Abstract

Without the need of single-layer graphene, the graphite nano-sheet powder electrochemically exfoliated from graphite foil can also be employed as a stable saturable absorber and mode-locker for fiber lasers. High-quality graphite nano-sheets containing few graphene layers can be obtained by slow electrochemical exfoliation without the need of post annealing procedure. With reducing the electrochemical exfoliation bias of the graphite foil based anode from + 6 and + 3 volts, the electrochemically exfoliated graphite nano-sheets reveals a decreased D-band intensity in Raman scattering spectrum, and the 2D-band intensity is concurrently enlarged by two times to support the improved quality with suppressed oxidation during the exfoliation reaction. The X-ray photoelectron spectroscopy also confirms the suppression of the C-O bonds in the graphite nano-sheets obtained with decreasing the exfoliation bias. After centrifugation, the average diameter of the exfoliated graphite nano-sheets extracted from the acetone solution is shrunk from 7 μm to 100 nm as the anode bias decreases from 6 to 3 volts. Both the quality and size distribution of the graphite nano-sheets are improved with such slow but refined electrochemical exfoliation. In application, the graphite nano-sheets obtained at different exfoliation bias show relatively stable saturable absorption and passive mode-locking performance in Erbium doped fiber lasers (EDFLs). Benefiting from the advantages of high-gain and strong pulse compression in the EDFL, the graphite nano-sheets with different modulation depths only behave as a mode-locking starter and show trivial influence to the pulse shortening in the mode-locked EDFL, indicating that the strong soliton compression mechanism dominates the generation of 430-450 fs pulsewidth in the EDFL passively mode-locked by graphite nano-sheets.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
    [CrossRef] [PubMed]
  2. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
    [CrossRef]
  3. J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett.92(26), 263302 (2008).
    [CrossRef]
  4. F. Chen, J. Xia, D. K. Ferry, and N. Tao, “Dielectric screening enhanced performance in graphene FET,” Nano Lett.9(7), 2571–2574 (2009).
    [CrossRef] [PubMed]
  5. C. Yan, J. H. Cho, and J.-H. Ahn, “Graphene-based flexible and stretchable thin film transistors,” Nanoscale4(16), 4870–4882 (2012).
    [CrossRef] [PubMed]
  6. G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett.10(3), 035104 (2013).
    [CrossRef]
  7. Y.-H. Lin and G.-R. Lin, “Kelly sideband variation and self four-wave-mixing in femtosecond fiber soliton laser mode-locked by multiple exfoliated graphite nano-particles,” Laser Phys. Lett.10(4), 045109 (2013).
    [CrossRef]
  8. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21(38–39), 3874–3899 (2009).
    [CrossRef]
  9. Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44(6), 1082–1091 (2012).
    [CrossRef]
  10. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4(2), 803–810 (2010).
    [CrossRef] [PubMed]
  11. H. Zhang, Q. L. Bao, D. Tang, L. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95(14), 141103 (2009).
    [CrossRef]
  12. J.-L. Xu, X.-L. Li, Y.-Z. Wu, X. P. Hao, J.-L. He, and K.-J. Yang, “Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser,” Opt. Lett.36(10), 1948–1950 (2011).
    [CrossRef] [PubMed]
  13. Y.-H. Lin, Y.-C. Chi, and G.-R. Lin, “Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser,” Laser Phys. Lett.10(5), 055105 (2013).
    [CrossRef]
  14. X.-L. Li, J.-L. Xu, Y.-Z. Wu, J.-L. He, and X.-P. Hao, “Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser,” Opt. Express19(10), 9950–9955 (2011).
    [CrossRef] [PubMed]
  15. G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett.9(8), 581–586 (2012).
    [CrossRef]
  16. K. N. Cheng, Y. H. Lin, S. Yamashita, and G.-R. Lin, “Harmonic order-dependent pulsewidth shortening of a passively mode-locked fiber laser with a carbon nanotube saturable absorber,” IEEE Photon. J.4(5), 1542–1552 (2012).
    [CrossRef]
  17. K. N. Cheng, Y. H. Lin, and G.-R. Lin, “Single- and double-walled carbon nanotube based saturable absorbers for passive mode-locking of an erbium-doped fiber laser,” Laser Phys.23(4), 045105 (2013).
    [CrossRef]
  18. A. Martinez, K. Fuse, and S. Yamashita, “Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers,” Appl. Phys. Lett.99(12), 121107 (2011).
    [CrossRef]
  19. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
    [CrossRef]
  20. P. L. Huang, S. C. Lin, C. Y. Yeh, H. H. Kuo, S. H. Huang, G.-R. Lin, L. J. Li, C. Y. Su, and W. H. Cheng, “Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber,” Opt. Express20(3), 2460–2465 (2012).
    [CrossRef] [PubMed]
  21. Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer Graphene as Saturable Absorber in Mode-locked Laser,” Nano Res.4(3), 297–307 (2011).
    [CrossRef]
  22. Y. Zhu, M. D. Stoller, W. Cai, A. Velamakanni, R. D. Piner, D. Chen, and R. S. Ruoff, “Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets,” ACS Nano4(2), 1227–1233 (2010).
    [CrossRef] [PubMed]
  23. T. Kuila, A. K. Mishra, P. Khanra, N. H. Kim, and J. H. Lee, “Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials,” Nanoscale5(1), 52–71 (2012).
    [CrossRef] [PubMed]
  24. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
    [CrossRef] [PubMed]
  25. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457(7230), 706–710 (2009).
    [CrossRef] [PubMed]
  26. A. Ambrosi, A. Bonanni, Z. Sofer, and M. Pumera, “Large-scale quantification of CVD graphene surface coverage,” Nanoscale5(6), 2379–2387 (2013).
    [CrossRef] [PubMed]
  27. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
    [CrossRef] [PubMed]
  28. C. Y. Su, A. Y. Lu, Y. Xu, F. R. Chen, A. N. Khlobystov, and L. J. Li, “High-quality thin graphene films from fast electrochemical exfoliation,” ACS Nano5(3), 2332–2339 (2011).
    [CrossRef] [PubMed]
  29. J. Wang, K. K. Manga, Q. Bao, and K. P. Loh, “High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte,” J. Am. Chem. Soc.133(23), 8888–8891 (2011).
    [CrossRef] [PubMed]
  30. H. S. Choo, T. Kinumoto, M. Nose, K. Miyazaki, T. Abe, and Z. Ogumi, “Electrochemical oxidation of highly oriented pyrolytic graphite during potential cycling in sulfuric acid solution,” J. Power Sources185(2), 740–746 (2008).
    [CrossRef]
  31. L. Liao, J. Bai, Y. Qu, Y. Huang, and X. Duan, “Single-layer graphene on Al2O3/Si substrate: better contrast and higher performance of graphene transistors,” Nanotechnology21(1), 015705 (2010).
    [CrossRef] [PubMed]
  32. L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. W. Zhou, “Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics,” ACS Nano4(5), 2865–2873 (2010).
    [CrossRef] [PubMed]
  33. G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett.8(12), 880–886 (2011).
    [CrossRef]
  34. Y.-H. Lin and G.-R. Lin, “Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser,” Laser Phys. Lett.9(5), 398–404 (2012).
    [CrossRef]
  35. K. H. Lin, J. J. Kang, H. H. Wu, C. K. Lee, and G.-R. Lin, “Manipulation of operation states by polarization control in an erbium-doped fiber laser with a hybrid saturable absorber,” Opt. Express17(6), 4806–4814 (2009).
    [CrossRef] [PubMed]
  36. J. Lu, J. X. Yang, J. Wang, A. Lim, S. Wang, and K. P. Loh, “One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids,” ACS Nano3(8), 2367–2375 (2009).
    [CrossRef] [PubMed]
  37. G. U. Sumanasekera, J. L. Allen, S. L. Fang, A. L. Loper, A. M. Rao, and P. C. Eklund, “Electrochemical Oxidation of Single Wall Carbon Nanotube Bundles in Sulfuric Acid,” J. Phys. Chem. B103(21), 4292–4297 (1999).
    [CrossRef]
  38. H. Byun, D. Pudo, J. Chen, E. P. Ippen, and F. X. Kärtner, “High-repetition-rate, 491 MHz, femtosecond fiber laser with low timing jitter,” Opt. Lett.33(19), 2221–2223 (2008).
    [CrossRef] [PubMed]
  39. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
    [CrossRef] [PubMed]
  40. M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cançado, A. Jorio, and R. Saito, “Studying disorder in graphite-based systems by Raman spectroscopy,” Phys. Chem. Chem. Phys.9(11), 1276–1291 (2007).
    [CrossRef] [PubMed]
  41. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, “Raman scattering from high-frequency phonons in supported n-graphene layer films,” Nano Lett.6(12), 2667–2673 (2006).
    [CrossRef] [PubMed]
  42. Z. Q. Luo, T. Yu, Z. H. Ni, S. H. Lim, H. L. Hu, J. Z. Shang, L. Liu, Z. X. Shen, and J. Y. Lin, “Electronic Structures and Structural Evolution of Hydrogenated Graphene Probed by Raman Spectroscopy,” J. Phys. Chem. C115(5), 1422–1427 (2011).
    [CrossRef]
  43. A. K. Gupta, Y. Tang, V. H. Crespi, and P. C. Eklund, “Nondispersive Raman D band activated by well-ordered interlayer interactions in rotationally stacked bilayer graphene,” Phys. Rev. B82(24), 241406 (2010).
    [CrossRef]
  44. K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, and R. Car, “Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets,” Nano Lett.8(1), 36–41 (2008).
    [CrossRef] [PubMed]
  45. H. Huang, Y. Xia, X. Tao, J. Du, J. Fang, Y. Gan, and W. Zhang, “Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation–expansion–microexplosion mechanism,” J. Mater. Chem.22(21), 10452–10456 (2012).
    [CrossRef]
  46. H. A. Haus, “Mode-Locking of Lasers,” IEEE J. Sel. Top. Quantum Electron.6(6), 1173–1185 (2000).
    [CrossRef]
  47. G.-R. Lin, C.-L. Pan, and Y.-T. Lin, “Self-steepening of prechirped amplified and compressed 29-fs fiber laser pulse in large-mode-area erbium-doped fiber amplifier,” J. Lightwave Technol.25(11), 3597–3601 (2007).
    [CrossRef]
  48. Y.-T. Lin and G.-R. Lin, “Dual-stage soliton compression of a self-started additive pulse mode-locked erbium-doped fiber laser for 48 fs pulse generation,” Opt. Lett.31(10), 1382–1384 (2006).
    [CrossRef] [PubMed]

2013 (5)

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett.10(3), 035104 (2013).
[CrossRef]

Y.-H. Lin and G.-R. Lin, “Kelly sideband variation and self four-wave-mixing in femtosecond fiber soliton laser mode-locked by multiple exfoliated graphite nano-particles,” Laser Phys. Lett.10(4), 045109 (2013).
[CrossRef]

A. Ambrosi, A. Bonanni, Z. Sofer, and M. Pumera, “Large-scale quantification of CVD graphene surface coverage,” Nanoscale5(6), 2379–2387 (2013).
[CrossRef] [PubMed]

K. N. Cheng, Y. H. Lin, and G.-R. Lin, “Single- and double-walled carbon nanotube based saturable absorbers for passive mode-locking of an erbium-doped fiber laser,” Laser Phys.23(4), 045105 (2013).
[CrossRef]

Y.-H. Lin, Y.-C. Chi, and G.-R. Lin, “Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser,” Laser Phys. Lett.10(5), 055105 (2013).
[CrossRef]

2012 (8)

Y.-H. Lin and G.-R. Lin, “Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser,” Laser Phys. Lett.9(5), 398–404 (2012).
[CrossRef]

G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett.9(8), 581–586 (2012).
[CrossRef]

K. N. Cheng, Y. H. Lin, S. Yamashita, and G.-R. Lin, “Harmonic order-dependent pulsewidth shortening of a passively mode-locked fiber laser with a carbon nanotube saturable absorber,” IEEE Photon. J.4(5), 1542–1552 (2012).
[CrossRef]

C. Yan, J. H. Cho, and J.-H. Ahn, “Graphene-based flexible and stretchable thin film transistors,” Nanoscale4(16), 4870–4882 (2012).
[CrossRef] [PubMed]

T. Kuila, A. K. Mishra, P. Khanra, N. H. Kim, and J. H. Lee, “Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials,” Nanoscale5(1), 52–71 (2012).
[CrossRef] [PubMed]

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44(6), 1082–1091 (2012).
[CrossRef]

H. Huang, Y. Xia, X. Tao, J. Du, J. Fang, Y. Gan, and W. Zhang, “Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation–expansion–microexplosion mechanism,” J. Mater. Chem.22(21), 10452–10456 (2012).
[CrossRef]

P. L. Huang, S. C. Lin, C. Y. Yeh, H. H. Kuo, S. H. Huang, G.-R. Lin, L. J. Li, C. Y. Su, and W. H. Cheng, “Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber,” Opt. Express20(3), 2460–2465 (2012).
[CrossRef] [PubMed]

2011 (8)

X.-L. Li, J.-L. Xu, Y.-Z. Wu, J.-L. He, and X.-P. Hao, “Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser,” Opt. Express19(10), 9950–9955 (2011).
[CrossRef] [PubMed]

J.-L. Xu, X.-L. Li, Y.-Z. Wu, X. P. Hao, J.-L. He, and K.-J. Yang, “Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser,” Opt. Lett.36(10), 1948–1950 (2011).
[CrossRef] [PubMed]

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer Graphene as Saturable Absorber in Mode-locked Laser,” Nano Res.4(3), 297–307 (2011).
[CrossRef]

A. Martinez, K. Fuse, and S. Yamashita, “Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers,” Appl. Phys. Lett.99(12), 121107 (2011).
[CrossRef]

C. Y. Su, A. Y. Lu, Y. Xu, F. R. Chen, A. N. Khlobystov, and L. J. Li, “High-quality thin graphene films from fast electrochemical exfoliation,” ACS Nano5(3), 2332–2339 (2011).
[CrossRef] [PubMed]

J. Wang, K. K. Manga, Q. Bao, and K. P. Loh, “High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte,” J. Am. Chem. Soc.133(23), 8888–8891 (2011).
[CrossRef] [PubMed]

G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett.8(12), 880–886 (2011).
[CrossRef]

Z. Q. Luo, T. Yu, Z. H. Ni, S. H. Lim, H. L. Hu, J. Z. Shang, L. Liu, Z. X. Shen, and J. Y. Lin, “Electronic Structures and Structural Evolution of Hydrogenated Graphene Probed by Raman Spectroscopy,” J. Phys. Chem. C115(5), 1422–1427 (2011).
[CrossRef]

2010 (6)

A. K. Gupta, Y. Tang, V. H. Crespi, and P. C. Eklund, “Nondispersive Raman D band activated by well-ordered interlayer interactions in rotationally stacked bilayer graphene,” Phys. Rev. B82(24), 241406 (2010).
[CrossRef]

L. Liao, J. Bai, Y. Qu, Y. Huang, and X. Duan, “Single-layer graphene on Al2O3/Si substrate: better contrast and higher performance of graphene transistors,” Nanotechnology21(1), 015705 (2010).
[CrossRef] [PubMed]

L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. W. Zhou, “Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics,” ACS Nano4(5), 2865–2873 (2010).
[CrossRef] [PubMed]

Y. Zhu, M. D. Stoller, W. Cai, A. Velamakanni, R. D. Piner, D. Chen, and R. S. Ruoff, “Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets,” ACS Nano4(2), 1227–1233 (2010).
[CrossRef] [PubMed]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

2009 (8)

F. Chen, J. Xia, D. K. Ferry, and N. Tao, “Dielectric screening enhanced performance in graphene FET,” Nano Lett.9(7), 2571–2574 (2009).
[CrossRef] [PubMed]

H. Zhang, Q. L. Bao, D. Tang, L. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95(14), 141103 (2009).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21(38–39), 3874–3899 (2009).
[CrossRef]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457(7230), 706–710 (2009).
[CrossRef] [PubMed]

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
[CrossRef] [PubMed]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

J. Lu, J. X. Yang, J. Wang, A. Lim, S. Wang, and K. P. Loh, “One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids,” ACS Nano3(8), 2367–2375 (2009).
[CrossRef] [PubMed]

K. H. Lin, J. J. Kang, H. H. Wu, C. K. Lee, and G.-R. Lin, “Manipulation of operation states by polarization control in an erbium-doped fiber laser with a hybrid saturable absorber,” Opt. Express17(6), 4806–4814 (2009).
[CrossRef] [PubMed]

2008 (5)

H. Byun, D. Pudo, J. Chen, E. P. Ippen, and F. X. Kärtner, “High-repetition-rate, 491 MHz, femtosecond fiber laser with low timing jitter,” Opt. Lett.33(19), 2221–2223 (2008).
[CrossRef] [PubMed]

K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, and R. Car, “Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets,” Nano Lett.8(1), 36–41 (2008).
[CrossRef] [PubMed]

H. S. Choo, T. Kinumoto, M. Nose, K. Miyazaki, T. Abe, and Z. Ogumi, “Electrochemical oxidation of highly oriented pyrolytic graphite during potential cycling in sulfuric acid solution,” J. Power Sources185(2), 740–746 (2008).
[CrossRef]

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett.92(26), 263302 (2008).
[CrossRef]

2007 (2)

M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cançado, A. Jorio, and R. Saito, “Studying disorder in graphite-based systems by Raman spectroscopy,” Phys. Chem. Chem. Phys.9(11), 1276–1291 (2007).
[CrossRef] [PubMed]

G.-R. Lin, C.-L. Pan, and Y.-T. Lin, “Self-steepening of prechirped amplified and compressed 29-fs fiber laser pulse in large-mode-area erbium-doped fiber amplifier,” J. Lightwave Technol.25(11), 3597–3601 (2007).
[CrossRef]

2006 (3)

Y.-T. Lin and G.-R. Lin, “Dual-stage soliton compression of a self-started additive pulse mode-locked erbium-doped fiber laser for 48 fs pulse generation,” Opt. Lett.31(10), 1382–1384 (2006).
[CrossRef] [PubMed]

A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, “Raman scattering from high-frequency phonons in supported n-graphene layer films,” Nano Lett.6(12), 2667–2673 (2006).
[CrossRef] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
[CrossRef] [PubMed]

2000 (1)

H. A. Haus, “Mode-Locking of Lasers,” IEEE J. Sel. Top. Quantum Electron.6(6), 1173–1185 (2000).
[CrossRef]

1999 (1)

G. U. Sumanasekera, J. L. Allen, S. L. Fang, A. L. Loper, A. M. Rao, and P. C. Eklund, “Electrochemical Oxidation of Single Wall Carbon Nanotube Bundles in Sulfuric Acid,” J. Phys. Chem. B103(21), 4292–4297 (1999).
[CrossRef]

Abe, T.

H. S. Choo, T. Kinumoto, M. Nose, K. Miyazaki, T. Abe, and Z. Ogumi, “Electrochemical oxidation of highly oriented pyrolytic graphite during potential cycling in sulfuric acid solution,” J. Power Sources185(2), 740–746 (2008).
[CrossRef]

Abramski, K. M.

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett.10(3), 035104 (2013).
[CrossRef]

G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett.9(8), 581–586 (2012).
[CrossRef]

Ahn, J. H.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Ahn, J.-H.

C. Yan, J. H. Cho, and J.-H. Ahn, “Graphene-based flexible and stretchable thin film transistors,” Nanoscale4(16), 4870–4882 (2012).
[CrossRef] [PubMed]

Aksay, I. A.

K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, and R. Car, “Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets,” Nano Lett.8(1), 36–41 (2008).
[CrossRef] [PubMed]

Allen, J. L.

G. U. Sumanasekera, J. L. Allen, S. L. Fang, A. L. Loper, A. M. Rao, and P. C. Eklund, “Electrochemical Oxidation of Single Wall Carbon Nanotube Bundles in Sulfuric Acid,” J. Phys. Chem. B103(21), 4292–4297 (1999).
[CrossRef]

Ambrosi, A.

A. Ambrosi, A. Bonanni, Z. Sofer, and M. Pumera, “Large-scale quantification of CVD graphene surface coverage,” Nanoscale5(6), 2379–2387 (2013).
[CrossRef] [PubMed]

Bai, J.

L. Liao, J. Bai, Y. Qu, Y. Huang, and X. Duan, “Single-layer graphene on Al2O3/Si substrate: better contrast and higher performance of graphene transistors,” Nanotechnology21(1), 015705 (2010).
[CrossRef] [PubMed]

Bao, Q.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer Graphene as Saturable Absorber in Mode-locked Laser,” Nano Res.4(3), 297–307 (2011).
[CrossRef]

J. Wang, K. K. Manga, Q. Bao, and K. P. Loh, “High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte,” J. Am. Chem. Soc.133(23), 8888–8891 (2011).
[CrossRef] [PubMed]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Bao, Q. L.

H. Zhang, Q. L. Bao, D. Tang, L. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95(14), 141103 (2009).
[CrossRef]

Bao, Z.

J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett.92(26), 263302 (2008).
[CrossRef]

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Becerril, H. A.

J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett.92(26), 263302 (2008).
[CrossRef]

Blighe, F. M.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Boland, J. J.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Bonaccorso, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21(38–39), 3874–3899 (2009).
[CrossRef]

Bonanni, A.

A. Ambrosi, A. Bonanni, Z. Sofer, and M. Pumera, “Large-scale quantification of CVD graphene surface coverage,” Nanoscale5(6), 2379–2387 (2013).
[CrossRef] [PubMed]

Bulovic, V.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
[CrossRef] [PubMed]

Byrne, M.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Byun, H.

Cai, W.

Y. Zhu, M. D. Stoller, W. Cai, A. Velamakanni, R. D. Piner, D. Chen, and R. S. Ruoff, “Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets,” ACS Nano4(2), 1227–1233 (2010).
[CrossRef] [PubMed]

Cançado, L. G.

M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cançado, A. Jorio, and R. Saito, “Studying disorder in graphite-based systems by Raman spectroscopy,” Phys. Chem. Chem. Phys.9(11), 1276–1291 (2007).
[CrossRef] [PubMed]

Car, R.

K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, and R. Car, “Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets,” Nano Lett.8(1), 36–41 (2008).
[CrossRef] [PubMed]

Casiraghi, C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Chen, D.

Y. Zhu, M. D. Stoller, W. Cai, A. Velamakanni, R. D. Piner, D. Chen, and R. S. Ruoff, “Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets,” ACS Nano4(2), 1227–1233 (2010).
[CrossRef] [PubMed]

Chen, F.

F. Chen, J. Xia, D. K. Ferry, and N. Tao, “Dielectric screening enhanced performance in graphene FET,” Nano Lett.9(7), 2571–2574 (2009).
[CrossRef] [PubMed]

Chen, F. R.

C. Y. Su, A. Y. Lu, Y. Xu, F. R. Chen, A. N. Khlobystov, and L. J. Li, “High-quality thin graphene films from fast electrochemical exfoliation,” ACS Nano5(3), 2332–2339 (2011).
[CrossRef] [PubMed]

Chen, G.

A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, “Raman scattering from high-frequency phonons in supported n-graphene layer films,” Nano Lett.6(12), 2667–2673 (2006).
[CrossRef] [PubMed]

Chen, J.

Chen, Y.

J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett.92(26), 263302 (2008).
[CrossRef]

Cheng, K. N.

K. N. Cheng, Y. H. Lin, and G.-R. Lin, “Single- and double-walled carbon nanotube based saturable absorbers for passive mode-locking of an erbium-doped fiber laser,” Laser Phys.23(4), 045105 (2013).
[CrossRef]

K. N. Cheng, Y. H. Lin, S. Yamashita, and G.-R. Lin, “Harmonic order-dependent pulsewidth shortening of a passively mode-locked fiber laser with a carbon nanotube saturable absorber,” IEEE Photon. J.4(5), 1542–1552 (2012).
[CrossRef]

Cheng, W. H.

Chi, Y.-C.

Y.-H. Lin, Y.-C. Chi, and G.-R. Lin, “Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser,” Laser Phys. Lett.10(5), 055105 (2013).
[CrossRef]

Cho, J. H.

C. Yan, J. H. Cho, and J.-H. Ahn, “Graphene-based flexible and stretchable thin film transistors,” Nanoscale4(16), 4870–4882 (2012).
[CrossRef] [PubMed]

Choi, J. Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Choo, H. S.

H. S. Choo, T. Kinumoto, M. Nose, K. Miyazaki, T. Abe, and Z. Ogumi, “Electrochemical oxidation of highly oriented pyrolytic graphite during potential cycling in sulfuric acid solution,” J. Power Sources185(2), 740–746 (2008).
[CrossRef]

Coleman, J. N.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Crespi, V. H.

A. K. Gupta, Y. Tang, V. H. Crespi, and P. C. Eklund, “Nondispersive Raman D band activated by well-ordered interlayer interactions in rotationally stacked bilayer graphene,” Phys. Rev. B82(24), 241406 (2010).
[CrossRef]

De, S.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Dresselhaus, G.

M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cançado, A. Jorio, and R. Saito, “Studying disorder in graphite-based systems by Raman spectroscopy,” Phys. Chem. Chem. Phys.9(11), 1276–1291 (2007).
[CrossRef] [PubMed]

Dresselhaus, M. S.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
[CrossRef] [PubMed]

M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cançado, A. Jorio, and R. Saito, “Studying disorder in graphite-based systems by Raman spectroscopy,” Phys. Chem. Chem. Phys.9(11), 1276–1291 (2007).
[CrossRef] [PubMed]

Du, J.

H. Huang, Y. Xia, X. Tao, J. Du, J. Fang, Y. Gan, and W. Zhang, “Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation–expansion–microexplosion mechanism,” J. Mater. Chem.22(21), 10452–10456 (2012).
[CrossRef]

Duan, X.

L. Liao, J. Bai, Y. Qu, Y. Huang, and X. Duan, “Single-layer graphene on Al2O3/Si substrate: better contrast and higher performance of graphene transistors,” Nanotechnology21(1), 015705 (2010).
[CrossRef] [PubMed]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Duesberg, G.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Eklund, P. C.

A. K. Gupta, Y. Tang, V. H. Crespi, and P. C. Eklund, “Nondispersive Raman D band activated by well-ordered interlayer interactions in rotationally stacked bilayer graphene,” Phys. Rev. B82(24), 241406 (2010).
[CrossRef]

A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, “Raman scattering from high-frequency phonons in supported n-graphene layer films,” Nano Lett.6(12), 2667–2673 (2006).
[CrossRef] [PubMed]

G. U. Sumanasekera, J. L. Allen, S. L. Fang, A. L. Loper, A. M. Rao, and P. C. Eklund, “Electrochemical Oxidation of Single Wall Carbon Nanotube Bundles in Sulfuric Acid,” J. Phys. Chem. B103(21), 4292–4297 (1999).
[CrossRef]

Fang, J.

H. Huang, Y. Xia, X. Tao, J. Du, J. Fang, Y. Gan, and W. Zhang, “Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation–expansion–microexplosion mechanism,” J. Mater. Chem.22(21), 10452–10456 (2012).
[CrossRef]

Fang, S. L.

G. U. Sumanasekera, J. L. Allen, S. L. Fang, A. L. Loper, A. M. Rao, and P. C. Eklund, “Electrochemical Oxidation of Single Wall Carbon Nanotube Bundles in Sulfuric Acid,” J. Phys. Chem. B103(21), 4292–4297 (1999).
[CrossRef]

Ferrari, A. C.

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44(6), 1082–1091 (2012).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21(38–39), 3874–3899 (2009).
[CrossRef]

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Ferry, D. K.

F. Chen, J. Xia, D. K. Ferry, and N. Tao, “Dielectric screening enhanced performance in graphene FET,” Nano Lett.9(7), 2571–2574 (2009).
[CrossRef] [PubMed]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Fuse, K.

A. Martinez, K. Fuse, and S. Yamashita, “Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers,” Appl. Phys. Lett.99(12), 121107 (2011).
[CrossRef]

Gan, Y.

H. Huang, Y. Xia, X. Tao, J. Du, J. Fang, Y. Gan, and W. Zhang, “Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation–expansion–microexplosion mechanism,” J. Mater. Chem.22(21), 10452–10456 (2012).
[CrossRef]

Geim, A. K.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Gomez De Arco, L.

L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. W. Zhou, “Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics,” ACS Nano4(5), 2865–2873 (2010).
[CrossRef] [PubMed]

Goodhue, R.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Gun’Ko, Y. K.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Gupta, A.

A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, “Raman scattering from high-frequency phonons in supported n-graphene layer films,” Nano Lett.6(12), 2667–2673 (2006).
[CrossRef] [PubMed]

Gupta, A. K.

A. K. Gupta, Y. Tang, V. H. Crespi, and P. C. Eklund, “Nondispersive Raman D band activated by well-ordered interlayer interactions in rotationally stacked bilayer graphene,” Phys. Rev. B82(24), 241406 (2010).
[CrossRef]

Hao, X. P.

Hao, X.-P.

Hasan, T.

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44(6), 1082–1091 (2012).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21(38–39), 3874–3899 (2009).
[CrossRef]

Haus, H. A.

H. A. Haus, “Mode-Locking of Lasers,” IEEE J. Sel. Top. Quantum Electron.6(6), 1173–1185 (2000).
[CrossRef]

He, J.-L.

Hernandez, Y.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Ho, J.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
[CrossRef] [PubMed]

Holland, B.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Hong, B. H.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Hu, H. L.

Z. Q. Luo, T. Yu, Z. H. Ni, S. H. Lim, H. L. Hu, J. Z. Shang, L. Liu, Z. X. Shen, and J. Y. Lin, “Electronic Structures and Structural Evolution of Hydrogenated Graphene Probed by Raman Spectroscopy,” J. Phys. Chem. C115(5), 1422–1427 (2011).
[CrossRef]

Huang, H.

H. Huang, Y. Xia, X. Tao, J. Du, J. Fang, Y. Gan, and W. Zhang, “Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation–expansion–microexplosion mechanism,” J. Mater. Chem.22(21), 10452–10456 (2012).
[CrossRef]

Huang, P. L.

Huang, S. H.

Huang, Y.

L. Liao, J. Bai, Y. Qu, Y. Huang, and X. Duan, “Single-layer graphene on Al2O3/Si substrate: better contrast and higher performance of graphene transistors,” Nanotechnology21(1), 015705 (2010).
[CrossRef] [PubMed]

Hutchison, J.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Ippen, E. P.

Jang, H.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Jia, X.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
[CrossRef] [PubMed]

Jiang, D.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Jorio, A.

M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cançado, A. Jorio, and R. Saito, “Studying disorder in graphite-based systems by Raman spectroscopy,” Phys. Chem. Chem. Phys.9(11), 1276–1291 (2007).
[CrossRef] [PubMed]

Joshi, P.

A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, “Raman scattering from high-frequency phonons in supported n-graphene layer films,” Nano Lett.6(12), 2667–2673 (2006).
[CrossRef] [PubMed]

Kaczmarek, P.

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett.10(3), 035104 (2013).
[CrossRef]

Kang, J. J.

Kärtner, F. X.

Khanra, P.

T. Kuila, A. K. Mishra, P. Khanra, N. H. Kim, and J. H. Lee, “Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials,” Nanoscale5(1), 52–71 (2012).
[CrossRef] [PubMed]

Khlobystov, A. N.

C. Y. Su, A. Y. Lu, Y. Xu, F. R. Chen, A. N. Khlobystov, and L. J. Li, “High-quality thin graphene films from fast electrochemical exfoliation,” ACS Nano5(3), 2332–2339 (2011).
[CrossRef] [PubMed]

Kim, J. M.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Kim, K. S.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457(7230), 706–710 (2009).
[CrossRef] [PubMed]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Kim, N. H.

T. Kuila, A. K. Mishra, P. Khanra, N. H. Kim, and J. H. Lee, “Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials,” Nanoscale5(1), 52–71 (2012).
[CrossRef] [PubMed]

Kim, P.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Kinumoto, T.

H. S. Choo, T. Kinumoto, M. Nose, K. Miyazaki, T. Abe, and Z. Ogumi, “Electrochemical oxidation of highly oriented pyrolytic graphite during potential cycling in sulfuric acid solution,” J. Power Sources185(2), 740–746 (2008).
[CrossRef]

Kong, J.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
[CrossRef] [PubMed]

Krishnamurthy, S.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Krzempek, K.

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett.10(3), 035104 (2013).
[CrossRef]

Kudin, K. N.

K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, and R. Car, “Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets,” Nano Lett.8(1), 36–41 (2008).
[CrossRef] [PubMed]

Kuila, T.

T. Kuila, A. K. Mishra, P. Khanra, N. H. Kim, and J. H. Lee, “Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials,” Nanoscale5(1), 52–71 (2012).
[CrossRef] [PubMed]

Kuo, H. H.

Lazzeri, M.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Lee, C. K.

Lee, J. H.

T. Kuila, A. K. Mishra, P. Khanra, N. H. Kim, and J. H. Lee, “Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials,” Nanoscale5(1), 52–71 (2012).
[CrossRef] [PubMed]

Lee, S. Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Li, L. J.

P. L. Huang, S. C. Lin, C. Y. Yeh, H. H. Kuo, S. H. Huang, G.-R. Lin, L. J. Li, C. Y. Su, and W. H. Cheng, “Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber,” Opt. Express20(3), 2460–2465 (2012).
[CrossRef] [PubMed]

C. Y. Su, A. Y. Lu, Y. Xu, F. R. Chen, A. N. Khlobystov, and L. J. Li, “High-quality thin graphene films from fast electrochemical exfoliation,” ACS Nano5(3), 2332–2339 (2011).
[CrossRef] [PubMed]

Li, X.-L.

Liao, L.

L. Liao, J. Bai, Y. Qu, Y. Huang, and X. Duan, “Single-layer graphene on Al2O3/Si substrate: better contrast and higher performance of graphene transistors,” Nanotechnology21(1), 015705 (2010).
[CrossRef] [PubMed]

Lim, A.

J. Lu, J. X. Yang, J. Wang, A. Lim, S. Wang, and K. P. Loh, “One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids,” ACS Nano3(8), 2367–2375 (2009).
[CrossRef] [PubMed]

Lim, S. H.

Z. Q. Luo, T. Yu, Z. H. Ni, S. H. Lim, H. L. Hu, J. Z. Shang, L. Liu, Z. X. Shen, and J. Y. Lin, “Electronic Structures and Structural Evolution of Hydrogenated Graphene Probed by Raman Spectroscopy,” J. Phys. Chem. C115(5), 1422–1427 (2011).
[CrossRef]

Lin, G.-R.

K. N. Cheng, Y. H. Lin, and G.-R. Lin, “Single- and double-walled carbon nanotube based saturable absorbers for passive mode-locking of an erbium-doped fiber laser,” Laser Phys.23(4), 045105 (2013).
[CrossRef]

Y.-H. Lin, Y.-C. Chi, and G.-R. Lin, “Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser,” Laser Phys. Lett.10(5), 055105 (2013).
[CrossRef]

Y.-H. Lin and G.-R. Lin, “Kelly sideband variation and self four-wave-mixing in femtosecond fiber soliton laser mode-locked by multiple exfoliated graphite nano-particles,” Laser Phys. Lett.10(4), 045109 (2013).
[CrossRef]

P. L. Huang, S. C. Lin, C. Y. Yeh, H. H. Kuo, S. H. Huang, G.-R. Lin, L. J. Li, C. Y. Su, and W. H. Cheng, “Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber,” Opt. Express20(3), 2460–2465 (2012).
[CrossRef] [PubMed]

K. N. Cheng, Y. H. Lin, S. Yamashita, and G.-R. Lin, “Harmonic order-dependent pulsewidth shortening of a passively mode-locked fiber laser with a carbon nanotube saturable absorber,” IEEE Photon. J.4(5), 1542–1552 (2012).
[CrossRef]

Y.-H. Lin and G.-R. Lin, “Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser,” Laser Phys. Lett.9(5), 398–404 (2012).
[CrossRef]

G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett.8(12), 880–886 (2011).
[CrossRef]

K. H. Lin, J. J. Kang, H. H. Wu, C. K. Lee, and G.-R. Lin, “Manipulation of operation states by polarization control in an erbium-doped fiber laser with a hybrid saturable absorber,” Opt. Express17(6), 4806–4814 (2009).
[CrossRef] [PubMed]

G.-R. Lin, C.-L. Pan, and Y.-T. Lin, “Self-steepening of prechirped amplified and compressed 29-fs fiber laser pulse in large-mode-area erbium-doped fiber amplifier,” J. Lightwave Technol.25(11), 3597–3601 (2007).
[CrossRef]

Y.-T. Lin and G.-R. Lin, “Dual-stage soliton compression of a self-started additive pulse mode-locked erbium-doped fiber laser for 48 fs pulse generation,” Opt. Lett.31(10), 1382–1384 (2006).
[CrossRef] [PubMed]

Lin, J. Y.

Z. Q. Luo, T. Yu, Z. H. Ni, S. H. Lim, H. L. Hu, J. Z. Shang, L. Liu, Z. X. Shen, and J. Y. Lin, “Electronic Structures and Structural Evolution of Hydrogenated Graphene Probed by Raman Spectroscopy,” J. Phys. Chem. C115(5), 1422–1427 (2011).
[CrossRef]

Lin, K. H.

Lin, S. C.

Lin, Y. H.

K. N. Cheng, Y. H. Lin, and G.-R. Lin, “Single- and double-walled carbon nanotube based saturable absorbers for passive mode-locking of an erbium-doped fiber laser,” Laser Phys.23(4), 045105 (2013).
[CrossRef]

K. N. Cheng, Y. H. Lin, S. Yamashita, and G.-R. Lin, “Harmonic order-dependent pulsewidth shortening of a passively mode-locked fiber laser with a carbon nanotube saturable absorber,” IEEE Photon. J.4(5), 1542–1552 (2012).
[CrossRef]

Lin, Y.-C.

G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett.8(12), 880–886 (2011).
[CrossRef]

Lin, Y.-H.

Y.-H. Lin and G.-R. Lin, “Kelly sideband variation and self four-wave-mixing in femtosecond fiber soliton laser mode-locked by multiple exfoliated graphite nano-particles,” Laser Phys. Lett.10(4), 045109 (2013).
[CrossRef]

Y.-H. Lin, Y.-C. Chi, and G.-R. Lin, “Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser,” Laser Phys. Lett.10(5), 055105 (2013).
[CrossRef]

Y.-H. Lin and G.-R. Lin, “Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser,” Laser Phys. Lett.9(5), 398–404 (2012).
[CrossRef]

Lin, Y.-T.

Liu, L.

Z. Q. Luo, T. Yu, Z. H. Ni, S. H. Lim, H. L. Hu, J. Z. Shang, L. Liu, Z. X. Shen, and J. Y. Lin, “Electronic Structures and Structural Evolution of Hydrogenated Graphene Probed by Raman Spectroscopy,” J. Phys. Chem. C115(5), 1422–1427 (2011).
[CrossRef]

Liu, Z.

J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett.92(26), 263302 (2008).
[CrossRef]

Loh, K. P.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer Graphene as Saturable Absorber in Mode-locked Laser,” Nano Res.4(3), 297–307 (2011).
[CrossRef]

J. Wang, K. K. Manga, Q. Bao, and K. P. Loh, “High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte,” J. Am. Chem. Soc.133(23), 8888–8891 (2011).
[CrossRef] [PubMed]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

H. Zhang, Q. L. Bao, D. Tang, L. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95(14), 141103 (2009).
[CrossRef]

J. Lu, J. X. Yang, J. Wang, A. Lim, S. Wang, and K. P. Loh, “One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids,” ACS Nano3(8), 2367–2375 (2009).
[CrossRef] [PubMed]

Loper, A. L.

G. U. Sumanasekera, J. L. Allen, S. L. Fang, A. L. Loper, A. M. Rao, and P. C. Eklund, “Electrochemical Oxidation of Single Wall Carbon Nanotube Bundles in Sulfuric Acid,” J. Phys. Chem. B103(21), 4292–4297 (1999).
[CrossRef]

Lotya, M.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Lu, A. Y.

C. Y. Su, A. Y. Lu, Y. Xu, F. R. Chen, A. N. Khlobystov, and L. J. Li, “High-quality thin graphene films from fast electrochemical exfoliation,” ACS Nano5(3), 2332–2339 (2011).
[CrossRef] [PubMed]

Lu, J.

J. Lu, J. X. Yang, J. Wang, A. Lim, S. Wang, and K. P. Loh, “One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids,” ACS Nano3(8), 2367–2375 (2009).
[CrossRef] [PubMed]

Luo, Z. Q.

Z. Q. Luo, T. Yu, Z. H. Ni, S. H. Lim, H. L. Hu, J. Z. Shang, L. Liu, Z. X. Shen, and J. Y. Lin, “Electronic Structures and Structural Evolution of Hydrogenated Graphene Probed by Raman Spectroscopy,” J. Phys. Chem. C115(5), 1422–1427 (2011).
[CrossRef]

Manga, K. K.

J. Wang, K. K. Manga, Q. Bao, and K. P. Loh, “High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte,” J. Am. Chem. Soc.133(23), 8888–8891 (2011).
[CrossRef] [PubMed]

Martinez, A.

A. Martinez, K. Fuse, and S. Yamashita, “Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers,” Appl. Phys. Lett.99(12), 121107 (2011).
[CrossRef]

Mauri, F.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

McGovern, I. T.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Meyer, J. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Mishra, A. K.

T. Kuila, A. K. Mishra, P. Khanra, N. H. Kim, and J. H. Lee, “Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials,” Nanoscale5(1), 52–71 (2012).
[CrossRef] [PubMed]

Miyazaki, K.

H. S. Choo, T. Kinumoto, M. Nose, K. Miyazaki, T. Abe, and Z. Ogumi, “Electrochemical oxidation of highly oriented pyrolytic graphite during potential cycling in sulfuric acid solution,” J. Power Sources185(2), 740–746 (2008).
[CrossRef]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Nezich, D.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
[CrossRef] [PubMed]

Ni, Z.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer Graphene as Saturable Absorber in Mode-locked Laser,” Nano Res.4(3), 297–307 (2011).
[CrossRef]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Ni, Z. H.

Z. Q. Luo, T. Yu, Z. H. Ni, S. H. Lim, H. L. Hu, J. Z. Shang, L. Liu, Z. X. Shen, and J. Y. Lin, “Electronic Structures and Structural Evolution of Hydrogenated Graphene Probed by Raman Spectroscopy,” J. Phys. Chem. C115(5), 1422–1427 (2011).
[CrossRef]

Nicolosi, V.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Niraj, P.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Nose, M.

H. S. Choo, T. Kinumoto, M. Nose, K. Miyazaki, T. Abe, and Z. Ogumi, “Electrochemical oxidation of highly oriented pyrolytic graphite during potential cycling in sulfuric acid solution,” J. Power Sources185(2), 740–746 (2008).
[CrossRef]

Novoselov, K. S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Ogumi, Z.

H. S. Choo, T. Kinumoto, M. Nose, K. Miyazaki, T. Abe, and Z. Ogumi, “Electrochemical oxidation of highly oriented pyrolytic graphite during potential cycling in sulfuric acid solution,” J. Power Sources185(2), 740–746 (2008).
[CrossRef]

Ozbas, B.

K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, and R. Car, “Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets,” Nano Lett.8(1), 36–41 (2008).
[CrossRef] [PubMed]

Pan, C.-L.

Pasternak, I.

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett.10(3), 035104 (2013).
[CrossRef]

Peumans, P.

J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett.92(26), 263302 (2008).
[CrossRef]

Pimenta, M. A.

M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cançado, A. Jorio, and R. Saito, “Studying disorder in graphite-based systems by Raman spectroscopy,” Phys. Chem. Chem. Phys.9(11), 1276–1291 (2007).
[CrossRef] [PubMed]

Piner, R. D.

Y. Zhu, M. D. Stoller, W. Cai, A. Velamakanni, R. D. Piner, D. Chen, and R. S. Ruoff, “Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets,” ACS Nano4(2), 1227–1233 (2010).
[CrossRef] [PubMed]

Piscanec, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Polavarapu, L.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer Graphene as Saturable Absorber in Mode-locked Laser,” Nano Res.4(3), 297–307 (2011).
[CrossRef]

Popa, D.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Prud’homme, R. K.

K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, and R. Car, “Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets,” Nano Lett.8(1), 36–41 (2008).
[CrossRef] [PubMed]

Pudo, D.

Pumera, M.

A. Ambrosi, A. Bonanni, Z. Sofer, and M. Pumera, “Large-scale quantification of CVD graphene surface coverage,” Nanoscale5(6), 2379–2387 (2013).
[CrossRef] [PubMed]

Qu, Y.

L. Liao, J. Bai, Y. Qu, Y. Huang, and X. Duan, “Single-layer graphene on Al2O3/Si substrate: better contrast and higher performance of graphene transistors,” Nanotechnology21(1), 015705 (2010).
[CrossRef] [PubMed]

Rao, A. M.

G. U. Sumanasekera, J. L. Allen, S. L. Fang, A. L. Loper, A. M. Rao, and P. C. Eklund, “Electrochemical Oxidation of Single Wall Carbon Nanotube Bundles in Sulfuric Acid,” J. Phys. Chem. B103(21), 4292–4297 (1999).
[CrossRef]

Reina, A.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
[CrossRef] [PubMed]

Roth, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Rozhin, A. G.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21(38–39), 3874–3899 (2009).
[CrossRef]

Ruoff, R. S.

Y. Zhu, M. D. Stoller, W. Cai, A. Velamakanni, R. D. Piner, D. Chen, and R. S. Ruoff, “Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets,” ACS Nano4(2), 1227–1233 (2010).
[CrossRef] [PubMed]

Ryu, K.

L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. W. Zhou, “Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics,” ACS Nano4(5), 2865–2873 (2010).
[CrossRef] [PubMed]

Saito, R.

M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cançado, A. Jorio, and R. Saito, “Studying disorder in graphite-based systems by Raman spectroscopy,” Phys. Chem. Chem. Phys.9(11), 1276–1291 (2007).
[CrossRef] [PubMed]

Scardaci, V.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Schlenker, C. W.

L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. W. Zhou, “Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics,” ACS Nano4(5), 2865–2873 (2010).
[CrossRef] [PubMed]

Schniepp, H. C.

K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, and R. Car, “Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets,” Nano Lett.8(1), 36–41 (2008).
[CrossRef] [PubMed]

Shang, J. Z.

Z. Q. Luo, T. Yu, Z. H. Ni, S. H. Lim, H. L. Hu, J. Z. Shang, L. Liu, Z. X. Shen, and J. Y. Lin, “Electronic Structures and Structural Evolution of Hydrogenated Graphene Probed by Raman Spectroscopy,” J. Phys. Chem. C115(5), 1422–1427 (2011).
[CrossRef]

Shen, Z.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer Graphene as Saturable Absorber in Mode-locked Laser,” Nano Res.4(3), 297–307 (2011).
[CrossRef]

Shen, Z. X.

Z. Q. Luo, T. Yu, Z. H. Ni, S. H. Lim, H. L. Hu, J. Z. Shang, L. Liu, Z. X. Shen, and J. Y. Lin, “Electronic Structures and Structural Evolution of Hydrogenated Graphene Probed by Raman Spectroscopy,” J. Phys. Chem. C115(5), 1422–1427 (2011).
[CrossRef]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Sobon, G.

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett.10(3), 035104 (2013).
[CrossRef]

G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett.9(8), 581–586 (2012).
[CrossRef]

Sofer, Z.

A. Ambrosi, A. Bonanni, Z. Sofer, and M. Pumera, “Large-scale quantification of CVD graphene surface coverage,” Nanoscale5(6), 2379–2387 (2013).
[CrossRef] [PubMed]

Son, H.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
[CrossRef] [PubMed]

Sotor, J.

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett.10(3), 035104 (2013).
[CrossRef]

G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett.9(8), 581–586 (2012).
[CrossRef]

Stoller, M. D.

Y. Zhu, M. D. Stoller, W. Cai, A. Velamakanni, R. D. Piner, D. Chen, and R. S. Ruoff, “Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets,” ACS Nano4(2), 1227–1233 (2010).
[CrossRef] [PubMed]

Strupinski, W.

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett.10(3), 035104 (2013).
[CrossRef]

Su, C. Y.

P. L. Huang, S. C. Lin, C. Y. Yeh, H. H. Kuo, S. H. Huang, G.-R. Lin, L. J. Li, C. Y. Su, and W. H. Cheng, “Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber,” Opt. Express20(3), 2460–2465 (2012).
[CrossRef] [PubMed]

C. Y. Su, A. Y. Lu, Y. Xu, F. R. Chen, A. N. Khlobystov, and L. J. Li, “High-quality thin graphene films from fast electrochemical exfoliation,” ACS Nano5(3), 2332–2339 (2011).
[CrossRef] [PubMed]

Sumanasekera, G. U.

G. U. Sumanasekera, J. L. Allen, S. L. Fang, A. L. Loper, A. M. Rao, and P. C. Eklund, “Electrochemical Oxidation of Single Wall Carbon Nanotube Bundles in Sulfuric Acid,” J. Phys. Chem. B103(21), 4292–4297 (1999).
[CrossRef]

Sun, Z.

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44(6), 1082–1091 (2012).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21(38–39), 3874–3899 (2009).
[CrossRef]

Sun, Z. Y.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Tadigadapa, S.

A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, “Raman scattering from high-frequency phonons in supported n-graphene layer films,” Nano Lett.6(12), 2667–2673 (2006).
[CrossRef] [PubMed]

Tan, P. H.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21(38–39), 3874–3899 (2009).
[CrossRef]

Tang, D.

H. Zhang, Q. L. Bao, D. Tang, L. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95(14), 141103 (2009).
[CrossRef]

Tang, D. Y.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer Graphene as Saturable Absorber in Mode-locked Laser,” Nano Res.4(3), 297–307 (2011).
[CrossRef]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Tang, Y.

A. K. Gupta, Y. Tang, V. H. Crespi, and P. C. Eklund, “Nondispersive Raman D band activated by well-ordered interlayer interactions in rotationally stacked bilayer graphene,” Phys. Rev. B82(24), 241406 (2010).
[CrossRef]

Tao, N.

F. Chen, J. Xia, D. K. Ferry, and N. Tao, “Dielectric screening enhanced performance in graphene FET,” Nano Lett.9(7), 2571–2574 (2009).
[CrossRef] [PubMed]

Tao, X.

H. Huang, Y. Xia, X. Tao, J. Du, J. Fang, Y. Gan, and W. Zhang, “Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation–expansion–microexplosion mechanism,” J. Mater. Chem.22(21), 10452–10456 (2012).
[CrossRef]

Thompson, M. E.

L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. W. Zhou, “Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics,” ACS Nano4(5), 2865–2873 (2010).
[CrossRef] [PubMed]

Torrisi, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Velamakanni, A.

Y. Zhu, M. D. Stoller, W. Cai, A. Velamakanni, R. D. Piner, D. Chen, and R. S. Ruoff, “Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets,” ACS Nano4(2), 1227–1233 (2010).
[CrossRef] [PubMed]

Wang, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21(38–39), 3874–3899 (2009).
[CrossRef]

Wang, J.

J. Wang, K. K. Manga, Q. Bao, and K. P. Loh, “High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte,” J. Am. Chem. Soc.133(23), 8888–8891 (2011).
[CrossRef] [PubMed]

J. Lu, J. X. Yang, J. Wang, A. Lim, S. Wang, and K. P. Loh, “One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids,” ACS Nano3(8), 2367–2375 (2009).
[CrossRef] [PubMed]

Wang, S.

J. Lu, J. X. Yang, J. Wang, A. Lim, S. Wang, and K. P. Loh, “One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids,” ACS Nano3(8), 2367–2375 (2009).
[CrossRef] [PubMed]

Wang, Y.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer Graphene as Saturable Absorber in Mode-locked Laser,” Nano Res.4(3), 297–307 (2011).
[CrossRef]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Wu, H. H.

Wu, J.

J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett.92(26), 263302 (2008).
[CrossRef]

Wu, Y.-Z.

Xia, J.

F. Chen, J. Xia, D. K. Ferry, and N. Tao, “Dielectric screening enhanced performance in graphene FET,” Nano Lett.9(7), 2571–2574 (2009).
[CrossRef] [PubMed]

Xia, Y.

H. Huang, Y. Xia, X. Tao, J. Du, J. Fang, Y. Gan, and W. Zhang, “Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation–expansion–microexplosion mechanism,” J. Mater. Chem.22(21), 10452–10456 (2012).
[CrossRef]

Xu, J.-L.

Xu, Q.-H.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer Graphene as Saturable Absorber in Mode-locked Laser,” Nano Res.4(3), 297–307 (2011).
[CrossRef]

Xu, Y.

C. Y. Su, A. Y. Lu, Y. Xu, F. R. Chen, A. N. Khlobystov, and L. J. Li, “High-quality thin graphene films from fast electrochemical exfoliation,” ACS Nano5(3), 2332–2339 (2011).
[CrossRef] [PubMed]

Yamashita, S.

K. N. Cheng, Y. H. Lin, S. Yamashita, and G.-R. Lin, “Harmonic order-dependent pulsewidth shortening of a passively mode-locked fiber laser with a carbon nanotube saturable absorber,” IEEE Photon. J.4(5), 1542–1552 (2012).
[CrossRef]

A. Martinez, K. Fuse, and S. Yamashita, “Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers,” Appl. Phys. Lett.99(12), 121107 (2011).
[CrossRef]

Yan, C.

C. Yan, J. H. Cho, and J.-H. Ahn, “Graphene-based flexible and stretchable thin film transistors,” Nanoscale4(16), 4870–4882 (2012).
[CrossRef] [PubMed]

Yan, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Yang, J. X.

J. Lu, J. X. Yang, J. Wang, A. Lim, S. Wang, and K. P. Loh, “One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids,” ACS Nano3(8), 2367–2375 (2009).
[CrossRef] [PubMed]

Yang, K.-J.

Yeh, C. Y.

Yu, T.

Z. Q. Luo, T. Yu, Z. H. Ni, S. H. Lim, H. L. Hu, J. Z. Shang, L. Liu, Z. X. Shen, and J. Y. Lin, “Electronic Structures and Structural Evolution of Hydrogenated Graphene Probed by Raman Spectroscopy,” J. Phys. Chem. C115(5), 1422–1427 (2011).
[CrossRef]

Zhang, H.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer Graphene as Saturable Absorber in Mode-locked Laser,” Nano Res.4(3), 297–307 (2011).
[CrossRef]

H. Zhang, Q. L. Bao, D. Tang, L. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95(14), 141103 (2009).
[CrossRef]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Zhang, W.

H. Huang, Y. Xia, X. Tao, J. Du, J. Fang, Y. Gan, and W. Zhang, “Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation–expansion–microexplosion mechanism,” J. Mater. Chem.22(21), 10452–10456 (2012).
[CrossRef]

Zhang, Y.

L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. W. Zhou, “Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics,” ACS Nano4(5), 2865–2873 (2010).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Zhao, L.

H. Zhang, Q. L. Bao, D. Tang, L. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95(14), 141103 (2009).
[CrossRef]

Zhao, Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Zhou, C. W.

L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. W. Zhou, “Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics,” ACS Nano4(5), 2865–2873 (2010).
[CrossRef] [PubMed]

Zhu, Y.

Y. Zhu, M. D. Stoller, W. Cai, A. Velamakanni, R. D. Piner, D. Chen, and R. S. Ruoff, “Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets,” ACS Nano4(2), 1227–1233 (2010).
[CrossRef] [PubMed]

ACS Nano (5)

Y. Zhu, M. D. Stoller, W. Cai, A. Velamakanni, R. D. Piner, D. Chen, and R. S. Ruoff, “Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets,” ACS Nano4(2), 1227–1233 (2010).
[CrossRef] [PubMed]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

C. Y. Su, A. Y. Lu, Y. Xu, F. R. Chen, A. N. Khlobystov, and L. J. Li, “High-quality thin graphene films from fast electrochemical exfoliation,” ACS Nano5(3), 2332–2339 (2011).
[CrossRef] [PubMed]

L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. W. Zhou, “Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics,” ACS Nano4(5), 2865–2873 (2010).
[CrossRef] [PubMed]

J. Lu, J. X. Yang, J. Wang, A. Lim, S. Wang, and K. P. Loh, “One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids,” ACS Nano3(8), 2367–2375 (2009).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Adv. Mater. (1)

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21(38–39), 3874–3899 (2009).
[CrossRef]

Appl. Phys. Lett. (3)

J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett.92(26), 263302 (2008).
[CrossRef]

H. Zhang, Q. L. Bao, D. Tang, L. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95(14), 141103 (2009).
[CrossRef]

A. Martinez, K. Fuse, and S. Yamashita, “Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers,” Appl. Phys. Lett.99(12), 121107 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. A. Haus, “Mode-Locking of Lasers,” IEEE J. Sel. Top. Quantum Electron.6(6), 1173–1185 (2000).
[CrossRef]

IEEE Photon. J. (1)

K. N. Cheng, Y. H. Lin, S. Yamashita, and G.-R. Lin, “Harmonic order-dependent pulsewidth shortening of a passively mode-locked fiber laser with a carbon nanotube saturable absorber,” IEEE Photon. J.4(5), 1542–1552 (2012).
[CrossRef]

J. Am. Chem. Soc. (1)

J. Wang, K. K. Manga, Q. Bao, and K. P. Loh, “High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte,” J. Am. Chem. Soc.133(23), 8888–8891 (2011).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

J. Mater. Chem. (1)

H. Huang, Y. Xia, X. Tao, J. Du, J. Fang, Y. Gan, and W. Zhang, “Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation–expansion–microexplosion mechanism,” J. Mater. Chem.22(21), 10452–10456 (2012).
[CrossRef]

J. Phys. Chem. B (1)

G. U. Sumanasekera, J. L. Allen, S. L. Fang, A. L. Loper, A. M. Rao, and P. C. Eklund, “Electrochemical Oxidation of Single Wall Carbon Nanotube Bundles in Sulfuric Acid,” J. Phys. Chem. B103(21), 4292–4297 (1999).
[CrossRef]

J. Phys. Chem. C (1)

Z. Q. Luo, T. Yu, Z. H. Ni, S. H. Lim, H. L. Hu, J. Z. Shang, L. Liu, Z. X. Shen, and J. Y. Lin, “Electronic Structures and Structural Evolution of Hydrogenated Graphene Probed by Raman Spectroscopy,” J. Phys. Chem. C115(5), 1422–1427 (2011).
[CrossRef]

J. Power Sources (1)

H. S. Choo, T. Kinumoto, M. Nose, K. Miyazaki, T. Abe, and Z. Ogumi, “Electrochemical oxidation of highly oriented pyrolytic graphite during potential cycling in sulfuric acid solution,” J. Power Sources185(2), 740–746 (2008).
[CrossRef]

Laser Phys. (1)

K. N. Cheng, Y. H. Lin, and G.-R. Lin, “Single- and double-walled carbon nanotube based saturable absorbers for passive mode-locking of an erbium-doped fiber laser,” Laser Phys.23(4), 045105 (2013).
[CrossRef]

Laser Phys. Lett. (6)

Y.-H. Lin, Y.-C. Chi, and G.-R. Lin, “Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser,” Laser Phys. Lett.10(5), 055105 (2013).
[CrossRef]

G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett.8(12), 880–886 (2011).
[CrossRef]

Y.-H. Lin and G.-R. Lin, “Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser,” Laser Phys. Lett.9(5), 398–404 (2012).
[CrossRef]

G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett.9(8), 581–586 (2012).
[CrossRef]

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett.10(3), 035104 (2013).
[CrossRef]

Y.-H. Lin and G.-R. Lin, “Kelly sideband variation and self four-wave-mixing in femtosecond fiber soliton laser mode-locked by multiple exfoliated graphite nano-particles,” Laser Phys. Lett.10(4), 045109 (2013).
[CrossRef]

Nano Lett. (4)

F. Chen, J. Xia, D. K. Ferry, and N. Tao, “Dielectric screening enhanced performance in graphene FET,” Nano Lett.9(7), 2571–2574 (2009).
[CrossRef] [PubMed]

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
[CrossRef] [PubMed]

A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, “Raman scattering from high-frequency phonons in supported n-graphene layer films,” Nano Lett.6(12), 2667–2673 (2006).
[CrossRef] [PubMed]

K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, and R. Car, “Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets,” Nano Lett.8(1), 36–41 (2008).
[CrossRef] [PubMed]

Nano Res. (1)

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer Graphene as Saturable Absorber in Mode-locked Laser,” Nano Res.4(3), 297–307 (2011).
[CrossRef]

Nanoscale (3)

A. Ambrosi, A. Bonanni, Z. Sofer, and M. Pumera, “Large-scale quantification of CVD graphene surface coverage,” Nanoscale5(6), 2379–2387 (2013).
[CrossRef] [PubMed]

T. Kuila, A. K. Mishra, P. Khanra, N. H. Kim, and J. H. Lee, “Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials,” Nanoscale5(1), 52–71 (2012).
[CrossRef] [PubMed]

C. Yan, J. H. Cho, and J.-H. Ahn, “Graphene-based flexible and stretchable thin film transistors,” Nanoscale4(16), 4870–4882 (2012).
[CrossRef] [PubMed]

Nanotechnology (1)

L. Liao, J. Bai, Y. Qu, Y. Huang, and X. Duan, “Single-layer graphene on Al2O3/Si substrate: better contrast and higher performance of graphene transistors,” Nanotechnology21(1), 015705 (2010).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

Nature (1)

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Phys. Chem. Chem. Phys. (1)

M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cançado, A. Jorio, and R. Saito, “Studying disorder in graphite-based systems by Raman spectroscopy,” Phys. Chem. Chem. Phys.9(11), 1276–1291 (2007).
[CrossRef] [PubMed]

Phys. Rev. B (1)

A. K. Gupta, Y. Tang, V. H. Crespi, and P. C. Eklund, “Nondispersive Raman D band activated by well-ordered interlayer interactions in rotationally stacked bilayer graphene,” Phys. Rev. B82(24), 241406 (2010).
[CrossRef]

Phys. Rev. Lett. (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Physica E (1)

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44(6), 1082–1091 (2012).
[CrossRef]

Science (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

The procedures of the electrochemical exfoliation of the graphite nano-sheet powder.

Fig. 2
Fig. 2

The configuration of the graphite nano-sheet based passively mode-locked EDFL system.

Fig. 3
Fig. 3

The electrolysis current versus the applied voltage.

Fig. 4
Fig. 4

(a) Schematic illustration of centrifuging process. (b) SEM photos of the graphite nano-sheets with different exfoliated bias and centrifuged time. (c) The AFM image of the graphite nano-sheets exfoliated at 3 volt. (d) Thickness distributions of the graphite nano-sheets exfoliated at different biases. All samples are centrifuged at 1000 rpm.

Fig. 5
Fig. 5

(a) Raman scattering spectra of the electrochemically exfoliated graphite nano-sheets with different bias voltages. (b) The D/G and the 2D/G mode intensity ratio obtained from the Raman scattering spectra as a function of electrochemically exfoliated bias.

Fig. 6
Fig. 6

The XPS spectra of graphite nano-sheets exfoliated by various biases.

Fig. 7
Fig. 7

Left: the schematic illustrations on the exfoliation of graphite nano-sheets from graphite foil by intercalation of sulfate ions under low and high electrochemical biases. Right: the effect of oxygen gas on the buoyancy of electrochemically exfoliated graphite nano-sheets under low and high biases of the electrolysis reaction.

Fig. 8
Fig. 8

(a) The experimental setup of the nonlinear transmission. (b) The saturable transmittance and (c) normalized absorbance of the graphite nano-sheets exfoliated under different biases.

Fig. 9
Fig. 9

(a) Optical spectra and (b) autocorrelation traces of the passively mode-locked EDFLs with the graphite nano-sheets exfoliated under different biases.

Fig. 10
Fig. 10

RF spectra of the passively mode-locked EDFLs with graphite nano-sheets exfoliated at different biases.

Tables (2)

Tables Icon

Table 1 Linear and nonlinear absorbances, saturation intensity, and the modulation depth of the graphene nano-sheets obtained at different electrochemical exfoliation biases.

Tables Icon

Table 2 The threshold and optimized pumping conditions, and the best mode-locking performances of the high-gain EDFLs with graphite nano-sheets obtained at different exfoliation biases.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

2 H 2 O O 2 + 4 H + + 4 e
C x + H 2 O C x O H + H + + e
C x O H C x = O + H + + e
C x + H S O 4 C x H S O 4 + e
C x + H 2 O C x 1 + C O + 2 H + + 2 e
C x + 2 H 2 O C x 1 + C O 2 + 4 H + + 4 e
R = 280 300 [ I C O ( E ) + I C = O ( E ) + I O C = O ( E ) ] d E / 280 300 I C 1 s ( E ) d E

Metrics