Abstract

The scribing of the semiconductor layer in thin-film solar cells is here achieved by means of laser induced thermal gradient and mechanical strain. We experimentally demonstrate the scribing by separating one layer from a underlying layer without a substantial melting phase. The modeling of the process was used to predict the spatio-temporal distribution of the induced effects, the resulting scribed channel is confined and the process has a good repeatability. We envisage a parallelization of the process for simultaneous cell formation on the panel.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kurtz and J. Geisz, “Multijunction solar cells for conversion of concentrated sunlight to electricity,” Opt. Express18, A73–A78 (2010).
    [CrossRef] [PubMed]
  2. J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett.93, 123505 (2008).
    [CrossRef]
  3. N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm ingaas and 1300–1400 nm ingaasn quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys.: Condens. Matter16, S3277 (2004).
    [CrossRef]
  4. S. Bank, L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5- mu;m gainnassb lasers,” IEEE J. Sel. Top. Quant. Electron.11, 1089–1098 (2005).
    [CrossRef]
  5. M. Wiemer, V. Sabnis, and H. Yuen, “43.5% efficient lattice matched solar cells,” High and Low Concentrator Systems for Solar Electric Applications VI pp. 810804–810804–5 (2011).
    [CrossRef]
  6. P.-O. Westin, U. Zimmermann, and M. Edoff, “Laser patterning of P2 interconnect via in thin-film CIGS PV modules,” Sol. Energ. Mat. Sol. Cells92, 1230–1235 (2008).
    [CrossRef]
  7. P.-O. Westin, S. Schmidtb, and M. E. M. Huskeb, “Influence of spacial and temporal laser beam characteristics on thin-film ablation,” 24th European Photovoltaic Solar Energy Conference, 2009, Germany.
  8. P.-O. Westin, U. Zimmermann, M. Ruth, and M. Edoff, “Next generation interconnective laser patterning of CIGS thin film modules,” Sol. Energ. Mat. Sol. Cells95, 1062–1068 (2011).
    [CrossRef]
  9. A. Compaan, I. Matulionis, and S. Nakade, “Laser scribing of polycrystalline thin films,” Opt. and Lasers Eng.34, 15–45 (2000).
    [CrossRef]
  10. J. Bovatsek, A. Tamhankar, R. Patel, N. Bulgakova, and J. Bonse, “Thin film removal mechanisms in ns-laser processing of photovoltaic materials,” Thin Solid Film518, 2897–2904 (2010).
    [CrossRef]
  11. D. Ruthe, K. Zimmer, and T. Höche, “Etching of CuInSe2 thin films-comparison of femtosecond and picosecond laser ablation,” Appl. Surf. Sci.247, 447–452 (2005).
    [CrossRef]
  12. J. Hermann, M. Benfarah, G. Coustillier, S. Bruneau, E. Axente, J.-F. Guillemoles, M. Sentis, P. Alloncle, and T. Itina, “Selective ablation of thin films with short and ultrashort laser pulses,” Appl. Surf. Sci.252, 4814–4818 (2006).
    [CrossRef]
  13. F. Kessler and D. Rudmann, “Technological aspects of flexible CIGS solar cells and modules,” Sol. Energy77, 685–695 (2004).Thin Film PV.
    [CrossRef]
  14. A. Wehrmann, S. Puttnins, L. Hartmann, M. Ehrhardt, P. Lorenz, and K. Zimmer, “Analysis of laser scribes at CIGS thin-film solar cells by localized electrical and optical measurements,” Opt. Laser Technol.44, 1753–1757 (2012).
    [CrossRef]
  15. Y. Hernandez, E. Lotter, V. Bermudez, A. Bosio, F. Salin, M. Hueske, S. Selleri, A. Bertrand, and C. Duterte, “Investigation of CIS/CIGS and CdTe solar cells scribing with high-power fibre short pulse lasers,” Proc. SPIE8438, Photonics for Solar Energy Systems IV pp. 84380U–84380U–11 (2012).
    [CrossRef]
  16. P. Villoresi and S. Buratin, “Laser scribing process, PCT/EP2011/064287,” (2011).
  17. A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, 2003), chap. 13.
    [CrossRef]
  18. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1998).
  19. F. Incropera and D. DeWitt, Fundamentals of Heat and Mass Transfer (John Wiley and Sons, 1996), 4th ed.
  20. A. Bejan, Heat Transfer (Wiley, 1993).
  21. Ramon and Codina, “Comparison of some finite element methods for solving the diffusion-convection-reaction equation,” Comput.Methods in Appl.Mech.Eng.156, 185–210 (1998).
    [CrossRef]
  22. L. D. Landau and E. M. Lifsits, Theory of Elasticity (Pergamon Press, 1986).
  23. W. S. Slaughter, The Linearized Theory of Elasticity (Birkhauser, 2002).
    [CrossRef]
  24. M. A. Slawinski, Waves and Rays in Elastic Continua (World Scientific Publishing Co. Pte. Ltd., 2010), 2nd ed.
    [CrossRef]
  25. D. R. Lide and C. R. Company, CRC Handbook of Chemistry and Physics (CRC Press, 1998).
  26. A. F. Wells, Structural Inorganic Chemistry (Clarendon Press, 1990), 5th ed.
  27. T. J. McMahon and G. J. Jorgensen, “Adhesion and thin-film module reliability,” Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on2, 2062–2065 (7–12 May 2006).
  28. Landolt-Börnstein, Group III Condensed Matter Numerical Data and Functional Relationships in Science and Technology (Springer, 2000), vol. 41E, chap. Copper indium selenide (CuInSe2) thermal expansion, Debye temperature, melting point and other lattice parameters.

2012 (2)

A. Wehrmann, S. Puttnins, L. Hartmann, M. Ehrhardt, P. Lorenz, and K. Zimmer, “Analysis of laser scribes at CIGS thin-film solar cells by localized electrical and optical measurements,” Opt. Laser Technol.44, 1753–1757 (2012).
[CrossRef]

Y. Hernandez, E. Lotter, V. Bermudez, A. Bosio, F. Salin, M. Hueske, S. Selleri, A. Bertrand, and C. Duterte, “Investigation of CIS/CIGS and CdTe solar cells scribing with high-power fibre short pulse lasers,” Proc. SPIE8438, Photonics for Solar Energy Systems IV pp. 84380U–84380U–11 (2012).
[CrossRef]

2011 (3)

P. Villoresi and S. Buratin, “Laser scribing process, PCT/EP2011/064287,” (2011).

M. Wiemer, V. Sabnis, and H. Yuen, “43.5% efficient lattice matched solar cells,” High and Low Concentrator Systems for Solar Electric Applications VI pp. 810804–810804–5 (2011).
[CrossRef]

P.-O. Westin, U. Zimmermann, M. Ruth, and M. Edoff, “Next generation interconnective laser patterning of CIGS thin film modules,” Sol. Energ. Mat. Sol. Cells95, 1062–1068 (2011).
[CrossRef]

2010 (2)

J. Bovatsek, A. Tamhankar, R. Patel, N. Bulgakova, and J. Bonse, “Thin film removal mechanisms in ns-laser processing of photovoltaic materials,” Thin Solid Film518, 2897–2904 (2010).
[CrossRef]

S. Kurtz and J. Geisz, “Multijunction solar cells for conversion of concentrated sunlight to electricity,” Opt. Express18, A73–A78 (2010).
[CrossRef] [PubMed]

2008 (2)

P.-O. Westin, U. Zimmermann, and M. Edoff, “Laser patterning of P2 interconnect via in thin-film CIGS PV modules,” Sol. Energ. Mat. Sol. Cells92, 1230–1235 (2008).
[CrossRef]

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett.93, 123505 (2008).
[CrossRef]

2006 (1)

J. Hermann, M. Benfarah, G. Coustillier, S. Bruneau, E. Axente, J.-F. Guillemoles, M. Sentis, P. Alloncle, and T. Itina, “Selective ablation of thin films with short and ultrashort laser pulses,” Appl. Surf. Sci.252, 4814–4818 (2006).
[CrossRef]

2005 (2)

S. Bank, L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5- mu;m gainnassb lasers,” IEEE J. Sel. Top. Quant. Electron.11, 1089–1098 (2005).
[CrossRef]

D. Ruthe, K. Zimmer, and T. Höche, “Etching of CuInSe2 thin films-comparison of femtosecond and picosecond laser ablation,” Appl. Surf. Sci.247, 447–452 (2005).
[CrossRef]

2004 (2)

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm ingaas and 1300–1400 nm ingaasn quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys.: Condens. Matter16, S3277 (2004).
[CrossRef]

F. Kessler and D. Rudmann, “Technological aspects of flexible CIGS solar cells and modules,” Sol. Energy77, 685–695 (2004).Thin Film PV.
[CrossRef]

2000 (1)

A. Compaan, I. Matulionis, and S. Nakade, “Laser scribing of polycrystalline thin films,” Opt. and Lasers Eng.34, 15–45 (2000).
[CrossRef]

1998 (1)

Ramon and Codina, “Comparison of some finite element methods for solving the diffusion-convection-reaction equation,” Comput.Methods in Appl.Mech.Eng.156, 185–210 (1998).
[CrossRef]

Alloncle, P.

J. Hermann, M. Benfarah, G. Coustillier, S. Bruneau, E. Axente, J.-F. Guillemoles, M. Sentis, P. Alloncle, and T. Itina, “Selective ablation of thin films with short and ultrashort laser pulses,” Appl. Surf. Sci.252, 4814–4818 (2006).
[CrossRef]

Axente, E.

J. Hermann, M. Benfarah, G. Coustillier, S. Bruneau, E. Axente, J.-F. Guillemoles, M. Sentis, P. Alloncle, and T. Itina, “Selective ablation of thin films with short and ultrashort laser pulses,” Appl. Surf. Sci.252, 4814–4818 (2006).
[CrossRef]

Bank, S.

S. Bank, L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5- mu;m gainnassb lasers,” IEEE J. Sel. Top. Quant. Electron.11, 1089–1098 (2005).
[CrossRef]

Bejan, A.

A. Bejan, Heat Transfer (Wiley, 1993).

Benfarah, M.

J. Hermann, M. Benfarah, G. Coustillier, S. Bruneau, E. Axente, J.-F. Guillemoles, M. Sentis, P. Alloncle, and T. Itina, “Selective ablation of thin films with short and ultrashort laser pulses,” Appl. Surf. Sci.252, 4814–4818 (2006).
[CrossRef]

Bermudez, V.

Y. Hernandez, E. Lotter, V. Bermudez, A. Bosio, F. Salin, M. Hueske, S. Selleri, A. Bertrand, and C. Duterte, “Investigation of CIS/CIGS and CdTe solar cells scribing with high-power fibre short pulse lasers,” Proc. SPIE8438, Photonics for Solar Energy Systems IV pp. 84380U–84380U–11 (2012).
[CrossRef]

Bertrand, A.

Y. Hernandez, E. Lotter, V. Bermudez, A. Bosio, F. Salin, M. Hueske, S. Selleri, A. Bertrand, and C. Duterte, “Investigation of CIS/CIGS and CdTe solar cells scribing with high-power fibre short pulse lasers,” Proc. SPIE8438, Photonics for Solar Energy Systems IV pp. 84380U–84380U–11 (2012).
[CrossRef]

Bonse, J.

J. Bovatsek, A. Tamhankar, R. Patel, N. Bulgakova, and J. Bonse, “Thin film removal mechanisms in ns-laser processing of photovoltaic materials,” Thin Solid Film518, 2897–2904 (2010).
[CrossRef]

Bosio, A.

Y. Hernandez, E. Lotter, V. Bermudez, A. Bosio, F. Salin, M. Hueske, S. Selleri, A. Bertrand, and C. Duterte, “Investigation of CIS/CIGS and CdTe solar cells scribing with high-power fibre short pulse lasers,” Proc. SPIE8438, Photonics for Solar Energy Systems IV pp. 84380U–84380U–11 (2012).
[CrossRef]

Bovatsek, J.

J. Bovatsek, A. Tamhankar, R. Patel, N. Bulgakova, and J. Bonse, “Thin film removal mechanisms in ns-laser processing of photovoltaic materials,” Thin Solid Film518, 2897–2904 (2010).
[CrossRef]

Bruneau, S.

J. Hermann, M. Benfarah, G. Coustillier, S. Bruneau, E. Axente, J.-F. Guillemoles, M. Sentis, P. Alloncle, and T. Itina, “Selective ablation of thin films with short and ultrashort laser pulses,” Appl. Surf. Sci.252, 4814–4818 (2006).
[CrossRef]

Bulgakova, N.

J. Bovatsek, A. Tamhankar, R. Patel, N. Bulgakova, and J. Bonse, “Thin film removal mechanisms in ns-laser processing of photovoltaic materials,” Thin Solid Film518, 2897–2904 (2010).
[CrossRef]

Buratin, S.

P. Villoresi and S. Buratin, “Laser scribing process, PCT/EP2011/064287,” (2011).

Codina,

Ramon and Codina, “Comparison of some finite element methods for solving the diffusion-convection-reaction equation,” Comput.Methods in Appl.Mech.Eng.156, 185–210 (1998).
[CrossRef]

Compaan, A.

A. Compaan, I. Matulionis, and S. Nakade, “Laser scribing of polycrystalline thin films,” Opt. and Lasers Eng.34, 15–45 (2000).
[CrossRef]

Company, C. R.

D. R. Lide and C. R. Company, CRC Handbook of Chemistry and Physics (CRC Press, 1998).

Coustillier, G.

J. Hermann, M. Benfarah, G. Coustillier, S. Bruneau, E. Axente, J.-F. Guillemoles, M. Sentis, P. Alloncle, and T. Itina, “Selective ablation of thin films with short and ultrashort laser pulses,” Appl. Surf. Sci.252, 4814–4818 (2006).
[CrossRef]

DeWitt, D.

F. Incropera and D. DeWitt, Fundamentals of Heat and Mass Transfer (John Wiley and Sons, 1996), 4th ed.

Duda, A.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett.93, 123505 (2008).
[CrossRef]

Duterte, C.

Y. Hernandez, E. Lotter, V. Bermudez, A. Bosio, F. Salin, M. Hueske, S. Selleri, A. Bertrand, and C. Duterte, “Investigation of CIS/CIGS and CdTe solar cells scribing with high-power fibre short pulse lasers,” Proc. SPIE8438, Photonics for Solar Energy Systems IV pp. 84380U–84380U–11 (2012).
[CrossRef]

Edoff, M.

P.-O. Westin, U. Zimmermann, M. Ruth, and M. Edoff, “Next generation interconnective laser patterning of CIGS thin film modules,” Sol. Energ. Mat. Sol. Cells95, 1062–1068 (2011).
[CrossRef]

P.-O. Westin, U. Zimmermann, and M. Edoff, “Laser patterning of P2 interconnect via in thin-film CIGS PV modules,” Sol. Energ. Mat. Sol. Cells92, 1230–1235 (2008).
[CrossRef]

Ehrhardt, M.

A. Wehrmann, S. Puttnins, L. Hartmann, M. Ehrhardt, P. Lorenz, and K. Zimmer, “Analysis of laser scribes at CIGS thin-film solar cells by localized electrical and optical measurements,” Opt. Laser Technol.44, 1753–1757 (2012).
[CrossRef]

Friedman, D. J.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett.93, 123505 (2008).
[CrossRef]

Geisz, J.

Geisz, J. F.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett.93, 123505 (2008).
[CrossRef]

Goddard, L.

S. Bank, L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5- mu;m gainnassb lasers,” IEEE J. Sel. Top. Quant. Electron.11, 1089–1098 (2005).
[CrossRef]

Guillemoles, J.-F.

J. Hermann, M. Benfarah, G. Coustillier, S. Bruneau, E. Axente, J.-F. Guillemoles, M. Sentis, P. Alloncle, and T. Itina, “Selective ablation of thin films with short and ultrashort laser pulses,” Appl. Surf. Sci.252, 4814–4818 (2006).
[CrossRef]

Harris, J. S.

S. Bank, L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5- mu;m gainnassb lasers,” IEEE J. Sel. Top. Quant. Electron.11, 1089–1098 (2005).
[CrossRef]

Hartmann, L.

A. Wehrmann, S. Puttnins, L. Hartmann, M. Ehrhardt, P. Lorenz, and K. Zimmer, “Analysis of laser scribes at CIGS thin-film solar cells by localized electrical and optical measurements,” Opt. Laser Technol.44, 1753–1757 (2012).
[CrossRef]

Hegedus, S.

A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, 2003), chap. 13.
[CrossRef]

Hermann, J.

J. Hermann, M. Benfarah, G. Coustillier, S. Bruneau, E. Axente, J.-F. Guillemoles, M. Sentis, P. Alloncle, and T. Itina, “Selective ablation of thin films with short and ultrashort laser pulses,” Appl. Surf. Sci.252, 4814–4818 (2006).
[CrossRef]

Hernandez, Y.

Y. Hernandez, E. Lotter, V. Bermudez, A. Bosio, F. Salin, M. Hueske, S. Selleri, A. Bertrand, and C. Duterte, “Investigation of CIS/CIGS and CdTe solar cells scribing with high-power fibre short pulse lasers,” Proc. SPIE8438, Photonics for Solar Energy Systems IV pp. 84380U–84380U–11 (2012).
[CrossRef]

Höche, T.

D. Ruthe, K. Zimmer, and T. Höche, “Etching of CuInSe2 thin films-comparison of femtosecond and picosecond laser ablation,” Appl. Surf. Sci.247, 447–452 (2005).
[CrossRef]

Hueske, M.

Y. Hernandez, E. Lotter, V. Bermudez, A. Bosio, F. Salin, M. Hueske, S. Selleri, A. Bertrand, and C. Duterte, “Investigation of CIS/CIGS and CdTe solar cells scribing with high-power fibre short pulse lasers,” Proc. SPIE8438, Photonics for Solar Energy Systems IV pp. 84380U–84380U–11 (2012).
[CrossRef]

Huskeb, M. E. M.

P.-O. Westin, S. Schmidtb, and M. E. M. Huskeb, “Influence of spacial and temporal laser beam characteristics on thin-film ablation,” 24th European Photovoltaic Solar Energy Conference, 2009, Germany.

Incropera, F.

F. Incropera and D. DeWitt, Fundamentals of Heat and Mass Transfer (John Wiley and Sons, 1996), 4th ed.

Itina, T.

J. Hermann, M. Benfarah, G. Coustillier, S. Bruneau, E. Axente, J.-F. Guillemoles, M. Sentis, P. Alloncle, and T. Itina, “Selective ablation of thin films with short and ultrashort laser pulses,” Appl. Surf. Sci.252, 4814–4818 (2006).
[CrossRef]

Jones, K. M.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett.93, 123505 (2008).
[CrossRef]

Jorgensen, G. J.

T. J. McMahon and G. J. Jorgensen, “Adhesion and thin-film module reliability,” Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on2, 2062–2065 (7–12 May 2006).

Kessler, F.

F. Kessler and D. Rudmann, “Technological aspects of flexible CIGS solar cells and modules,” Sol. Energy77, 685–695 (2004).Thin Film PV.
[CrossRef]

Kiehl, J. T.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett.93, 123505 (2008).
[CrossRef]

Kurtz, S.

Landau, L. D.

L. D. Landau and E. M. Lifsits, Theory of Elasticity (Pergamon Press, 1986).

Landolt-Börnstein,

Landolt-Börnstein, Group III Condensed Matter Numerical Data and Functional Relationships in Science and Technology (Springer, 2000), vol. 41E, chap. Copper indium selenide (CuInSe2) thermal expansion, Debye temperature, melting point and other lattice parameters.

Lide, D. R.

D. R. Lide and C. R. Company, CRC Handbook of Chemistry and Physics (CRC Press, 1998).

Lifsits, E. M.

L. D. Landau and E. M. Lifsits, Theory of Elasticity (Pergamon Press, 1986).

Lorenz, P.

A. Wehrmann, S. Puttnins, L. Hartmann, M. Ehrhardt, P. Lorenz, and K. Zimmer, “Analysis of laser scribes at CIGS thin-film solar cells by localized electrical and optical measurements,” Opt. Laser Technol.44, 1753–1757 (2012).
[CrossRef]

Lotter, E.

Y. Hernandez, E. Lotter, V. Bermudez, A. Bosio, F. Salin, M. Hueske, S. Selleri, A. Bertrand, and C. Duterte, “Investigation of CIS/CIGS and CdTe solar cells scribing with high-power fibre short pulse lasers,” Proc. SPIE8438, Photonics for Solar Energy Systems IV pp. 84380U–84380U–11 (2012).
[CrossRef]

Luque, A.

A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, 2003), chap. 13.
[CrossRef]

Matulionis, I.

A. Compaan, I. Matulionis, and S. Nakade, “Laser scribing of polycrystalline thin films,” Opt. and Lasers Eng.34, 15–45 (2000).
[CrossRef]

Mawst, L. J.

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm ingaas and 1300–1400 nm ingaasn quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys.: Condens. Matter16, S3277 (2004).
[CrossRef]

McMahon, T. J.

T. J. McMahon and G. J. Jorgensen, “Adhesion and thin-film module reliability,” Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on2, 2062–2065 (7–12 May 2006).

Moriarty, T. E.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett.93, 123505 (2008).
[CrossRef]

Nakade, S.

A. Compaan, I. Matulionis, and S. Nakade, “Laser scribing of polycrystalline thin films,” Opt. and Lasers Eng.34, 15–45 (2000).
[CrossRef]

Norman, A. G.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett.93, 123505 (2008).
[CrossRef]

Olavarria, W. J.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett.93, 123505 (2008).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1998).

Patel, R.

J. Bovatsek, A. Tamhankar, R. Patel, N. Bulgakova, and J. Bonse, “Thin film removal mechanisms in ns-laser processing of photovoltaic materials,” Thin Solid Film518, 2897–2904 (2010).
[CrossRef]

Puttnins, S.

A. Wehrmann, S. Puttnins, L. Hartmann, M. Ehrhardt, P. Lorenz, and K. Zimmer, “Analysis of laser scribes at CIGS thin-film solar cells by localized electrical and optical measurements,” Opt. Laser Technol.44, 1753–1757 (2012).
[CrossRef]

Ramon,

Ramon and Codina, “Comparison of some finite element methods for solving the diffusion-convection-reaction equation,” Comput.Methods in Appl.Mech.Eng.156, 185–210 (1998).
[CrossRef]

Romero, M. J.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett.93, 123505 (2008).
[CrossRef]

Rudmann, D.

F. Kessler and D. Rudmann, “Technological aspects of flexible CIGS solar cells and modules,” Sol. Energy77, 685–695 (2004).Thin Film PV.
[CrossRef]

Ruth, M.

P.-O. Westin, U. Zimmermann, M. Ruth, and M. Edoff, “Next generation interconnective laser patterning of CIGS thin film modules,” Sol. Energ. Mat. Sol. Cells95, 1062–1068 (2011).
[CrossRef]

Ruthe, D.

D. Ruthe, K. Zimmer, and T. Höche, “Etching of CuInSe2 thin films-comparison of femtosecond and picosecond laser ablation,” Appl. Surf. Sci.247, 447–452 (2005).
[CrossRef]

Sabnis, V.

M. Wiemer, V. Sabnis, and H. Yuen, “43.5% efficient lattice matched solar cells,” High and Low Concentrator Systems for Solar Electric Applications VI pp. 810804–810804–5 (2011).
[CrossRef]

Salin, F.

Y. Hernandez, E. Lotter, V. Bermudez, A. Bosio, F. Salin, M. Hueske, S. Selleri, A. Bertrand, and C. Duterte, “Investigation of CIS/CIGS and CdTe solar cells scribing with high-power fibre short pulse lasers,” Proc. SPIE8438, Photonics for Solar Energy Systems IV pp. 84380U–84380U–11 (2012).
[CrossRef]

Schmidtb, S.

P.-O. Westin, S. Schmidtb, and M. E. M. Huskeb, “Influence of spacial and temporal laser beam characteristics on thin-film ablation,” 24th European Photovoltaic Solar Energy Conference, 2009, Germany.

Selleri, S.

Y. Hernandez, E. Lotter, V. Bermudez, A. Bosio, F. Salin, M. Hueske, S. Selleri, A. Bertrand, and C. Duterte, “Investigation of CIS/CIGS and CdTe solar cells scribing with high-power fibre short pulse lasers,” Proc. SPIE8438, Photonics for Solar Energy Systems IV pp. 84380U–84380U–11 (2012).
[CrossRef]

Sentis, M.

J. Hermann, M. Benfarah, G. Coustillier, S. Bruneau, E. Axente, J.-F. Guillemoles, M. Sentis, P. Alloncle, and T. Itina, “Selective ablation of thin films with short and ultrashort laser pulses,” Appl. Surf. Sci.252, 4814–4818 (2006).
[CrossRef]

Slaughter, W. S.

W. S. Slaughter, The Linearized Theory of Elasticity (Birkhauser, 2002).
[CrossRef]

Slawinski, M. A.

M. A. Slawinski, Waves and Rays in Elastic Continua (World Scientific Publishing Co. Pte. Ltd., 2010), 2nd ed.
[CrossRef]

Tamhankar, A.

J. Bovatsek, A. Tamhankar, R. Patel, N. Bulgakova, and J. Bonse, “Thin film removal mechanisms in ns-laser processing of photovoltaic materials,” Thin Solid Film518, 2897–2904 (2010).
[CrossRef]

Tansu, N.

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm ingaas and 1300–1400 nm ingaasn quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys.: Condens. Matter16, S3277 (2004).
[CrossRef]

Villoresi, P.

P. Villoresi and S. Buratin, “Laser scribing process, PCT/EP2011/064287,” (2011).

Ward, J. S.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett.93, 123505 (2008).
[CrossRef]

Wehrmann, A.

A. Wehrmann, S. Puttnins, L. Hartmann, M. Ehrhardt, P. Lorenz, and K. Zimmer, “Analysis of laser scribes at CIGS thin-film solar cells by localized electrical and optical measurements,” Opt. Laser Technol.44, 1753–1757 (2012).
[CrossRef]

Wells, A. F.

A. F. Wells, Structural Inorganic Chemistry (Clarendon Press, 1990), 5th ed.

Westin, P.-O.

P.-O. Westin, U. Zimmermann, M. Ruth, and M. Edoff, “Next generation interconnective laser patterning of CIGS thin film modules,” Sol. Energ. Mat. Sol. Cells95, 1062–1068 (2011).
[CrossRef]

P.-O. Westin, U. Zimmermann, and M. Edoff, “Laser patterning of P2 interconnect via in thin-film CIGS PV modules,” Sol. Energ. Mat. Sol. Cells92, 1230–1235 (2008).
[CrossRef]

P.-O. Westin, S. Schmidtb, and M. E. M. Huskeb, “Influence of spacial and temporal laser beam characteristics on thin-film ablation,” 24th European Photovoltaic Solar Energy Conference, 2009, Germany.

Wiemer, M.

M. Wiemer, V. Sabnis, and H. Yuen, “43.5% efficient lattice matched solar cells,” High and Low Concentrator Systems for Solar Electric Applications VI pp. 810804–810804–5 (2011).
[CrossRef]

Wistey, M. A.

S. Bank, L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5- mu;m gainnassb lasers,” IEEE J. Sel. Top. Quant. Electron.11, 1089–1098 (2005).
[CrossRef]

Yeh, J.-Y.

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm ingaas and 1300–1400 nm ingaasn quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys.: Condens. Matter16, S3277 (2004).
[CrossRef]

Yuen, H.

M. Wiemer, V. Sabnis, and H. Yuen, “43.5% efficient lattice matched solar cells,” High and Low Concentrator Systems for Solar Electric Applications VI pp. 810804–810804–5 (2011).
[CrossRef]

Yuen, H. B.

S. Bank, L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5- mu;m gainnassb lasers,” IEEE J. Sel. Top. Quant. Electron.11, 1089–1098 (2005).
[CrossRef]

Zimmer, K.

A. Wehrmann, S. Puttnins, L. Hartmann, M. Ehrhardt, P. Lorenz, and K. Zimmer, “Analysis of laser scribes at CIGS thin-film solar cells by localized electrical and optical measurements,” Opt. Laser Technol.44, 1753–1757 (2012).
[CrossRef]

D. Ruthe, K. Zimmer, and T. Höche, “Etching of CuInSe2 thin films-comparison of femtosecond and picosecond laser ablation,” Appl. Surf. Sci.247, 447–452 (2005).
[CrossRef]

Zimmermann, U.

P.-O. Westin, U. Zimmermann, M. Ruth, and M. Edoff, “Next generation interconnective laser patterning of CIGS thin film modules,” Sol. Energ. Mat. Sol. Cells95, 1062–1068 (2011).
[CrossRef]

P.-O. Westin, U. Zimmermann, and M. Edoff, “Laser patterning of P2 interconnect via in thin-film CIGS PV modules,” Sol. Energ. Mat. Sol. Cells92, 1230–1235 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett.93, 123505 (2008).
[CrossRef]

Appl. Surf. Sci. (2)

D. Ruthe, K. Zimmer, and T. Höche, “Etching of CuInSe2 thin films-comparison of femtosecond and picosecond laser ablation,” Appl. Surf. Sci.247, 447–452 (2005).
[CrossRef]

J. Hermann, M. Benfarah, G. Coustillier, S. Bruneau, E. Axente, J.-F. Guillemoles, M. Sentis, P. Alloncle, and T. Itina, “Selective ablation of thin films with short and ultrashort laser pulses,” Appl. Surf. Sci.252, 4814–4818 (2006).
[CrossRef]

Comput.Methods in Appl.Mech.Eng. (1)

Ramon and Codina, “Comparison of some finite element methods for solving the diffusion-convection-reaction equation,” Comput.Methods in Appl.Mech.Eng.156, 185–210 (1998).
[CrossRef]

High and Low Concentrator Systems for Solar Electric Applications VI (1)

M. Wiemer, V. Sabnis, and H. Yuen, “43.5% efficient lattice matched solar cells,” High and Low Concentrator Systems for Solar Electric Applications VI pp. 810804–810804–5 (2011).
[CrossRef]

IEEE J. Sel. Top. Quant. Electron. (1)

S. Bank, L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5- mu;m gainnassb lasers,” IEEE J. Sel. Top. Quant. Electron.11, 1089–1098 (2005).
[CrossRef]

J. Phys.: Condens. Matter (1)

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm ingaas and 1300–1400 nm ingaasn quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys.: Condens. Matter16, S3277 (2004).
[CrossRef]

Opt. and Lasers Eng. (1)

A. Compaan, I. Matulionis, and S. Nakade, “Laser scribing of polycrystalline thin films,” Opt. and Lasers Eng.34, 15–45 (2000).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (1)

A. Wehrmann, S. Puttnins, L. Hartmann, M. Ehrhardt, P. Lorenz, and K. Zimmer, “Analysis of laser scribes at CIGS thin-film solar cells by localized electrical and optical measurements,” Opt. Laser Technol.44, 1753–1757 (2012).
[CrossRef]

Proc. SPIE (1)

Y. Hernandez, E. Lotter, V. Bermudez, A. Bosio, F. Salin, M. Hueske, S. Selleri, A. Bertrand, and C. Duterte, “Investigation of CIS/CIGS and CdTe solar cells scribing with high-power fibre short pulse lasers,” Proc. SPIE8438, Photonics for Solar Energy Systems IV pp. 84380U–84380U–11 (2012).
[CrossRef]

Sol. Energ. Mat. Sol. Cells (2)

P.-O. Westin, U. Zimmermann, M. Ruth, and M. Edoff, “Next generation interconnective laser patterning of CIGS thin film modules,” Sol. Energ. Mat. Sol. Cells95, 1062–1068 (2011).
[CrossRef]

P.-O. Westin, U. Zimmermann, and M. Edoff, “Laser patterning of P2 interconnect via in thin-film CIGS PV modules,” Sol. Energ. Mat. Sol. Cells92, 1230–1235 (2008).
[CrossRef]

Sol. Energy (1)

F. Kessler and D. Rudmann, “Technological aspects of flexible CIGS solar cells and modules,” Sol. Energy77, 685–695 (2004).Thin Film PV.
[CrossRef]

Thin Solid Film (1)

J. Bovatsek, A. Tamhankar, R. Patel, N. Bulgakova, and J. Bonse, “Thin film removal mechanisms in ns-laser processing of photovoltaic materials,” Thin Solid Film518, 2897–2904 (2010).
[CrossRef]

Other (13)

P.-O. Westin, S. Schmidtb, and M. E. M. Huskeb, “Influence of spacial and temporal laser beam characteristics on thin-film ablation,” 24th European Photovoltaic Solar Energy Conference, 2009, Germany.

L. D. Landau and E. M. Lifsits, Theory of Elasticity (Pergamon Press, 1986).

W. S. Slaughter, The Linearized Theory of Elasticity (Birkhauser, 2002).
[CrossRef]

M. A. Slawinski, Waves and Rays in Elastic Continua (World Scientific Publishing Co. Pte. Ltd., 2010), 2nd ed.
[CrossRef]

D. R. Lide and C. R. Company, CRC Handbook of Chemistry and Physics (CRC Press, 1998).

A. F. Wells, Structural Inorganic Chemistry (Clarendon Press, 1990), 5th ed.

T. J. McMahon and G. J. Jorgensen, “Adhesion and thin-film module reliability,” Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on2, 2062–2065 (7–12 May 2006).

Landolt-Börnstein, Group III Condensed Matter Numerical Data and Functional Relationships in Science and Technology (Springer, 2000), vol. 41E, chap. Copper indium selenide (CuInSe2) thermal expansion, Debye temperature, melting point and other lattice parameters.

P. Villoresi and S. Buratin, “Laser scribing process, PCT/EP2011/064287,” (2011).

A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, 2003), chap. 13.
[CrossRef]

E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1998).

F. Incropera and D. DeWitt, Fundamentals of Heat and Mass Transfer (John Wiley and Sons, 1996), 4th ed.

A. Bejan, Heat Transfer (Wiley, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Temperature distribution along z axis in the center of the spot and pulse shape (black) x0=100 μm, y0=5 μm, τ =0.5μs, λ =808 nm; k=0.27 silica glass ρ =2203 Kg/cm3, Cp=703J/(Kg °K), λT =1.38 W/m°K CIGS ρ =5770 Kg/cm3,Cp=300J/(Kg°K), λT =3.7W/m°K molybdenum ρ =10200 Kg/cm3, Cp=255J/(Kg °K), λT =138W/m °K [25][17][26][18]The legend shows different line types for different point in z axis from 0.2 to 1.8 μm

Fig. 2
Fig. 2

First principal stress with the detachment threshold [27] and its directions silica glass α = 0.55e − 6[1/°K] E = 73.1GPa, ν = 0.17 CIGS α = 8e − 6[1/°K] E = 50GPa, ν = 0.4 molybdenum α = 4.8e − 6[1/°K] E = 312GPa, ν = 0.3 The legend shown different types of line for different point in z axis from 0.2 to 1.8 μm

Fig. 3
Fig. 3

Second principal stress and directions of second and third principal stress The legend shown different line types for different point in z axis from 0.2 to 1.8 μm

Fig. 4
Fig. 4

Images of the LISA process on CIGS, channel width 180 μm. From left to right there are 3 different frames captured during the process, in the first and in the second there is a partial lift off and in the third a fragment is detached

Fig. 5
Fig. 5

SEM images of the channel. Scale bars are 100 and 10 μm respectively on the left and on the right.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ T T + S = ρ C p T t ,
σ = D ε th ,
D = [ λ L + 2 μ L λ L λ L 0 0 0 λ L λ L + 2 μ L λ L 0 0 0 λ L λ L λ L + 2 μ L 0 0 0 0 0 0 μ L 0 0 0 0 0 0 μ L 0 0 0 0 0 0 μ L ]

Metrics