Abstract

Quantum cascade laser (QCL) is an important source of electromagnetic radiation in mid infrared region. Recent research in mid-IR QCLs has resulted in record high wallplug efficiency (WPE), high continuous wave (CW) output power, single mode operation and wide tunability. CW output power of 5.1 W with 21% WPE has been achieved at room temperature (RT). A record high WPE of 53% at 40K has been demonstrated. Operation wavelength of QCL in CW at RT has been extended to as short as 3µm. Very high peak power of 190 W has been obtained from a broad area QCL of ridge width 400µm. 2.4W RT, CW power output has been achieved from a distributed feedback (DFB) QCL. Wide tuning based on dual section sample grating DFB QCLs has resulted in individual tuning of 50cm−1 and 24 dB side mode suppression ratio with continuous wave power greater than 100mW.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Razeghi, “High-Performance InP-based Mid-IR Quantum Cascade Lasers,” IEEE J. Sel. Top. Quantum Electron.15(3), 941–951 (2009).
    [CrossRef]
  2. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
    [CrossRef]
  3. Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics4(2), 99–102 (2010).
    [CrossRef]
  4. N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ ~ 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101(24), 241110 (2012).
    [CrossRef]
  5. N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 μm,” Appl. Phys. Lett.97(13), 131117 (2010).
    [CrossRef]
  6. N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power continuous wave, room temperature operation of λ~3.4 µm and λ~3.55µm InP-based qantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
    [CrossRef]
  7. Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett.95(22), 221104 (2009).
    [CrossRef]
  8. Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98(18), 181106 (2011).
    [CrossRef]
  9. S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100(26), 261112 (2012).
    [CrossRef]

2012 (3)

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ ~ 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101(24), 241110 (2012).
[CrossRef]

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power continuous wave, room temperature operation of λ~3.4 µm and λ~3.55µm InP-based qantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
[CrossRef]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100(26), 261112 (2012).
[CrossRef]

2011 (2)

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98(18), 181106 (2011).
[CrossRef]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

2010 (2)

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics4(2), 99–102 (2010).
[CrossRef]

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 μm,” Appl. Phys. Lett.97(13), 131117 (2010).
[CrossRef]

2009 (2)

M. Razeghi, “High-Performance InP-based Mid-IR Quantum Cascade Lasers,” IEEE J. Sel. Top. Quantum Electron.15(3), 941–951 (2009).
[CrossRef]

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett.95(22), 221104 (2009).
[CrossRef]

Bai, Y.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100(26), 261112 (2012).
[CrossRef]

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ ~ 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101(24), 241110 (2012).
[CrossRef]

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power continuous wave, room temperature operation of λ~3.4 µm and λ~3.55µm InP-based qantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
[CrossRef]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98(18), 181106 (2011).
[CrossRef]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics4(2), 99–102 (2010).
[CrossRef]

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 μm,” Appl. Phys. Lett.97(13), 131117 (2010).
[CrossRef]

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett.95(22), 221104 (2009).
[CrossRef]

Bandyopadhyay, N.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100(26), 261112 (2012).
[CrossRef]

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ ~ 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101(24), 241110 (2012).
[CrossRef]

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power continuous wave, room temperature operation of λ~3.4 µm and λ~3.55µm InP-based qantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
[CrossRef]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98(18), 181106 (2011).
[CrossRef]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 μm,” Appl. Phys. Lett.97(13), 131117 (2010).
[CrossRef]

Darvish, S. R.

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics4(2), 99–102 (2010).
[CrossRef]

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett.95(22), 221104 (2009).
[CrossRef]

Gokden, B.

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 μm,” Appl. Phys. Lett.97(13), 131117 (2010).
[CrossRef]

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett.95(22), 221104 (2009).
[CrossRef]

Haddadi, A.

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett.95(22), 221104 (2009).
[CrossRef]

Kuboya, S.

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics4(2), 99–102 (2010).
[CrossRef]

Lu, Q. Y.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100(26), 261112 (2012).
[CrossRef]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98(18), 181106 (2011).
[CrossRef]

Myzaferi, A.

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 μm,” Appl. Phys. Lett.97(13), 131117 (2010).
[CrossRef]

Nida, S.

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ ~ 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101(24), 241110 (2012).
[CrossRef]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100(26), 261112 (2012).
[CrossRef]

Razeghi, M.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100(26), 261112 (2012).
[CrossRef]

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ ~ 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101(24), 241110 (2012).
[CrossRef]

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power continuous wave, room temperature operation of λ~3.4 µm and λ~3.55µm InP-based qantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
[CrossRef]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98(18), 181106 (2011).
[CrossRef]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics4(2), 99–102 (2010).
[CrossRef]

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 μm,” Appl. Phys. Lett.97(13), 131117 (2010).
[CrossRef]

M. Razeghi, “High-Performance InP-based Mid-IR Quantum Cascade Lasers,” IEEE J. Sel. Top. Quantum Electron.15(3), 941–951 (2009).
[CrossRef]

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett.95(22), 221104 (2009).
[CrossRef]

Slivken, S.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100(26), 261112 (2012).
[CrossRef]

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power continuous wave, room temperature operation of λ~3.4 µm and λ~3.55µm InP-based qantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
[CrossRef]

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ ~ 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101(24), 241110 (2012).
[CrossRef]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98(18), 181106 (2011).
[CrossRef]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 μm,” Appl. Phys. Lett.97(13), 131117 (2010).
[CrossRef]

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics4(2), 99–102 (2010).
[CrossRef]

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett.95(22), 221104 (2009).
[CrossRef]

Tsao, S.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100(26), 261112 (2012).
[CrossRef]

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ ~ 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101(24), 241110 (2012).
[CrossRef]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 μm,” Appl. Phys. Lett.97(13), 131117 (2010).
[CrossRef]

Appl. Phys. Lett. (7)

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ ~ 3-3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101(24), 241110 (2012).
[CrossRef]

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 μm,” Appl. Phys. Lett.97(13), 131117 (2010).
[CrossRef]

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power continuous wave, room temperature operation of λ~3.4 µm and λ~3.55µm InP-based qantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
[CrossRef]

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett.95(22), 221104 (2009).
[CrossRef]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98(18), 181106 (2011).
[CrossRef]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100(26), 261112 (2012).
[CrossRef]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Razeghi, “High-Performance InP-based Mid-IR Quantum Cascade Lasers,” IEEE J. Sel. Top. Quantum Electron.15(3), 941–951 (2009).
[CrossRef]

Nat. Photonics (1)

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics4(2), 99–102 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Conduction band edge and wave function diagram (b) P-I-V and WPE vs current curve of a QCL with ridge width of 8µm and cavity length 5mm, bonded epi-down under CW operation (solid lines) and pulsed operation (dotted line) at RT. The inset of (b) shows the emission spectrum at 4.9µm, in CW mode.

Fig. 2
Fig. 2

(a) Conduction band edge and wave function diagram for single well injector QCL. (b) WPE vs current characteristic of a device having ridge width of 6µm and cavity length of 2 mm at 40K. Inset of (b) shows maximum WPE vs heat sink temperature. Maximum WPE of 53% occurs around 40K.

Fig. 3
Fig. 3

Experimental and simulated x-ray diffraction curve of the laser core. The satellite peaks have minimum FWHM of 21.2 arc seconds.

Fig. 4
Fig. 4

Pulsed (dashed) and CW (solid line) P-I-V curve for a HR coated 8.3µm wide and 4mm long, buried ridge heterostructure QCL at RT. Corresponding WPE is also plotted. Inset shows spectrum in CW operation at 0.6A.

Fig. 5
Fig. 5

RT, pulsed mode EL spectrum of λ~3.56µm QCL as a function of voltage

Fig. 6
Fig. 6

(a) P-I-V curve of a HR coated 10.5 µm wide and 5mm long QCL emitting at 3.56µm, at RT. (b) P-I-V curve of a HR coated 8.6 µm wide and 5mm long QCL emitting at 3.39µm, at RT. The insets of both show their respective CW, RT emission spectrum.

Fig. 7
Fig. 7

Conduction band edge and wave function diagram for a 3µm QCL

Fig. 8
Fig. 8

(a) Pulsed P-I-V curve of a HR coated 200 µm wide and 5mm long QCL emitting at 3.02 µm, at RT. (b) CW P-I-V curve of a HR-PHR coated 7 µm wide and 5mm long QCL emitting at 3.23 µm, at RT. (c) CW P-I-V curve of a HR-PHR coated 3 µm wide and 5mm long QCL emitting at 3.02µm, at RT. The insets of both show their respective CW, RT emission spectrum.

Fig. 9
Fig. 9

(a) RT, P-I-V curve of a BAQCL having a ridge width of 400µm and cavity length 4mm, showing a peak power output of 120W. (b) RT, P-I-V curve of a BAQCL having a ridge width of 800µm and cavity length 3mm, showing a peak power output of 190W.

Fig. 10
Fig. 10

P-I-V curve of DFB QCL shows a peak CW, RT power of 2.4W. The insets show single mode far field and tuning of laser emission wave number with current.

Fig. 11
Fig. 11

The bottom figure shows single-mode emission spectra for an electrically-tuned, sampled grating laser at RT. Top most figure shows continuous wave output power, the middle one shows SMSR as a function of emission wavelength.

Metrics