau, G. Le Flem, Y. Guyot, G. Boulon, M. Couzi, and T. Buffeteau, “Effect of the introduction of Na2B4O7 on erbium luminescence in tellurite glasses,” J. Non-Cryst. Solids298(1), 76–88 (2002).
[CrossRef]

Boutinaud, P.

E. Cavalli, A. Belletti, R. Mahiou, and P. Boutinaud, “Luminescence properties of Ba2NaNb5O15 crystals activated with Sm3+, Eu3+, Tb3+ or Dy3+ ions,” J. Lumin.130(4), 733–736 (2010).
[CrossRef]

A. H. Krumpel, E. V. D. Kolk, P. Dorenbos, P. Boutinaud, E. Cavalli, and M. Bettinelli, “Energy level diagram for lanthanide-doped lanthanum orthovanadate,” Mater. Sci. Eng. B-Adv.146, 114–120 (2008).

Brancaleon, L.

L. Brancaleon and H. Moseley, “Laser and non-laser light sources for photodynamic therapy,” Lasers Med. Sci.17(3), 173–186 (2002).
[CrossRef] [PubMed]

Branzan, A. L.

P. Babilas, E. Kohl, T. Maisch, H. Bäcker, B. Gross, A. L. Branzan, W. Bäumler, M. Landthaler, S. Karrer, and R. M. Szeimies, “In vitro and in vivo comparison of two different light sources for topical photodynamic therapy,” Br. J. Dermatol.154(4), 712–718 (2006).
[PubMed]

Brik, M. G.

M. P. Hehlen, M. G. Brik, and K. W. Krämer, “50th anniversary of the Judd-Ofelt theory: An experimentalist's view of the formalism and its application,” J. Lumin.136, 221–239 (2013).
[CrossRef]

Y. Gandhi, I. V. Kityk, M. G. Brik, P. R. Rao, and N. Veeraiah, “Influence of tungsten on the emission features of Nd3+, Sm3+ and Eu3+ ions in ZnF2−WO3−TeO2 glasses,” J. Alloy. Comp.508(2), 278–291 (2010).
[CrossRef]

M. A. K. Elfayoumi, M. Farouk, M. G. Brik, and M. M. Elokr, “Spectroscopic studies of Sm3+ and Eu3+ co-doped lithium borate glass,” J. Alloy. Comp.492(1-2), 712–716 (2010).
[CrossRef]

Buddhudu, S.

R. Chakrabarti, M. Das, B. Karmakar, K. Annapurna, and S. Buddhudu, “Emission analysis of Eu3+:CaO−La2O3−B2O3 glass,” J. Non-Cryst. Solids353(13-15), 1422–1426 (2007).
[CrossRef]

Buffeteau, T.

L. Petit, T. Cardinal, J. J. Videau, G. Le Flem, Y. Guyot, G. Boulon, M. Couzi, and T. Buffeteau, “Effect of the introduction of Na2B4O7 on erbium luminescence in tellurite glasses,” J. Non-Cryst. Solids298(1), 76–88 (2002).
[CrossRef]

Bulla, D.

Caldiño, U.

G. Lakshminarayana, E. M. Weis, A. C. Lira, U. Caldiño, D. J. Williams, and M. P. Hehlen, “Cross relaxation in rare-earth-doped oxyfluoride glasses,” J. Lumin.139, 132–142 (2013).
[CrossRef]

Cardinal, T.

L. Petit, T. Cardinal, J. J. Videau, G. Le Flem, Y. Guyot, G. Boulon, M. Couzi, and T. Buffeteau, “Effect of the introduction of Na2B4O7 on erbium luminescence in tellurite glasses,” J. Non-Cryst. Solids298(1), 76–88 (2002).
[CrossRef]

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys.49(10), 4412–4423 (1968).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+,” J. Chem. Phys.49(10), 4450–4455 (1968).
[CrossRef]

Castano, A. P.

A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer6(7), 535–545 (2006).
[CrossRef] [PubMed]

Cavalli, E.

E. Cavalli, A. Belletti, R. Mahiou, and P. Boutinaud, “Luminescence properties of Ba2NaNb5O15 crystals activated with Sm3+, Eu3+, Tb3+ or Dy3+ ions,” J. Lumin.130(4), 733–736 (2010).
[CrossRef]

A. H. Krumpel, E. V. D. Kolk, P. Dorenbos, P. Boutinaud, E. Cavalli, and M. Bettinelli, “Energy level diagram for lanthanide-doped lanthanum orthovanadate,” Mater. Sci. Eng. B-Adv.146, 114–120 (2008).

Celli, J. P.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev.110(5), 2795–2838 (2010).
[CrossRef] [PubMed]

Cernea, M.

C. E. Secu, D. Predoi, M. Secu, M. Cernea, and G. Aldica, “Structural investigations of sol-gel derived silicate gels using Eu3+ ion-probe luminescence,” Opt. Mater.31(11), 1745–1748 (2009).
[CrossRef]

Cerny, J. C.

Q. Chen, S. D. Shetty, L. Heads, F. Bolin, B. C. Wilson, M. S. Patterson, L. T. Sirls Ii, D. Schultz, J. C. Cerny, and F. W. Hetzel, “Photodynamic therapy in prostate cancer: optical dosimetry and response of normal tissue,” Proc. SPIE1881, 231–235 (1993).
[CrossRef]

Chakrabarti, R.

R. Chakrabarti, M. Das, B. Karmakar, K. Annapurna, and S. Buddhudu, “Emission analysis of Eu3+:CaO−La2O3−B2O3 glass,” J. Non-Cryst. Solids353(13-15), 1422–1426 (2007).
[CrossRef]

Chen, B. J.

Chen, Q.

Q. Chen, S. D. Shetty, L. Heads, F. Bolin, B. C. Wilson, M. S. Patterson, L. T. Sirls Ii, D. Schultz, J. C. Cerny, and F. W. Hetzel, “Photodynamic therapy in prostate cancer: optical dosimetry and response of normal tissue,” Proc. SPIE1881, 231–235 (1993).
[CrossRef]

Choi, D.-Y.

Collins, H. A.

M. Khurana, H. A. Collins, A. Karotki, H. L. Anderson, D. T. Cramb, and B. C. Wilson, “Quantitative in vitro demonstration of two-photon photodynamic therapy using photofrin and visudyne,” Photochem. Photobiol.83(6), 1441–1448 (2007).
[CrossRef] [PubMed]

Couzi, M.

L. Petit, T. Cardinal, J. J. Videau, G. Le Flem, Y. Guyot, G. Boulon, M. Couzi, and T. Buffeteau, “Effect of the introduction of Na2B4O7 on erbium luminescence in tellurite glasses,” J. Non-Cryst. Solids298(1), 76–88 (2002).
[CrossRef]

Cramb, D. T.

M. Khurana, H. A. Collins, A. Karotki, H. L. Anderson, D. T. Cramb, and B. C. Wilson, “Quantitative in vitro demonstration of two-photon photodynamic therapy using photofrin and visudyne,” Photochem. Photobiol.83(6), 1441–1448 (2007).
[CrossRef] [PubMed]

Das, M.

R. Chakrabarti, M. Das, B. Karmakar, K. Annapurna, and S. Buddhudu, “Emission analysis of Eu3+:CaO−La2O3−B2O3 glass,” J. Non-Cryst. Solids353(13-15), 1422–1426 (2007).
[CrossRef]

Dejneka, M.

M. Dejneka, E. Snitzer, and R. E. Riman, “Blue, green and red fluorescence and energy transfer of Eu3+ in fluoride glasses,” J. Lumin.65(5), 227–245 (1995).
[CrossRef]

Dolmans, D. E. J. G. J.

D. E. J. G. J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer3(5), 380–387 (2003).
[CrossRef] [PubMed]

Dorenbos, P.

A. H. Krumpel, E. V. D. Kolk, P. Dorenbos, P. Boutinaud, E. Cavalli, and M. Bettinelli, “Energy level diagram for lanthanide-doped lanthanum orthovanadate,” Mater. Sci. Eng. B-Adv.146, 114–120 (2008).

Dorosz, D.

I. V. Kityk, J. Wasylak, D. Dorosz, J. Kucharski, S. Benet, and H. Kaddouri, “PbO−Bi2O3−Ga2O3−BaO glasses doped by Er3+ as novel materials for IR emission,” Opt. Laser Technol.33(7), 511–514 (2001).
[CrossRef]

I. V. Kityk, J. Wasylak, D. Dorosz, and J. Kucharski, “Eu3+-doped glass materials for red luminescence,” Opt. Laser Technol.33(3), 157–160 (2001).
[CrossRef]

Driesen, K.

K. Driesen, V. K. Tikhomirov, and C. Görller-Walrand, “Eu3+ as a probe for rare-earth dopant site structure in nano-glass-ceramics,” J. Appl. Phys.102(2), 024312–024317 (2007).
[CrossRef]

Duclère, J. R.

V. P. Tuyen, T. Hayakawa, M. Nogami, J. R. Duclère, and P. Thomas, “Fluorescence line narrowing spectroscopy of Eu3+ in zinc-thallium-tellurite glass,” J. Solid State Chem.183(11), 2714–2719 (2010).
[CrossRef]

Dwivedi, Y.

Y. Dwivedi and S. B. Rai, “Optical properties of Eu3+ in oxyfluoroborate glass and its nanocrystalline glass,” Opt. Mater.31(1), 87–93 (2008).
[CrossRef]

Elfayoumi, M. A. K.

M. A. K. Elfayoumi, M. Farouk, M. G. Brik, and M. M. Elokr, “Spectroscopic studies of Sm3+ and Eu3+ co-doped lithium borate glass,” J. Alloy. Comp.492(1-2), 712–716 (2010).
[CrossRef]

Elokr, M. M.

M. A. K. Elfayoumi, M. Farouk, M. G. Brik, and M. M. Elokr, “Spectroscopic studies of Sm3+ and Eu3+ co-doped lithium borate glass,” J. Alloy. Comp.492(1-2), 712–716 (2010).
[CrossRef]

Evans, C. L.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev.110(5), 2795–2838 (2010).
[CrossRef] [PubMed]

Farouk, M.

M. A. K. Elfayoumi, M. Farouk, M. G. Brik, and M. M. Elokr, “Spectroscopic studies of Sm3+ and Eu3+ co-doped lithium borate glass,” J. Alloy. Comp.492(1-2), 712–716 (2010).
[CrossRef]

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+,” J. Chem. Phys.49(10), 4450–4455 (1968).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys.49(10), 4412–4423 (1968).
[CrossRef]

Fuks-Janczarek, I.

A. Wojciechowski, I. V. Kityk, G. Lakshminarayana, I. Fuks-Janczarek, J. Berdowski, E. Berdowska, and Z. Tylczyński, “Laser-induced optical effects in triglycine-zinc chloride single crystals,” Physica B405(13), 2827–2830 (2010).
[CrossRef]

Fukumura, D.

D. E. J. G. J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer3(5), 380–387 (2003).
[CrossRef] [PubMed]

Gai, X.

Gandhi, Y.

Y. Gandhi, I. V. Kityk, M. G. Brik, P. R. Rao, and N. Veeraiah, “Influence of tungsten on the emission features of Nd3+, Sm3+ and Eu3+ ions in ZnF2−WO3−TeO2 glasses,” J. Alloy. Comp.508(2), 278–291 (2010).
[CrossRef]

Geronemus, R. G.

R. A. Weiss, D. H. McDaniel, R. G. Geronemus, M. A. Weiss, K. L. Beasley, G. M. Munavalli, and S. G. Bellew, “Clinical experience with light-emitting diode (LED) photomodulation,” Dermatol. Surg.31(9 Pt 2), 1199–1205 (2005).
[PubMed]

Görller-Walrand, C.

K. Driesen, V. K. Tikhomirov, and C. Görller-Walrand, “Eu3+ as a probe for rare-earth dopant site structure in nano-glass-ceramics,” J. Appl. Phys.102(2), 024312–024317 (2007).
[CrossRef]

Gross, B.

P. Babilas, E. Kohl, T. Maisch, H. Bäcker, B. Gross, A. L. Branzan, W. Bäumler, M. Landthaler, S. Karrer, and R. M. Szeimies, “In vitro and in vivo comparison of two different light sources for topical photodynamic therapy,” Br. J. Dermatol.154(4), 712–718 (2006).
[PubMed]

Guery, G.

X. Hu, G. Guery, J. Boerstler, J. D. Musgraves, D. Vanderveer, P. Wachtel, and K. Richardson, “Influence of Bi2O3 content on the crystallization behavior of TeO2−Bi2O3−ZnO glass system,” J. Non-Cryst. Solids358(5), 952–958 (2012).
[CrossRef]

Guyot, Y.

L. Petit, T. Cardinal, J. J. Videau, G. Le Flem, Y. Guyot, G. Boulon, M. Couzi, and T. Buffeteau, “Effect of the introduction of Na2B4O7 on erbium luminescence in tellurite glasses,” J. Non-Cryst. Solids298(1), 76–88 (2002).
[CrossRef]

Hagiya, Y.

S. Yano, S. Hirohara, M. Obata, Y. Hagiya, S.- Ogura, A. Ikeda, H. Kataoka, M. Tanaka, and T. Joh, “Current states and future views in photodynamic therapy,” J. Photochem. Photobiol. Chem.12(1), 46–67 (2011).
[CrossRef]

Hamblin, M. R.

A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer6(7), 535–545 (2006).
[CrossRef] [PubMed]

Han, T.

Hasan, T.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev.110(5), 2795–2838 (2010).
[CrossRef] [PubMed]

Hayakawa, T.

V. P. Tuyen, T. Hayakawa, M. Nogami, J. R. Duclère, and P. Thomas, “Fluorescence line narrowing spectroscopy of Eu3+ in zinc-thallium-tellurite glass,” J. Solid State Chem.183(11), 2714–2719 (2010).
[CrossRef]

Heads, L.

Q. Chen, S. D. Shetty, L. Heads, F. Bolin, B. C. Wilson, M. S. Patterson, L. T. Sirls Ii, D. Schultz, J. C. Cerny, and F. W. Hetzel, “Photodynamic therapy in prostate cancer: optical dosimetry and response of normal tissue,” Proc. SPIE1881, 231–235 (1993).
[CrossRef]

Hehlen, M. P.

G. Lakshminarayana, E. M. Weis, A. C. Lira, U. Caldiño, D. J. Williams, and M. P. Hehlen, “Cross relaxation in rare-earth-doped oxyfluoride glasses,” J. Lumin.139, 132–142 (2013).
[CrossRef]

M. P. Hehlen, M. G. Brik, and K. W. Krämer, “50th anniversary of the Judd-Ofelt theory: An experimentalist's view of the formalism and its application,” J. Lumin.136, 221–239 (2013).
[CrossRef]

Hetzel, F. W.

Q. Chen, S. D. Shetty, L. Heads, F. Bolin, B. C. Wilson, M. S. Patterson, L. T. Sirls Ii, D. Schultz, J. C. Cerny, and F. W. Hetzel, “Photodynamic therapy in prostate cancer: optical dosimetry and response of normal tissue,” Proc. SPIE1881, 231–235 (1993).
[CrossRef]

Hirohara, S.

S. Yano, S. Hirohara, M. Obata, Y. Hagiya, S.- Ogura, A. Ikeda, H. Kataoka, M. Tanaka, and T. Joh, “Current states and future views in photodynamic therapy,” J. Photochem. Photobiol. Chem.12(1), 46–67 (2011).
[CrossRef]

Hu, X.

X. Hu, G. Guery, J. Boerstler, J. D. Musgraves, D. Vanderveer, P. Wachtel, and K. Richardson, “Influence of Bi2O3 content on the crystallization behavior of TeO2−Bi2O3−ZnO glass system,” J. Non-Cryst. Solids358(5), 952–958 (2012).
[CrossRef]

Ikeda, A.

S. Yano, S. Hirohara, M. Obata, Y. Hagiya, S.- Ogura, A. Ikeda, H. Kataoka, M. Tanaka, and T. Joh, “Current states and future views in photodynamic therapy,” J. Photochem. Photobiol. Chem.12(1), 46–67 (2011).
[CrossRef]

Ivankov, A.

A. Ivankov, J. Seekamp, and W. Bauhofer, “Optical properties of Eu3+-doped zinc borate glasses,” J. Lumin.121(1), 123–131 (2006).
[CrossRef]

Jain, R. K.

D. E. J. G. J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer3(5), 380–387 (2003).
[CrossRef] [PubMed]

Jamalaiah, B. C.

A. M. Babu, B. C. Jamalaiah, T. Suhasini, T. S. Rao, and L. R. Moorthy, “Optical properties of Eu3+ ions in lead tungstate tellurite glasses,” Solid State Sci.13(3), 574–578 (2011).
[CrossRef]

Jang, K.

D. Uma Maheswari, J. Suresh Kumar, L. R. Moorthy, K. Jang, and M. Jayasimhadri, “Emission properties of Eu3+ ions in alkali tellurofluorophosphate glasses,” Physica B403(10-11), 1690–1694 (2008).
[CrossRef]

Jayasankar, C. K.

K. Linganna and C. K. Jayasankar, “Optical properties of Eu3+ ions in phosphate glasses,” Spectrochim. Acta [A]97, 788–797 (2012).
[CrossRef]

Jayasimhadri, M.

D. Uma Maheswari, J. Suresh Kumar, L. R. Moorthy, K. Jang, and M. Jayasimhadri, “Emission properties of Eu3+ ions in alkali tellurofluorophosphate glasses,” Physica B403(10-11), 1690–1694 (2008).
[CrossRef]

Joh, T.

S. Yano, S. Hirohara, M. Obata, Y. Hagiya, S.- Ogura, A. Ikeda, H. Kataoka, M. Tanaka, and T. Joh, “Current states and future views in photodynamic therapy,” J. Photochem. Photobiol. Chem.12(1), 46–67 (2011).
[CrossRef]

Kaddouri, H.

I. V. Kityk, J. Wasylak, D. Dorosz, J. Kucharski, S. Benet, and H. Kaddouri, “PbO−Bi2O3−Ga2O3−BaO glasses doped by Er3+ as novel materials for IR emission,” Opt. Laser Technol.33(7), 511–514 (2001).
[CrossRef]

Karmakar, B.

R. Chakrabarti, M. Das, B. Karmakar, K. Annapurna, and S. Buddhudu, “Emission analysis of Eu3+:CaO−La2O3−B2O3 glass,” J. Non-Cryst. Solids353(13-15), 1422–1426 (2007).
[CrossRef]

Karotki, A.

M. Khurana, H. A. Collins, A. Karotki, H. L. Anderson, D. T. Cramb, and B. C. Wilson, “Quantitative in vitro demonstration of two-photon photodynamic therapy using photofrin and visudyne,” Photochem. Photobiol.83(6), 1441–1448 (2007).
[CrossRef] [PubMed]

Karrer, S.

P. Babilas, E. Kohl, T. Maisch, H. Bäcker, B. Gross, A. L. Branzan, W. Bäumler, M. Landthaler, S. Karrer, and R. M. Szeimies, “In vitro and in vivo comparison of two different light sources for topical photodynamic therapy,” Br. J. Dermatol.154(4), 712–718 (2006).
[PubMed]

Kataoka, H.

S. Yano, S. Hirohara, M. Obata, Y. Hagiya, S.- Ogura, A. Ikeda, H. Kataoka, M. Tanaka, and T. Joh, “Current states and future views in photodynamic therapy,” J. Photochem. Photobiol. Chem.12(1), 46–67 (2011).
[CrossRef]

Khurana, M.

M. Khurana, H. A. Collins, A. Karotki, H. L. Anderson, D. T. Cramb, and B. C. Wilson, “Quantitative in vitro demonstration of two-photon photodynamic therapy using photofrin and visudyne,” Photochem. Photobiol.83(6), 1441–1448 (2007).
[CrossRef] [PubMed]

Kityk, I. V.

Y. Gandhi, I. V. Kityk, M. G. Brik, P. R. Rao, and N. Veeraiah, “Influence of tungsten on the emission features of Nd3+, Sm3+ and Eu3+ ions in ZnF2−WO3−TeO2 glasses,” J. Alloy. Comp.508(2), 278–291 (2010).
[CrossRef]

A. Wojciechowski, I. V. Kityk, G. Lakshminarayana, I. Fuks-Janczarek, J. Berdowski, E. Berdowska, and Z. Tylczyński, “Laser-induced optical effects in triglycine-zinc chloride single crystals,” Physica B405(13), 2827–2830 (2010).
[CrossRef]

I. V. Kityk, J. Wasylak, D. Dorosz, and J. Kucharski, “Eu3+-doped glass materials for red luminescence,” Opt. Laser Technol.33(3), 157–160 (2001).
[CrossRef]

I. V. Kityk, J. Wasylak, D. Dorosz, J. Kucharski, S. Benet, and H. Kaddouri, “PbO−Bi2O3−Ga2O3−BaO glasses doped by Er3+ as novel materials for IR emission,” Opt. Laser Technol.33(7), 511–514 (2001).
[CrossRef]

Kohl, E.

P. Babilas, E. Kohl, T. Maisch, H. Bäcker, B. Gross, A. L. Branzan, W. Bäumler, M. Landthaler, S. Karrer, and R. M. Szeimies, “In vitro and in vivo comparison of two different light sources for topical photodynamic therapy,” Br. J. Dermatol.154(4), 712–718 (2006).
[PubMed]

Kolk, E. V. D.

A. H. Krumpel, E. V. D. Kolk, P. Dorenbos, P. Boutinaud, E. Cavalli, and M. Bettinelli, “Energy level diagram for lanthanide-doped lanthanum orthovanadate,” Mater. Sci. Eng. B-Adv.146, 114–120 (2008).

Krämer, K. W.

M. P. Hehlen, M. G. Brik, and K. W. Krämer, “50th anniversary of the Judd-Ofelt theory: An experimentalist's view of the formalism and its application,” J. Lumin.136, 221–239 (2013).
[CrossRef]

Krumpel, A. H.

A. H. Krumpel, E. V. D. Kolk, P. Dorenbos, P. Boutinaud, E. Cavalli, and M. Bettinelli, “Energy level diagram for lanthanide-doped lanthanum orthovanadate,” Mater. Sci. Eng. B-Adv.146, 114–120 (2008).

Kucharski, J.

I. V. Kityk, J. Wasylak, D. Dorosz, J. Kucharski, S. Benet, and H. Kaddouri, “PbO−Bi2O3−Ga2O3−BaO glasses doped by Er3+ as novel materials for IR emission,” Opt. Laser Technol.33(7), 511–514 (2001).
[CrossRef]

I. V. Kityk, J. Wasylak, D. Dorosz, and J. Kucharski, “Eu3+-doped glass materials for red luminescence,” Opt. Laser Technol.33(3), 157–160 (2001).
[CrossRef]

Kumar, V. R.

V. R. Kumar and N. Veeraiah, “Optical absorption and photoluminescence properties of Eu3+-doped ZnF2−PbO−TeO2 glasses,” J. Mater. Sci.33(10), 2659–2662 (1998).
[CrossRef]

Lakshminarayana, G.

G. Lakshminarayana, E. M. Weis, A. C. Lira, U. Caldiño, D. J. Williams, and M. P. Hehlen, “Cross relaxation in rare-earth-doped oxyfluoride glasses,” J. Lumin.139, 132–142 (2013).
[CrossRef]

A. Wojciechowski, I. V. Kityk, G. Lakshminarayana, I. Fuks-Janczarek, J. Berdowski, E. Berdowska, and Z. Tylczyński, “Laser-induced optical effects in triglycine-zinc chloride single crystals,” Physica B405(13), 2827–2830 (2010).
[CrossRef]

Landthaler, M.

P. Babilas, E. Kohl, T. Maisch, H. Bäcker, B. Gross, A. L. Branzan, W. Bäumler, M. Landthaler, S. Karrer, and R. M. Szeimies, “In vitro and in vivo comparison of two different light sources for topical photodynamic therapy,” Br. J. Dermatol.154(4), 712–718 (2006).
[PubMed]

Le Flem, G.

L. Petit, T. Cardinal, J. J. Videau, G. Le Flem, Y. Guyot, G. Boulon, M. Couzi, and T. Buffeteau, “Effect of the introduction of Na2B4O7 on erbium luminescence in tellurite glasses,” J. Non-Cryst. Solids298(1), 76–88 (2002).
[CrossRef]

Ledemi, Y.

Lin, H.

Linganna, K.

K. Linganna and C. K. Jayasankar, “Optical properties of Eu3+ ions in phosphate glasses,” Spectrochim. Acta [A]97, 788–797 (2012).
[CrossRef]

Lira, A. C.

G. Lakshminarayana, E. M. Weis, A. C. Lira, U. Caldiño, D. J. Williams, and M. P. Hehlen, “Cross relaxation in rare-earth-doped oxyfluoride glasses,” J. Lumin.139, 132–142 (2013).
[CrossRef]

Luther-Davies, B.

Madden, S.

Mahato, K. K.

K. K. Mahato, S. B. Rai, and A. Rai, “Optical studies of Eu3+ doped oxyfluoroborate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc.60(4), 979–985 (2004).
[CrossRef] [PubMed]

Mahiou, R.

E. Cavalli, A. Belletti, R. Mahiou, and P. Boutinaud, “Luminescence properties of Ba2NaNb5O15 crystals activated with Sm3+, Eu3+, Tb3+ or Dy3+ ions,” J. Lumin.130(4), 733–736 (2010).
[CrossRef]

Maisch, T.

P. Babilas, E. Kohl, T. Maisch, H. Bäcker, B. Gross, A. L. Branzan, W. Bäumler, M. Landthaler, S. Karrer, and R. M. Szeimies, “In vitro and in vivo comparison of two different light sources for topical photodynamic therapy,” Br. J. Dermatol.154(4), 712–718 (2006).
[PubMed]

Mang, T. S.

T. S. Mang, “Lasers and light sources for PDT: past, present and future,” Photodiagn. Photodyn.1(1), 43–48 (2004).
[CrossRef]

Manikandan, N.

N. Manikandan, A. Ryasnyanskiy, and J. Toulouse, “Thermal and optical properties of TeO2−ZnO−BaO glasses,” J. Non-Cryst. Solids358(5), 947–951 (2012).
[CrossRef]

Manzani, D.

Marega, E.

McDaniel, D. H.

R. A. Weiss, D. H. McDaniel, R. G. Geronemus, M. A. Weiss, K. L. Beasley, G. M. Munavalli, and S. G. Bellew, “Clinical experience with light-emitting diode (LED) photomodulation,” Dermatol. Surg.31(9 Pt 2), 1199–1205 (2005).
[PubMed]

Messaddeq, Y.

Monteiro, G.

G. Monteiro, L. F. Santos, J. C. G. Pereira, and R. M. Almeida, “Optical and spectroscopic properties of germanotellurite glasses,” J. Non-Cryst. Solids357(14), 2695–2701 (2011).
[CrossRef]

Moorthy, L. R.

A. M. Babu, B. C. Jamalaiah, T. Suhasini, T. S. Rao, and L. R. Moorthy, “Optical properties of Eu3+ ions in lead tungstate tellurite glasses,” Solid State Sci.13(3), 574–578 (2011).
[CrossRef]

D. Uma Maheswari, J. Suresh Kumar, L. R. Moorthy, K. Jang, and M. Jayasimhadri, “Emission properties of Eu3+ ions in alkali tellurofluorophosphate glasses,” Physica B403(10-11), 1690–1694 (2008).
[CrossRef]

Morton, C. A.

C. A. Morton, “Methyl aminolevulinate (Metvix) photodynamic therapy - practical pearls,” J. Dermatolog. Treat.14(Suppl 3), 23–26 (2003).
[PubMed]

Moseley, H.

L. Brancaleon and H. Moseley, “Laser and non-laser light sources for photodynamic therapy,” Lasers Med. Sci.17(3), 173–186 (2002).
[CrossRef] [PubMed]

Mroz, P.

A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer6(7), 535–545 (2006).
[CrossRef] [PubMed]

Munavalli, G. M.

R. A. Weiss, D. H. McDaniel, R. G. Geronemus, M. A. Weiss, K. L. Beasley, G. M. Munavalli, and S. G. Bellew, “Clinical experience with light-emitting diode (LED) photomodulation,” Dermatol. Surg.31(9 Pt 2), 1199–1205 (2005).
[PubMed]

Musgraves, J. D.

X. Hu, G. Guery, J. Boerstler, J. D. Musgraves, D. Vanderveer, P. Wachtel, and K. Richardson, “Influence of Bi2O3 content on the crystallization behavior of TeO2−Bi2O3−ZnO glass system,” J. Non-Cryst. Solids358(5), 952–958 (2012).
[CrossRef]

Neeraja, K.

T. G. V. M. Rao, A. Rupesh Kumar, K. Neeraja, N. Veeraiah, and M. Rami Reddy, “Optical and structural investigation of Eu3+ ions in Nd3+ co-doped magnesium lead borosilicate glasses,” J. Alloy. Comp.557, 209–217 (2013).
[CrossRef]

Negrea, R. F.

C. E. Secu, R. F. Negrea, and M. Secu, “Eu3+ probe ion for rare-earth dopant site structure in sol-gel derived LiYF4 oxyfluoride glass-ceramic,” Opt. Mater.35(12), 2456–2460 (2013).
[CrossRef]

Nogami, M.

V. P. Tuyen, T. Hayakawa, M. Nogami, J. R. Duclère, and P. Thomas, “Fluorescence line narrowing spectroscopy of Eu3+ in zinc-thallium-tellurite glass,” J. Solid State Chem.183(11), 2714–2719 (2010).
[CrossRef]

Nunes, L. A. O.

Obata, M.

S. Yano, S. Hirohara, M. Obata, Y. Hagiya, S.- Ogura, A. Ikeda, H. Kataoka, M. Tanaka, and T. Joh, “Current states and future views in photodynamic therapy,” J. Photochem. Photobiol. Chem.12(1), 46–67 (2011).
[CrossRef]

Ogura, S.-

S. Yano, S. Hirohara, M. Obata, Y. Hagiya, S.- Ogura, A. Ikeda, H. Kataoka, M. Tanaka, and T. Joh, “Current states and future views in photodynamic therapy,” J. Photochem. Photobiol. Chem.12(1), 46–67 (2011).
[CrossRef]

Osorio, S. P. A.

Ozdanova, J.

J. Ozdanova, H. Ticha, and L. Tichy, “Optical band gap and Raman spectra in some (Bi2O3)x(WO3)y(TeO2)100−x−y and (PbO)x(WO3)y(TeO2)100−x−y glasses,” J. Non-Cryst. Solids355(45-47), 2318–2322 (2009).
[CrossRef]

Patterson, M. S.

Q. Chen, S. D. Shetty, L. Heads, F. Bolin, B. C. Wilson, M. S. Patterson, L. T. Sirls Ii, D. Schultz, J. C. Cerny, and F. W. Hetzel, “Photodynamic therapy in prostate cancer: optical dosimetry and response of normal tissue,” Proc. SPIE1881, 231–235 (1993).
[CrossRef]

Pereira, J. C. G.

G. Monteiro, L. F. Santos, J. C. G. Pereira, and R. M. Almeida, “Optical and spectroscopic properties of germanotellurite glasses,” J. Non-Cryst. Solids357(14), 2695–2701 (2011).
[CrossRef]

Petit, L.

L. Petit, T. Cardinal, J. J. Videau, G. Le Flem, Y. Guyot, G. Boulon, M. Couzi, and T. Buffeteau, “Effect of the introduction of Na2B4O7 on erbium luminescence in tellurite glasses,” J. Non-Cryst. Solids298(1), 76–88 (2002).
[CrossRef]

Pogue, B. W.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev.110(5), 2795–2838 (2010).
[CrossRef] [PubMed]

Prasad, A.

Predoi, D.

C. E. Secu, D. Predoi, M. Secu, M. Cernea, and G. Aldica, “Structural investigations of sol-gel derived silicate gels using Eu3+ ion-probe luminescence,” Opt. Mater.31(11), 1745–1748 (2009).
[CrossRef]

Pun, E. Y. B.

Rai, A.

K. K. Mahato, S. B. Rai, and A. Rai, “Optical studies of Eu3+ doped oxyfluoroborate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc.60(4), 979–985 (2004).
[CrossRef] [PubMed]

Rai, S. B.

Y. Dwivedi and S. B. Rai, “Optical properties of Eu3+ in oxyfluoroborate glass and its nanocrystalline glass,” Opt. Mater.31(1), 87–93 (2008).
[CrossRef]

K. K. Mahato, S. B. Rai, and A. Rai, “Optical studies of Eu3+ doped oxyfluoroborate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc.60(4), 979–985 (2004).
[CrossRef] [PubMed]

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+,” J. Chem. Phys.49(10), 4450–4455 (1968).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys.49(10), 4412–4423 (1968).
[CrossRef]

Rami Reddy, M.

T. G. V. M. Rao, A. Rupesh Kumar, K. Neeraja, N. Veeraiah, and M. Rami Reddy, “Optical and structural investigation of Eu3+ ions in Nd3+ co-doped magnesium lead borosilicate glasses,” J. Alloy. Comp.557, 209–217 (2013).
[CrossRef]

Rao, P. R.

Y. Gandhi, I. V. Kityk, M. G. Brik, P. R. Rao, and N. Veeraiah, “Influence of tungsten on the emission features of Nd3+, Sm3+ and Eu3+ ions in ZnF2−WO3−TeO2 glasses,” J. Alloy. Comp.508(2), 278–291 (2010).
[CrossRef]

Rao, T. G. V. M.

T. G. V. M. Rao, A. Rupesh Kumar, K. Neeraja, N. Veeraiah, and M. Rami Reddy, “Optical and structural investigation of Eu3+ ions in Nd3+ co-doped magnesium lead borosilicate glasses,” J. Alloy. Comp.557, 209–217 (2013).
[CrossRef]

Rao, T. S.

A. M. Babu, B. C. Jamalaiah, T. Suhasini, T. S. Rao, and L. R. Moorthy, “Optical properties of Eu3+ ions in lead tungstate tellurite glasses,” Solid State Sci.13(3), 574–578 (2011).
[CrossRef]

Richards-Kortum, R.

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem.47(1), 555–606 (1996).
[CrossRef] [PubMed]

Richardson, K.

X. Hu, G. Guery, J. Boerstler, J. D. Musgraves, D. Vanderveer, P. Wachtel, and K. Richardson, “Influence of Bi2O3 content on the crystallization behavior of TeO2−Bi2O3−ZnO glass system,” J. Non-Cryst. Solids358(5), 952–958 (2012).
[CrossRef]

Riman, R. E.

M. Dejneka, E. Snitzer, and R. E. Riman, “Blue, green and red fluorescence and energy transfer of Eu3+ in fluoride glasses,” J. Lumin.65(5), 227–245 (1995).
[CrossRef]

Rivera, V. A. G.

Rizvi, I.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev.110(5), 2795–2838 (2010).
[CrossRef] [PubMed]

Rupesh Kumar, A.

T. G. V. M. Rao, A. Rupesh Kumar, K. Neeraja, N. Veeraiah, and M. Rami Reddy, “Optical and structural investigation of Eu3+ ions in Nd3+ co-doped magnesium lead borosilicate glasses,” J. Alloy. Comp.557, 209–217 (2013).
[CrossRef]

Ryasnyanskiy, A.

N. Manikandan, A. Ryasnyanskiy, and J. Toulouse, “Thermal and optical properties of TeO2−ZnO−BaO glasses,” J. Non-Cryst. Solids358(5), 947–951 (2012).
[CrossRef]

Samkoe, K. S.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev.110(5), 2795–2838 (2010).
[CrossRef] [PubMed]

Santos, L. F.

G. Monteiro, L. F. Santos, J. C. G. Pereira, and R. M. Almeida, “Optical and spectroscopic properties of germanotellurite glasses,” J. Non-Cryst. Solids357(14), 2695–2701 (2011).
[CrossRef]

Schultz, D.

Q. Chen, S. D. Shetty, L. Heads, F. Bolin, B. C. Wilson, M. S. Patterson, L. T. Sirls Ii, D. Schultz, J. C. Cerny, and F. W. Hetzel, “Photodynamic therapy in prostate cancer: optical dosimetry and response of normal tissue,” Proc. SPIE1881, 231–235 (1993).
[CrossRef]

Secu, C. E.

C. E. Secu, R. F. Negrea, and M. Secu, “Eu3+ probe ion for rare-earth dopant site structure in sol-gel derived LiYF4 oxyfluoride glass-ceramic,” Opt. Mater.35(12), 2456–2460 (2013).
[CrossRef]

C. E. Secu, D. Predoi, M. Secu, M. Cernea, and G. Aldica, “Structural investigations of sol-gel derived silicate gels using Eu3+ ion-probe luminescence,” Opt. Mater.31(11), 1745–1748 (2009).
[CrossRef]

Secu, M.

C. E. Secu, R. F. Negrea, and M. Secu, “Eu3+ probe ion for rare-earth dopant site structure in sol-gel derived LiYF4 oxyfluoride glass-ceramic,” Opt. Mater.35(12), 2456–2460 (2013).
[CrossRef]

C. E. Secu, D. Predoi, M. Secu, M. Cernea, and G. Aldica, “Structural investigations of sol-gel derived silicate gels using Eu3+ ion-probe luminescence,” Opt. Mater.31(11), 1745–1748 (2009).
[CrossRef]

Seekamp, J.

A. Ivankov, J. Seekamp, and W. Bauhofer, “Optical properties of Eu3+-doped zinc borate glasses,” J. Lumin.121(1), 123–131 (2006).
[CrossRef]

Sevick-Muraca, E.

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem.47(1), 555–606 (1996).
[CrossRef] [PubMed]

Shen, L. F.

Shetty, S. D.

Q. Chen, S. D. Shetty, L. Heads, F. Bolin, B. C. Wilson, M. S. Patterson, L. T. Sirls Ii, D. Schultz, J. C. Cerny, and F. W. Hetzel, “Photodynamic therapy in prostate cancer: optical dosimetry and response of normal tissue,” Proc. SPIE1881, 231–235 (1993).
[CrossRef]

Sirls Ii, L. T.

Q. Chen, S. D. Shetty, L. Heads, F. Bolin, B. C. Wilson, M. S. Patterson, L. T. Sirls Ii, D. Schultz, J. C. Cerny, and F. W. Hetzel, “Photodynamic therapy in prostate cancer: optical dosimetry and response of normal tissue,” Proc. SPIE1881, 231–235 (1993).
[CrossRef]

Snitzer, E.

M. Dejneka, E. Snitzer, and R. E. Riman, “Blue, green and red fluorescence and energy transfer of Eu3+ in fluoride glasses,” J. Lumin.65(5), 227–245 (1995).
[CrossRef]

Spring, B. Q.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev.110(5), 2795–2838 (2010).
[CrossRef] [PubMed]

Suhasini, T.

A. M. Babu, B. C. Jamalaiah, T. Suhasini, T. S. Rao, and L. R. Moorthy, “Optical properties of Eu3+ ions in lead tungstate tellurite glasses,” Solid State Sci.13(3), 574–578 (2011).
[CrossRef]

Suresh Kumar, J.

D. Uma Maheswari, J. Suresh Kumar, L. R. Moorthy, K. Jang, and M. Jayasimhadri, “Emission properties of Eu3+ ions in alkali tellurofluorophosphate glasses,” Physica B403(10-11), 1690–1694 (2008).
[CrossRef]

Szeimies, R. M.

P. Babilas, E. Kohl, T. Maisch, H. Bäcker, B. Gross, A. L. Branzan, W. Bäumler, M. Landthaler, S. Karrer, and R. M. Szeimies, “In vitro and in vivo comparison of two different light sources for topical photodynamic therapy,” Br. J. Dermatol.154(4), 712–718 (2006).
[PubMed]

Tanaka, M.

S. Yano, S. Hirohara, M. Obata, Y. Hagiya, S.- Ogura, A. Ikeda, H. Kataoka, M. Tanaka, and T. Joh, “Current states and future views in photodynamic therapy,” J. Photochem. Photobiol. Chem.12(1), 46–67 (2011).
[CrossRef]

Thomas, P.

V. P. Tuyen, T. Hayakawa, M. Nogami, J. R. Duclère, and P. Thomas, “Fluorescence line narrowing spectroscopy of Eu3+ in zinc-thallium-tellurite glass,” J. Solid State Chem.183(11), 2714–2719 (2010).
[CrossRef]

Ticha, H.

J. Ozdanova, H. Ticha, and L. Tichy, “Optical band gap and Raman spectra in some (Bi2O3)x(WO3)y(TeO2)100−x−y and (PbO)x(WO3)y(TeO2)100−x−y glasses,” J. Non-Cryst. Solids355(45-47), 2318–2322 (2009).
[CrossRef]

Tichy, L.

J. Ozdanova, H. Ticha, and L. Tichy, “Optical band gap and Raman spectra in some (Bi2O3)x(WO3)y(TeO2)100−x−y and (PbO)x(WO3)y(TeO2)100−x−y glasses,” J. Non-Cryst. Solids355(45-47), 2318–2322 (2009).
[CrossRef]

Tikhomirov, V. K.

K. Driesen, V. K. Tikhomirov, and C. Görller-Walrand, “Eu3+ as a probe for rare-earth dopant site structure in nano-glass-ceramics,” J. Appl. Phys.102(2), 024312–024317 (2007).
[CrossRef]

Toulouse, J.

N. Manikandan, A. Ryasnyanskiy, and J. Toulouse, “Thermal and optical properties of TeO2−ZnO−BaO glasses,” J. Non-Cryst. Solids358(5), 947–951 (2012).
[CrossRef]

Tuyen, V. P.

V. P. Tuyen, T. Hayakawa, M. Nogami, J. R. Duclère, and P. Thomas, “Fluorescence line narrowing spectroscopy of Eu3+ in zinc-thallium-tellurite glass,” J. Solid State Chem.183(11), 2714–2719 (2010).
[CrossRef]

Tylczynski, Z.

A. Wojciechowski, I. V. Kityk, G. Lakshminarayana, I. Fuks-Janczarek, J. Berdowski, E. Berdowska, and Z. Tylczyński, “Laser-induced optical effects in triglycine-zinc chloride single crystals,” Physica B405(13), 2827–2830 (2010).
[CrossRef]

Uma Maheswari, D.

D. Uma Maheswari, J. Suresh Kumar, L. R. Moorthy, K. Jang, and M. Jayasimhadri, “Emission properties of Eu3+ ions in alkali tellurofluorophosphate glasses,” Physica B403(10-11), 1690–1694 (2008).
[CrossRef]

Vanderveer, D.

X. Hu, G. Guery, J. Boerstler, J. D. Musgraves, D. Vanderveer, P. Wachtel, and K. Richardson, “Influence of Bi2O3 content on the crystallization behavior of TeO2−Bi2O3−ZnO glass system,” J. Non-Cryst. Solids358(5), 952–958 (2012).
[CrossRef]

Veeraiah, N.

T. G. V. M. Rao, A. Rupesh Kumar, K. Neeraja, N. Veeraiah, and M. Rami Reddy, “Optical and structural investigation of Eu3+ ions in Nd3+ co-doped magnesium lead borosilicate glasses,” J. Alloy. Comp.557, 209–217 (2013).
[CrossRef]

Y. Gandhi, I. V. Kityk, M. G. Brik, P. R. Rao, and N. Veeraiah, “Influence of tungsten on the emission features of Nd3+, Sm3+ and Eu3+ ions in ZnF2−WO3−TeO2 glasses,” J. Alloy. Comp.508(2), 278–291 (2010).
[CrossRef]

V. R. Kumar and N. Veeraiah, “Optical absorption and photoluminescence properties of Eu3+-doped ZnF2−PbO−TeO2 glasses,” J. Mater. Sci.33(10), 2659–2662 (1998).
[CrossRef]

Verma, S.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev.110(5), 2795–2838 (2010).
[CrossRef] [PubMed]

Videau, J. J.

L. Petit, T. Cardinal, J. J. Videau, G. Le Flem, Y. Guyot, G. Boulon, M. Couzi, and T. Buffeteau, “Effect of the introduction of Na2B4O7 on erbium luminescence in tellurite glasses,” J. Non-Cryst. Solids298(1), 76–88 (2002).
[CrossRef]

Wachtel, P.

X. Hu, G. Guery, J. Boerstler, J. D. Musgraves, D. Vanderveer, P. Wachtel, and K. Richardson, “Influence of Bi2O3 content on the crystallization behavior of TeO2−Bi2O3−ZnO glass system,” J. Non-Cryst. Solids358(5), 952–958 (2012).
[CrossRef]

Wang, R.

Wasylak, J.

I. V. Kityk, J. Wasylak, D. Dorosz, J. Kucharski, S. Benet, and H. Kaddouri, “PbO−Bi2O3−Ga2O3−BaO glasses doped by Er3+ as novel materials for IR emission,” Opt. Laser Technol.33(7), 511–514 (2001).
[CrossRef]

I. V. Kityk, J. Wasylak, D. Dorosz, and J. Kucharski, “Eu3+-doped glass materials for red luminescence,” Opt. Laser Technol.33(3), 157–160 (2001).
[CrossRef]

Weis, E. M.

G. Lakshminarayana, E. M. Weis, A. C. Lira, U. Caldiño, D. J. Williams, and M. P. Hehlen, “Cross relaxation in rare-earth-doped oxyfluoride glasses,” J. Lumin.139, 132–142 (2013).
[CrossRef]

Weiss, M. A.

R. A. Weiss, D. H. McDaniel, R. G. Geronemus, M. A. Weiss, K. L. Beasley, G. M. Munavalli, and S. G. Bellew, “Clinical experience with light-emitting diode (LED) photomodulation,” Dermatol. Surg.31(9 Pt 2), 1199–1205 (2005).
[PubMed]

Weiss, R. A.

R. A. Weiss, D. H. McDaniel, R. G. Geronemus, M. A. Weiss, K. L. Beasley, G. M. Munavalli, and S. G. Bellew, “Clinical experience with light-emitting diode (LED) photomodulation,” Dermatol. Surg.31(9 Pt 2), 1199–1205 (2005).
[PubMed]

Williams, D. J.

G. Lakshminarayana, E. M. Weis, A. C. Lira, U. Caldiño, D. J. Williams, and M. P. Hehlen, “Cross relaxation in rare-earth-doped oxyfluoride glasses,” J. Lumin.139, 132–142 (2013).
[CrossRef]

Wilson, B. C.

M. Khurana, H. A. Collins, A. Karotki, H. L. Anderson, D. T. Cramb, and B. C. Wilson, “Quantitative in vitro demonstration of two-photon photodynamic therapy using photofrin and visudyne,” Photochem. Photobiol.83(6), 1441–1448 (2007).
[CrossRef] [PubMed]

Q. Chen, S. D. Shetty, L. Heads, F. Bolin, B. C. Wilson, M. S. Patterson, L. T. Sirls Ii, D. Schultz, J. C. Cerny, and F. W. Hetzel, “Photodynamic therapy in prostate cancer: optical dosimetry and response of normal tissue,” Proc. SPIE1881, 231–235 (1993).
[CrossRef]

Wojciechowski, A.

A. Wojciechowski, I. V. Kityk, G. Lakshminarayana, I. Fuks-Janczarek, J. Berdowski, E. Berdowska, and Z. Tylczyński, “Laser-induced optical effects in triglycine-zinc chloride single crystals,” Physica B405(13), 2827–2830 (2010).
[CrossRef]

Yang, J.

Yano, S.

S. Yano, S. Hirohara, M. Obata, Y. Hagiya, S.- Ogura, A. Ikeda, H. Kataoka, M. Tanaka, and T. Joh, “Current states and future views in photodynamic therapy,” J. Photochem. Photobiol. Chem.12(1), 46–67 (2011).
[CrossRef]

Zhai, B.

Annu. Rev. Phys. Chem. (1)

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem.47(1), 555–606 (1996).
[CrossRef] [PubMed]

Br. J. Dermatol. (1)

P. Babilas, E. Kohl, T. Maisch, H. Bäcker, B. Gross, A. L. Branzan, W. Bäumler, M. Landthaler, S. Karrer, and R. M. Szeimies, “In vitro and in vivo comparison of two different light sources for topical photodynamic therapy,” Br. J. Dermatol.154(4), 712–718 (2006).
[PubMed]

Chem. Rev. (1)

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev.110(5), 2795–2838 (2010).
[CrossRef] [PubMed]

Dermatol. Surg. (1)

R. A. Weiss, D. H. McDaniel, R. G. Geronemus, M. A. Weiss, K. L. Beasley, G. M. Munavalli, and S. G. Bellew, “Clinical experience with light-emitting diode (LED) photomodulation,” Dermatol. Surg.31(9 Pt 2), 1199–1205 (2005).
[PubMed]

J. Alloy. Comp. (3)

Y. Gandhi, I. V. Kityk, M. G. Brik, P. R. Rao, and N. Veeraiah, “Influence of tungsten on the emission features of Nd3+, Sm3+ and Eu3+ ions in ZnF2−WO3−TeO2 glasses,” J. Alloy. Comp.508(2), 278–291 (2010).
[CrossRef]

M. A. K. Elfayoumi, M. Farouk, M. G. Brik, and M. M. Elokr, “Spectroscopic studies of Sm3+ and Eu3+ co-doped lithium borate glass,” J. Alloy. Comp.492(1-2), 712–716 (2010).
[CrossRef]

T. G. V. M. Rao, A. Rupesh Kumar, K. Neeraja, N. Veeraiah, and M. Rami Reddy, “Optical and structural investigation of Eu3+ ions in Nd3+ co-doped magnesium lead borosilicate glasses,” J. Alloy. Comp.557, 209–217 (2013).
[CrossRef]

J. Appl. Phys. (1)

K. Driesen, V. K. Tikhomirov, and C. Görller-Walrand, “Eu3+ as a probe for rare-earth dopant site structure in nano-glass-ceramics,” J. Appl. Phys.102(2), 024312–024317 (2007).
[CrossRef]

J. Chem. Phys. (2)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys.49(10), 4412–4423 (1968).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+,” J. Chem. Phys.49(10), 4450–4455 (1968).
[CrossRef]

J. Dermatolog. Treat. (1)

C. A. Morton, “Methyl aminolevulinate (Metvix) photodynamic therapy - practical pearls,” J. Dermatolog. Treat.14(Suppl 3), 23–26 (2003).
[PubMed]

J. Lumin. (5)

A. Ivankov, J. Seekamp, and W. Bauhofer, “Optical properties of Eu3+-doped zinc borate glasses,” J. Lumin.121(1), 123–131 (2006).
[CrossRef]

G. Lakshminarayana, E. M. Weis, A. C. Lira, U. Caldiño, D. J. Williams, and M. P. Hehlen, “Cross relaxation in rare-earth-doped oxyfluoride glasses,” J. Lumin.139, 132–142 (2013).
[CrossRef]

M. Dejneka, E. Snitzer, and R. E. Riman, “Blue, green and red fluorescence and energy transfer of Eu3+ in fluoride glasses,” J. Lumin.65(5), 227–245 (1995).
[CrossRef]

M. P. Hehlen, M. G. Brik, and K. W. Krämer, “50th anniversary of the Judd-Ofelt theory: An experimentalist's view of the formalism and its application,” J. Lumin.136, 221–239 (2013).
[CrossRef]

E. Cavalli, A. Belletti, R. Mahiou, and P. Boutinaud, “Luminescence properties of Ba2NaNb5O15 crystals activated with Sm3+, Eu3+, Tb3+ or Dy3+ ions,” J. Lumin.130(4), 733–736 (2010).
[CrossRef]

J. Mater. Sci. (1)

V. R. Kumar and N. Veeraiah, “Optical absorption and photoluminescence properties of Eu3+-doped ZnF2−PbO−TeO2 glasses,” J. Mater. Sci.33(10), 2659–2662 (1998).
[CrossRef]

J. Non-Cryst. Solids (6)

L. Petit, T. Cardinal, J. J. Videau, G. Le Flem, Y. Guyot, G. Boulon, M. Couzi, and T. Buffeteau, “Effect of the introduction of Na2B4O7 on erbium luminescence in tellurite glasses,” J. Non-Cryst. Solids298(1), 76–88 (2002).
[CrossRef]

J. Ozdanova, H. Ticha, and L. Tichy, “Optical band gap and Raman spectra in some (Bi2O3)x(WO3)y(TeO2)100−x−y and (PbO)x(WO3)y(TeO2)100−x−y glasses,” J. Non-Cryst. Solids355(45-47), 2318–2322 (2009).
[CrossRef]

N. Manikandan, A. Ryasnyanskiy, and J. Toulouse, “Thermal and optical properties of TeO2−ZnO−BaO glasses,” J. Non-Cryst. Solids358(5), 947–951 (2012).
[CrossRef]

X. Hu, G. Guery, J. Boerstler, J. D. Musgraves, D. Vanderveer, P. Wachtel, and K. Richardson, “Influence of Bi2O3 content on the crystallization behavior of TeO2−Bi2O3−ZnO glass system,” J. Non-Cryst. Solids358(5), 952–958 (2012).
[CrossRef]

G. Monteiro, L. F. Santos, J. C. G. Pereira, and R. M. Almeida, “Optical and spectroscopic properties of germanotellurite glasses,” J. Non-Cryst. Solids357(14), 2695–2701 (2011).
[CrossRef]

R. Chakrabarti, M. Das, B. Karmakar, K. Annapurna, and S. Buddhudu, “Emission analysis of Eu3+:CaO−La2O3−B2O3 glass,” J. Non-Cryst. Solids353(13-15), 1422–1426 (2007).
[CrossRef]

J. Photochem. Photobiol. Chem. (1)

S. Yano, S. Hirohara, M. Obata, Y. Hagiya, S.- Ogura, A. Ikeda, H. Kataoka, M. Tanaka, and T. Joh, “Current states and future views in photodynamic therapy,” J. Photochem. Photobiol. Chem.12(1), 46–67 (2011).
[CrossRef]

J. Solid State Chem. (1)

V. P. Tuyen, T. Hayakawa, M. Nogami, J. R. Duclère, and P. Thomas, “Fluorescence line narrowing spectroscopy of Eu3+ in zinc-thallium-tellurite glass,” J. Solid State Chem.183(11), 2714–2719 (2010).
[CrossRef]

Lasers Med. Sci. (1)

L. Brancaleon and H. Moseley, “Laser and non-laser light sources for photodynamic therapy,” Lasers Med. Sci.17(3), 173–186 (2002).
[CrossRef] [PubMed]

Mater. Sci. Eng. B-Adv. (1)

A. H. Krumpel, E. V. D. Kolk, P. Dorenbos, P. Boutinaud, E. Cavalli, and M. Bettinelli, “Energy level diagram for lanthanide-doped lanthanum orthovanadate,” Mater. Sci. Eng. B-Adv.146, 114–120 (2008).

Nat. Rev. Cancer (2)

D. E. J. G. J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer3(5), 380–387 (2003).
[CrossRef] [PubMed]

A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer6(7), 535–545 (2006).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Laser Technol. (2)

I. V. Kityk, J. Wasylak, D. Dorosz, and J. Kucharski, “Eu3+-doped glass materials for red luminescence,” Opt. Laser Technol.33(3), 157–160 (2001).
[CrossRef]

I. V. Kityk, J. Wasylak, D. Dorosz, J. Kucharski, S. Benet, and H. Kaddouri, “PbO−Bi2O3−Ga2O3−BaO glasses doped by Er3+ as novel materials for IR emission,” Opt. Laser Technol.33(7), 511–514 (2001).
[CrossRef]

Opt. Mater. (3)

C. E. Secu, D. Predoi, M. Secu, M. Cernea, and G. Aldica, “Structural investigations of sol-gel derived silicate gels using Eu3+ ion-probe luminescence,” Opt. Mater.31(11), 1745–1748 (2009).
[CrossRef]

Y. Dwivedi and S. B. Rai, “Optical properties of Eu3+ in oxyfluoroborate glass and its nanocrystalline glass,” Opt. Mater.31(1), 87–93 (2008).
[CrossRef]

C. E. Secu, R. F. Negrea, and M. Secu, “Eu3+ probe ion for rare-earth dopant site structure in sol-gel derived LiYF4 oxyfluoride glass-ceramic,” Opt. Mater.35(12), 2456–2460 (2013).
[CrossRef]

Photochem. Photobiol. (1)

M. Khurana, H. A. Collins, A. Karotki, H. L. Anderson, D. T. Cramb, and B. C. Wilson, “Quantitative in vitro demonstration of two-photon photodynamic therapy using photofrin and visudyne,” Photochem. Photobiol.83(6), 1441–1448 (2007).
[CrossRef] [PubMed]

Photodiagn. Photodyn. (1)

T. S. Mang, “Lasers and light sources for PDT: past, present and future,” Photodiagn. Photodyn.1(1), 43–48 (2004).
[CrossRef]

Physica B (2)

D. Uma Maheswari, J. Suresh Kumar, L. R. Moorthy, K. Jang, and M. Jayasimhadri, “Emission properties of Eu3+ ions in alkali tellurofluorophosphate glasses,” Physica B403(10-11), 1690–1694 (2008).
[CrossRef]

A. Wojciechowski, I. V. Kityk, G. Lakshminarayana, I. Fuks-Janczarek, J. Berdowski, E. Berdowska, and Z. Tylczyński, “Laser-induced optical effects in triglycine-zinc chloride single crystals,” Physica B405(13), 2827–2830 (2010).
[CrossRef]

Proc. SPIE (1)

Q. Chen, S. D. Shetty, L. Heads, F. Bolin, B. C. Wilson, M. S. Patterson, L. T. Sirls Ii, D. Schultz, J. C. Cerny, and F. W. Hetzel, “Photodynamic therapy in prostate cancer: optical dosimetry and response of normal tissue,” Proc. SPIE1881, 231–235 (1993).
[CrossRef]

Science (1)

I. Amato, “Cancer therapy. Hope for a magic bullet that moves at the speed of light,” Science262(5130), 32–33 (1993).
[CrossRef] [PubMed]

Solid State Sci. (1)

A. M. Babu, B. C. Jamalaiah, T. Suhasini, T. S. Rao, and L. R. Moorthy, “Optical properties of Eu3+ ions in lead tungstate tellurite glasses,” Solid State Sci.13(3), 574–578 (2011).
[CrossRef]

Spectrochim. Acta [A] (1)

K. Linganna and C. K. Jayasankar, “Optical properties of Eu3+ ions in phosphate glasses,” Spectrochim. Acta [A]97, 788–797 (2012).
[CrossRef]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

K. K. Mahato, S. B. Rai, and A. Rai, “Optical studies of Eu3+ doped oxyfluoroborate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc.60(4), 979–985 (2004).
[CrossRef] [PubMed]

Other (1)

E. Friedman and J. L. Miller, Photonics Rules of Thumb: Optics, Electro-Optics, Fiber Optics, and Lasers (McGraw-Hill, 2004), Chap. 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup for quantum yield measurement.

Fig. 2
Fig. 2

DTA curve of 0.2wt% Eu2O3 doped NZPGT glasses. Inset: FTIR spectrum of 0.2wt% Eu2O3 doped NZPGT glasses with a thickness of 2.28 mm.

Fig. 3
Fig. 3

(a) Absorption spectrum, (b) Excitation spectrum, (c) Emission spectrum, (d) Emission cross-section profiles of 1.2wt% Eu2O3 doped NZPGT glasses.

Fig. 4
Fig. 4

Luminescence pictures of (a) 0.2wt% and (b) 1.2wt% Eu2O3 doped NZPGT glasses under 365 nm UV lamp radiation, and 1.2wt% Eu2O3 doped NZPGT glasses under (c) 391 and (d) 456 nm LED excitations.

Fig. 5
Fig. 5

Spectral power distributions (curve 1: Pon, the sample on the tops of the LEDs; curve 2: Pside, the sample aside the LEDs) of 1.2wt% Eu2O3 doped NZPGT glasses under (a) 391 and (b) 456 nm LED excitations. Inset of (a) and (b): details of spectral power distributions in wavelength range of 570−720 nm. Net absorption and emission photon distributions of 1.2wt% Eu2O3 doped NZPGT glasses under (c) 391 and (d) 456 nm LED excitations. Inset of (c) and (d): details of emission photon distributions in wavelength range of 570−720 nm.

Fig. 6
Fig. 6

Absorption cross-section profiles of 7F05L6 and 7F05D2 transitions in 1.2wt% Eu2O3 doped NZPGT glasses. Inset: net absorption and emission photon number stack column distributions of 1.2wt% Eu2O3 doped NZPGT glasses under 391 and 456 nm LED excitations.

Fig. 7
Fig. 7

Photon number percentages of 1.2wt% Eu2O3 doped NZPGT glasses under (a) 391 and (b) 456 nm LED excitations.

Tables (2)

Tables Icon

Table 1 J-O intensity parameters Ωt (10−20 cm2) of Eu3+ in various optical glasses

Tables Icon

Table 2 Spontaneous transition probabilities Aij, branching ratios βij, calculated radiative lifetime τrad, and maximum stimulated emission cross-sections σem-max of 5D0 in Eu3+ doped NZPGT glasses

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

C J C 0 = g J g 0 exp ( ( E J E 0 ) / k T ) ,
A ed = 64 π 4 e 2 v 3 3h(J+1) n ( n 2 +2) 2 9 t=2,4,6 Ω t <ΨJ|| U (t) || Ψ J > 2 ,
A md = 64 π 4 v 3 3h(2J+1) n 3 S md ,
A md = ( n n ) 3 A md ,
I J (v) dv I md (v) dv = A J A md = 64 π 4 e 2 v 3 3h(2J+1) n ( n 2 +2) 2 9 A md Ω t <ΨJ|| U (t) || Ψ J > 2 .
σ em = A ij 8πc n 2 × λ 5 ij I( λ ij ) λ ij I( λ ij )dλ ,
Φ E = P(λ) dλ.
N(v) = λ 3 hc P(λ),
QY=emitted photons/ absorbed photons=( E on E side )/( L side L on ),
σ abs ( v )=2.303E( v )/ N 0 d,

Metrics