Abstract

Direct laser write of volume Bragg gratings with diffraction efficiency (absolute) ∼90% is demonstrated using Gauss-Bessel laser beams in fused silica glass. Axial multiplexing of ∼ 90 μm long segments of modified optical material was demonstrated and thick Bragg gratings of aspect ratio depth/period ≈234 were achieved with period d = 1.5 μm. Typical fabrication scanning speeds were up to 50 mm/s for gratings with cross sections up to five millimeters made within 1 h time. Potential applications of high efficiency Bragg gratings in a low nonlinearity medium such as silica are discussed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Arns, W. Colburn, and S. Barden, “Volume phase gratings for spectroscopy, ultrafast laser compressors, and wavelength division multiplexing,” Proc. of SPIE3779, 313–323 (1999).
    [CrossRef]
  2. O. M. Efimov, L. B. Glebov, and V. I. Smirnov, “High-frequency Bragg gratings in a photothermorefractive glass,” Opt. Lett.25, 1693–1695 (2000).
    [CrossRef]
  3. T. Toma, Y. Furuya, W. Watanabe, K. Itoh, J. Nishii, and K. Hayashi, “Estimation of the refractive index change in glass induced by femtosecond laser pulses,” Opt. Rev.7, 14–17 (2000).
    [CrossRef]
  4. H. Misawa, S. Juodkazis, S. Matsuo, and T. Kondo, “3D holographic recording method and 3D holographic recording system,” US7542186 B2 patent (2009).
  5. J. Lumeau and L. B. Glebov, “Modeling of the induced refractive index kinetics in photo-thermo-refractive glass,” Opt. Mater. Express3, 95–104 (2013).
    [CrossRef]
  6. C. Voigtländer, D. Richter, J. Thomas, A. Tünnermann, and S. Nolte, “Inscription of high contrast volume bragg gratings in fused silica with femtosecond laser pulses,” Appl. Phys A - Mater. Sci. Process.102, 35–38 (2011).
    [CrossRef]
  7. K. Yamada, W. Watanabe, K. Kintaka, J. Nishii, and K. Itoh, “Volume grating induced by a self-trapped long filament of femtosecond laser pulses in silica glass,” Jpn. J. Appl. Phys.42, 6916–6919 (2003).
    [CrossRef]
  8. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21, 1729–1731 (1996).
    [CrossRef] [PubMed]
  9. M. Beresna, M. Gecevičius, and P. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mat. Express4, 783–795 (2011).
    [CrossRef]
  10. M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18, 10209–10221 (2010).
    [CrossRef] [PubMed]
  11. O. Brzobohatý, T. Cižmár, and P. Zemánek, “High quality quasi-Bessel beam generated by round-tip axicon,” Opt. Express16, 12688–12700 (2008).
    [CrossRef] [PubMed]
  12. H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell Syst. Tech. J.48, 2909–2947 (1969).
    [CrossRef]
  13. I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of phase volume diffractive gratings, part 1: transmitting sinusoidal uniform gratings,” Opt. Eng.45, 015802 (2006).
    [CrossRef]
  14. A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A.76, 257–260 (2003).
    [CrossRef]
  15. C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys.Lett.87, 014104 (2005).
    [CrossRef]
  16. S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A104, 503–507 (2011).
    [CrossRef]
  17. E. Gaižauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Bessel-Gauss pulses,” Opt. Lett.31, 80–82 (2006).
    [CrossRef]
  18. A. Marcinkevicius, S. Juodkazis, S. Matsuo, and H. Misawa, “Application of femtosecond non-diffracting bessel beams in micro-structuring of transparent dielectrics,” in “Optical Pulse and Beam Propagation III, LASE (Jan. 20–26 2001, San Jose, U.S.A.) SPIE Proc. 4271,” (2001), pp. 150–158.
  19. S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn.81, 411–448 (2008).
    [CrossRef]
  20. D. Paipulas, V. Kudriasov, K. Kurselis, M. Malinauskas, S. Ost, and V. Sirutkaitis, “Volume bragg grating formation in fused silica with high repetition rate femtosecond Yb:KGW laser pulses,” J. Laser Micro Nanoeng.5, 218–222 (2010).
    [CrossRef]
  21. L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2and SiO2glasses: fictive temperature effect,” Opt. Mater. Express1, 605–613 (2011).
    [CrossRef]
  22. M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B60, 9959–9964 (1999).
    [CrossRef]
  23. M. Watanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Two-photon readout of three-dimensional memory in silica,” Appl. Phys. Lett.77, 13–15 (2000).
    [CrossRef]
  24. V. Smirnov, J. Lumeau, S. Mokhov, B. Y. Zeldovich, and L. B. Glebov, “Ultranarrow bandwidth moiré reflecting bragg gratings recorded in photo-thermo-refractive glass,” Opt. Lett.35, 592–594 (2010).
    [CrossRef] [PubMed]
  25. R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011).
    [CrossRef]
  26. J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [invited],” Opt. Mat. Express1, 998–1008 (2012).
    [CrossRef]
  27. S. Juodkazis, K. Yamasaki, S. Matsuo, and H. Misawa, “Glass transition-assisted microstructuring in polystyrene,” Appl. Phys. Lett.84, 514–516 (2004).
    [CrossRef]
  28. C. R. K. Marrian and D. M. Tennant, “Nanofabrication,” J. Vac. Sci. Technol.21, S207–S215 (2003).
    [CrossRef]
  29. A. Marcinkevicius, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel beams for microfabrication of dielectrics by femtosecond laser,” Jpn. J. Appl. Phys.40, L1197–L1199 (2001).
    [CrossRef]
  30. M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett.97, 081102 (2010).
    [CrossRef]
  31. M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Las. Phot. Rev.6, 607–621 (2012).
    [CrossRef]
  32. N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc.427, 806–815 (2012).
    [CrossRef]
  33. N. Jovanovic, M. Aslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett.32, 2804–2806 (2007).
    [CrossRef] [PubMed]
  34. S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A79, 1549–1553 (2004).
    [CrossRef]

2013 (1)

2012 (3)

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Las. Phot. Rev.6, 607–621 (2012).
[CrossRef]

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc.427, 806–815 (2012).
[CrossRef]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [invited],” Opt. Mat. Express1, 998–1008 (2012).
[CrossRef]

2011 (5)

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A104, 503–507 (2011).
[CrossRef]

C. Voigtländer, D. Richter, J. Thomas, A. Tünnermann, and S. Nolte, “Inscription of high contrast volume bragg gratings in fused silica with femtosecond laser pulses,” Appl. Phys A - Mater. Sci. Process.102, 35–38 (2011).
[CrossRef]

M. Beresna, M. Gecevičius, and P. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mat. Express4, 783–795 (2011).
[CrossRef]

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011).
[CrossRef]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2and SiO2glasses: fictive temperature effect,” Opt. Mater. Express1, 605–613 (2011).
[CrossRef]

2010 (4)

V. Smirnov, J. Lumeau, S. Mokhov, B. Y. Zeldovich, and L. B. Glebov, “Ultranarrow bandwidth moiré reflecting bragg gratings recorded in photo-thermo-refractive glass,” Opt. Lett.35, 592–594 (2010).
[CrossRef] [PubMed]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18, 10209–10221 (2010).
[CrossRef] [PubMed]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett.97, 081102 (2010).
[CrossRef]

D. Paipulas, V. Kudriasov, K. Kurselis, M. Malinauskas, S. Ost, and V. Sirutkaitis, “Volume bragg grating formation in fused silica with high repetition rate femtosecond Yb:KGW laser pulses,” J. Laser Micro Nanoeng.5, 218–222 (2010).
[CrossRef]

2008 (2)

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn.81, 411–448 (2008).
[CrossRef]

O. Brzobohatý, T. Cižmár, and P. Zemánek, “High quality quasi-Bessel beam generated by round-tip axicon,” Opt. Express16, 12688–12700 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (2)

E. Gaižauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Bessel-Gauss pulses,” Opt. Lett.31, 80–82 (2006).
[CrossRef]

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of phase volume diffractive gratings, part 1: transmitting sinusoidal uniform gratings,” Opt. Eng.45, 015802 (2006).
[CrossRef]

2005 (1)

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys.Lett.87, 014104 (2005).
[CrossRef]

2004 (2)

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A79, 1549–1553 (2004).
[CrossRef]

S. Juodkazis, K. Yamasaki, S. Matsuo, and H. Misawa, “Glass transition-assisted microstructuring in polystyrene,” Appl. Phys. Lett.84, 514–516 (2004).
[CrossRef]

2003 (3)

C. R. K. Marrian and D. M. Tennant, “Nanofabrication,” J. Vac. Sci. Technol.21, S207–S215 (2003).
[CrossRef]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A.76, 257–260 (2003).
[CrossRef]

K. Yamada, W. Watanabe, K. Kintaka, J. Nishii, and K. Itoh, “Volume grating induced by a self-trapped long filament of femtosecond laser pulses in silica glass,” Jpn. J. Appl. Phys.42, 6916–6919 (2003).
[CrossRef]

2001 (1)

A. Marcinkevicius, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel beams for microfabrication of dielectrics by femtosecond laser,” Jpn. J. Appl. Phys.40, L1197–L1199 (2001).
[CrossRef]

2000 (3)

T. Toma, Y. Furuya, W. Watanabe, K. Itoh, J. Nishii, and K. Hayashi, “Estimation of the refractive index change in glass induced by femtosecond laser pulses,” Opt. Rev.7, 14–17 (2000).
[CrossRef]

M. Watanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Two-photon readout of three-dimensional memory in silica,” Appl. Phys. Lett.77, 13–15 (2000).
[CrossRef]

O. M. Efimov, L. B. Glebov, and V. I. Smirnov, “High-frequency Bragg gratings in a photothermorefractive glass,” Opt. Lett.25, 1693–1695 (2000).
[CrossRef]

1999 (2)

J. Arns, W. Colburn, and S. Barden, “Volume phase gratings for spectroscopy, ultrafast laser compressors, and wavelength division multiplexing,” Proc. of SPIE3779, 313–323 (1999).
[CrossRef]

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B60, 9959–9964 (1999).
[CrossRef]

1996 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell Syst. Tech. J.48, 2909–2947 (1969).
[CrossRef]

Ams, M.

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc.427, 806–815 (2012).
[CrossRef]

Arnold, C. B.

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Las. Phot. Rev.6, 607–621 (2012).
[CrossRef]

Arns, J.

J. Arns, W. Colburn, and S. Barden, “Volume phase gratings for spectroscopy, ultrafast laser compressors, and wavelength division multiplexing,” Proc. of SPIE3779, 313–323 (1999).
[CrossRef]

Aslund, M.

Barden, S.

J. Arns, W. Colburn, and S. Barden, “Volume phase gratings for spectroscopy, ultrafast laser compressors, and wavelength division multiplexing,” Proc. of SPIE3779, 313–323 (1999).
[CrossRef]

Beresna, M.

M. Beresna, M. Gecevičius, and P. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mat. Express4, 783–795 (2011).
[CrossRef]

Bhardwaj, V. R.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys.Lett.87, 014104 (2005).
[CrossRef]

Bhuyan, M. K.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett.97, 081102 (2010).
[CrossRef]

Bickauskaite, G.

Bressel, L.

Brisset, F.

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [invited],” Opt. Mat. Express1, 998–1008 (2012).
[CrossRef]

Brzobohatý, O.

Buividas, R.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2and SiO2glasses: fictive temperature effect,” Opt. Mater. Express1, 605–613 (2011).
[CrossRef]

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011).
[CrossRef]

Canning, J.

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [invited],” Opt. Mat. Express1, 998–1008 (2012).
[CrossRef]

Charles, N.

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc.427, 806–815 (2012).
[CrossRef]

Ciapurin, I. V.

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of phase volume diffractive gratings, part 1: transmitting sinusoidal uniform gratings,” Opt. Eng.45, 015802 (2006).
[CrossRef]

Cižmár, T.

Colburn, W.

J. Arns, W. Colburn, and S. Barden, “Volume phase gratings for spectroscopy, ultrafast laser compressors, and wavelength division multiplexing,” Proc. of SPIE3779, 313–323 (1999).
[CrossRef]

Cook, K.

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [invited],” Opt. Mat. Express1, 998–1008 (2012).
[CrossRef]

Corkum, P. B.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys.Lett.87, 014104 (2005).
[CrossRef]

Courvoisier, F.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett.97, 081102 (2010).
[CrossRef]

Datsyuk, V.

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011).
[CrossRef]

Davis, K. M.

de Ligny, D.

Döring, S.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A104, 503–507 (2011).
[CrossRef]

Dudley, J. M.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett.97, 081102 (2010).
[CrossRef]

Duocastella, M.

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Las. Phot. Rev.6, 607–621 (2012).
[CrossRef]

Efimov, O. M.

Fuerbach, A.

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc.427, 806–815 (2012).
[CrossRef]

N. Jovanovic, M. Aslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett.32, 2804–2806 (2007).
[CrossRef] [PubMed]

Furfaro, L.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett.97, 081102 (2010).
[CrossRef]

Furuya, Y.

T. Toma, Y. Furuya, W. Watanabe, K. Itoh, J. Nishii, and K. Hayashi, “Estimation of the refractive index change in glass induced by femtosecond laser pulses,” Opt. Rev.7, 14–17 (2000).
[CrossRef]

Gadonas, R.

Gaižauskas, E.

Gecevicius, M.

M. Beresna, M. Gecevičius, and P. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mat. Express4, 783–795 (2011).
[CrossRef]

Glebov, L. B.

Gross, S.

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc.427, 806–815 (2012).
[CrossRef]

Hayashi, K.

T. Toma, Y. Furuya, W. Watanabe, K. Itoh, J. Nishii, and K. Hayashi, “Estimation of the refractive index change in glass induced by femtosecond laser pulses,” Opt. Rev.7, 14–17 (2000).
[CrossRef]

Heinrich, M.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A104, 503–507 (2011).
[CrossRef]

Hirao, K.

Hnatovsky, C.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys.Lett.87, 014104 (2005).
[CrossRef]

Ireland, M.

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc.427, 806–815 (2012).
[CrossRef]

Itoh, K.

K. Yamada, W. Watanabe, K. Kintaka, J. Nishii, and K. Itoh, “Volume grating induced by a self-trapped long filament of femtosecond laser pulses in silica glass,” Jpn. J. Appl. Phys.42, 6916–6919 (2003).
[CrossRef]

T. Toma, Y. Furuya, W. Watanabe, K. Itoh, J. Nishii, and K. Hayashi, “Estimation of the refractive index change in glass induced by femtosecond laser pulses,” Opt. Rev.7, 14–17 (2000).
[CrossRef]

Jackson, S. D.

Jacquot, M.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett.97, 081102 (2010).
[CrossRef]

Jarutis, V.

Jovanovic, N.

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc.427, 806–815 (2012).
[CrossRef]

N. Jovanovic, M. Aslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett.32, 2804–2806 (2007).
[CrossRef] [PubMed]

Juodkazis, S.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2and SiO2glasses: fictive temperature effect,” Opt. Mater. Express1, 605–613 (2011).
[CrossRef]

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011).
[CrossRef]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18, 10209–10221 (2010).
[CrossRef] [PubMed]

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn.81, 411–448 (2008).
[CrossRef]

E. Gaižauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Bessel-Gauss pulses,” Opt. Lett.31, 80–82 (2006).
[CrossRef]

S. Juodkazis, K. Yamasaki, S. Matsuo, and H. Misawa, “Glass transition-assisted microstructuring in polystyrene,” Appl. Phys. Lett.84, 514–516 (2004).
[CrossRef]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A79, 1549–1553 (2004).
[CrossRef]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A.76, 257–260 (2003).
[CrossRef]

A. Marcinkevicius, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel beams for microfabrication of dielectrics by femtosecond laser,” Jpn. J. Appl. Phys.40, L1197–L1199 (2001).
[CrossRef]

M. Watanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Two-photon readout of three-dimensional memory in silica,” Appl. Phys. Lett.77, 13–15 (2000).
[CrossRef]

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B60, 9959–9964 (1999).
[CrossRef]

A. Marcinkevicius, S. Juodkazis, S. Matsuo, and H. Misawa, “Application of femtosecond non-diffracting bessel beams in micro-structuring of transparent dielectrics,” in “Optical Pulse and Beam Propagation III, LASE (Jan. 20–26 2001, San Jose, U.S.A.) SPIE Proc. 4271,” (2001), pp. 150–158.

H. Misawa, S. Juodkazis, S. Matsuo, and T. Kondo, “3D holographic recording method and 3D holographic recording system,” US7542186 B2 patent (2009).

Kazansky, P.

M. Beresna, M. Gecevičius, and P. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mat. Express4, 783–795 (2011).
[CrossRef]

Kintaka, K.

K. Yamada, W. Watanabe, K. Kintaka, J. Nishii, and K. Itoh, “Volume grating induced by a self-trapped long filament of femtosecond laser pulses in silica glass,” Jpn. J. Appl. Phys.42, 6916–6919 (2003).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell Syst. Tech. J.48, 2909–2947 (1969).
[CrossRef]

Kondo, T.

H. Misawa, S. Juodkazis, S. Matsuo, and T. Kondo, “3D holographic recording method and 3D holographic recording system,” US7542186 B2 patent (2009).

Kudriasov, V.

D. Paipulas, V. Kudriasov, K. Kurselis, M. Malinauskas, S. Ost, and V. Sirutkaitis, “Volume bragg grating formation in fused silica with high repetition rate femtosecond Yb:KGW laser pulses,” J. Laser Micro Nanoeng.5, 218–222 (2010).
[CrossRef]

Kudrius, T.

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011).
[CrossRef]

Kurselis, K.

D. Paipulas, V. Kudriasov, K. Kurselis, M. Malinauskas, S. Ost, and V. Sirutkaitis, “Volume bragg grating formation in fused silica with high repetition rate femtosecond Yb:KGW laser pulses,” J. Laser Micro Nanoeng.5, 218–222 (2010).
[CrossRef]

Lacour, S.

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc.427, 806–815 (2012).
[CrossRef]

Lacourt, P. A.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett.97, 081102 (2010).
[CrossRef]

Lancry, M.

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [invited],” Opt. Mat. Express1, 998–1008 (2012).
[CrossRef]

Lawrence, J. S.

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc.427, 806–815 (2012).
[CrossRef]

Lehmann, A.

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc.427, 806–815 (2012).
[CrossRef]

Lumeau, J.

Malinauskas, M.

D. Paipulas, V. Kudriasov, K. Kurselis, M. Malinauskas, S. Ost, and V. Sirutkaitis, “Volume bragg grating formation in fused silica with high repetition rate femtosecond Yb:KGW laser pulses,” J. Laser Micro Nanoeng.5, 218–222 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18, 10209–10221 (2010).
[CrossRef] [PubMed]

Marcinkevicius, A.

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A.76, 257–260 (2003).
[CrossRef]

A. Marcinkevicius, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel beams for microfabrication of dielectrics by femtosecond laser,” Jpn. J. Appl. Phys.40, L1197–L1199 (2001).
[CrossRef]

A. Marcinkevicius, S. Juodkazis, S. Matsuo, and H. Misawa, “Application of femtosecond non-diffracting bessel beams in micro-structuring of transparent dielectrics,” in “Optical Pulse and Beam Propagation III, LASE (Jan. 20–26 2001, San Jose, U.S.A.) SPIE Proc. 4271,” (2001), pp. 150–158.

Marrian, C. R. K.

C. R. K. Marrian and D. M. Tennant, “Nanofabrication,” J. Vac. Sci. Technol.21, S207–S215 (2003).
[CrossRef]

Marshall, G. D.

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc.427, 806–815 (2012).
[CrossRef]

N. Jovanovic, M. Aslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett.32, 2804–2806 (2007).
[CrossRef] [PubMed]

Martinez-Andrieux, V.

Matsuo, S.

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn.81, 411–448 (2008).
[CrossRef]

S. Juodkazis, K. Yamasaki, S. Matsuo, and H. Misawa, “Glass transition-assisted microstructuring in polystyrene,” Appl. Phys. Lett.84, 514–516 (2004).
[CrossRef]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A79, 1549–1553 (2004).
[CrossRef]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A.76, 257–260 (2003).
[CrossRef]

A. Marcinkevicius, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel beams for microfabrication of dielectrics by femtosecond laser,” Jpn. J. Appl. Phys.40, L1197–L1199 (2001).
[CrossRef]

M. Watanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Two-photon readout of three-dimensional memory in silica,” Appl. Phys. Lett.77, 13–15 (2000).
[CrossRef]

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B60, 9959–9964 (1999).
[CrossRef]

A. Marcinkevicius, S. Juodkazis, S. Matsuo, and H. Misawa, “Application of femtosecond non-diffracting bessel beams in micro-structuring of transparent dielectrics,” in “Optical Pulse and Beam Propagation III, LASE (Jan. 20–26 2001, San Jose, U.S.A.) SPIE Proc. 4271,” (2001), pp. 150–158.

H. Misawa, S. Juodkazis, S. Matsuo, and T. Kondo, “3D holographic recording method and 3D holographic recording system,” US7542186 B2 patent (2009).

Misawa, H.

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn.81, 411–448 (2008).
[CrossRef]

E. Gaižauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Bessel-Gauss pulses,” Opt. Lett.31, 80–82 (2006).
[CrossRef]

S. Juodkazis, K. Yamasaki, S. Matsuo, and H. Misawa, “Glass transition-assisted microstructuring in polystyrene,” Appl. Phys. Lett.84, 514–516 (2004).
[CrossRef]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A79, 1549–1553 (2004).
[CrossRef]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A.76, 257–260 (2003).
[CrossRef]

A. Marcinkevicius, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel beams for microfabrication of dielectrics by femtosecond laser,” Jpn. J. Appl. Phys.40, L1197–L1199 (2001).
[CrossRef]

M. Watanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Two-photon readout of three-dimensional memory in silica,” Appl. Phys. Lett.77, 13–15 (2000).
[CrossRef]

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B60, 9959–9964 (1999).
[CrossRef]

A. Marcinkevicius, S. Juodkazis, S. Matsuo, and H. Misawa, “Application of femtosecond non-diffracting bessel beams in micro-structuring of transparent dielectrics,” in “Optical Pulse and Beam Propagation III, LASE (Jan. 20–26 2001, San Jose, U.S.A.) SPIE Proc. 4271,” (2001), pp. 150–158.

H. Misawa, S. Juodkazis, S. Matsuo, and T. Kondo, “3D holographic recording method and 3D holographic recording system,” US7542186 B2 patent (2009).

Miura, K.

Mizeikis, V.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2and SiO2glasses: fictive temperature effect,” Opt. Mater. Express1, 605–613 (2011).
[CrossRef]

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn.81, 411–448 (2008).
[CrossRef]

E. Gaižauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Bessel-Gauss pulses,” Opt. Lett.31, 80–82 (2006).
[CrossRef]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A79, 1549–1553 (2004).
[CrossRef]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A.76, 257–260 (2003).
[CrossRef]

A. Marcinkevicius, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel beams for microfabrication of dielectrics by femtosecond laser,” Jpn. J. Appl. Phys.40, L1197–L1199 (2001).
[CrossRef]

Mokhov, S.

Niel, C.

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc.427, 806–815 (2012).
[CrossRef]

Nishii, J.

K. Yamada, W. Watanabe, K. Kintaka, J. Nishii, and K. Itoh, “Volume grating induced by a self-trapped long filament of femtosecond laser pulses in silica glass,” Jpn. J. Appl. Phys.42, 6916–6919 (2003).
[CrossRef]

T. Toma, Y. Furuya, W. Watanabe, K. Itoh, J. Nishii, and K. Hayashi, “Estimation of the refractive index change in glass induced by femtosecond laser pulses,” Opt. Rev.7, 14–17 (2000).
[CrossRef]

Nolte, S.

C. Voigtländer, D. Richter, J. Thomas, A. Tünnermann, and S. Nolte, “Inscription of high contrast volume bragg gratings in fused silica with femtosecond laser pulses,” Appl. Phys A - Mater. Sci. Process.102, 35–38 (2011).
[CrossRef]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A104, 503–507 (2011).
[CrossRef]

Norris, B.

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc.427, 806–815 (2012).
[CrossRef]

Ost, S.

D. Paipulas, V. Kudriasov, K. Kurselis, M. Malinauskas, S. Ost, and V. Sirutkaitis, “Volume bragg grating formation in fused silica with high repetition rate femtosecond Yb:KGW laser pulses,” J. Laser Micro Nanoeng.5, 218–222 (2010).
[CrossRef]

Paipulas, D.

D. Paipulas, V. Kudriasov, K. Kurselis, M. Malinauskas, S. Ost, and V. Sirutkaitis, “Volume bragg grating formation in fused silica with high repetition rate femtosecond Yb:KGW laser pulses,” J. Laser Micro Nanoeng.5, 218–222 (2010).
[CrossRef]

Poumellec, B.

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [invited],” Opt. Mat. Express1, 998–1008 (2012).
[CrossRef]

Rajeev, P. P.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys.Lett.87, 014104 (2005).
[CrossRef]

Rayner, D. M.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys.Lett.87, 014104 (2005).
[CrossRef]

Richter, D.

C. Voigtländer, D. Richter, J. Thomas, A. Tünnermann, and S. Nolte, “Inscription of high contrast volume bragg gratings in fused silica with femtosecond laser pulses,” Appl. Phys A - Mater. Sci. Process.102, 35–38 (2011).
[CrossRef]

Richter, S.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A104, 503–507 (2011).
[CrossRef]

Robertson, J. G.

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc.427, 806–815 (2012).
[CrossRef]

Rosa, L.

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011).
[CrossRef]

Salut, R.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett.97, 081102 (2010).
[CrossRef]

Simova, E.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys.Lett.87, 014104 (2005).
[CrossRef]

Sirutkaitis, V.

D. Paipulas, V. Kudriasov, K. Kurselis, M. Malinauskas, S. Ost, and V. Sirutkaitis, “Volume bragg grating formation in fused silica with high repetition rate femtosecond Yb:KGW laser pulses,” J. Laser Micro Nanoeng.5, 218–222 (2010).
[CrossRef]

Šlekys, G.

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011).
[CrossRef]

Šliupas, R.

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011).
[CrossRef]

Smirnov, V.

Smirnov, V. I.

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of phase volume diffractive gratings, part 1: transmitting sinusoidal uniform gratings,” Opt. Eng.45, 015802 (2006).
[CrossRef]

O. M. Efimov, L. B. Glebov, and V. I. Smirnov, “High-frequency Bragg gratings in a photothermorefractive glass,” Opt. Lett.25, 1693–1695 (2000).
[CrossRef]

Sonneville, C.

Stewart, P.

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc.427, 806–815 (2012).
[CrossRef]

Sugimoto, N.

Sun, H.

M. Watanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Two-photon readout of three-dimensional memory in silica,” Appl. Phys. Lett.77, 13–15 (2000).
[CrossRef]

Sun, H.-B.

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B60, 9959–9964 (1999).
[CrossRef]

Taylor, R. S.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys.Lett.87, 014104 (2005).
[CrossRef]

Tennant, D. M.

C. R. K. Marrian and D. M. Tennant, “Nanofabrication,” J. Vac. Sci. Technol.21, S207–S215 (2003).
[CrossRef]

Thomas, J.

C. Voigtländer, D. Richter, J. Thomas, A. Tünnermann, and S. Nolte, “Inscription of high contrast volume bragg gratings in fused silica with femtosecond laser pulses,” Appl. Phys A - Mater. Sci. Process.102, 35–38 (2011).
[CrossRef]

Toma, T.

T. Toma, Y. Furuya, W. Watanabe, K. Itoh, J. Nishii, and K. Hayashi, “Estimation of the refractive index change in glass induced by femtosecond laser pulses,” Opt. Rev.7, 14–17 (2000).
[CrossRef]

Tünnermann, A.

C. Voigtländer, D. Richter, J. Thomas, A. Tünnermann, and S. Nolte, “Inscription of high contrast volume bragg gratings in fused silica with femtosecond laser pulses,” Appl. Phys A - Mater. Sci. Process.102, 35–38 (2011).
[CrossRef]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A104, 503–507 (2011).
[CrossRef]

Tuthill, P. G.

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc.427, 806–815 (2012).
[CrossRef]

Ueno, K.

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn.81, 411–448 (2008).
[CrossRef]

Vanagas, E.

Voigtländer, C.

C. Voigtländer, D. Richter, J. Thomas, A. Tünnermann, and S. Nolte, “Inscription of high contrast volume bragg gratings in fused silica with femtosecond laser pulses,” Appl. Phys A - Mater. Sci. Process.102, 35–38 (2011).
[CrossRef]

Watanabe, M.

M. Watanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Two-photon readout of three-dimensional memory in silica,” Appl. Phys. Lett.77, 13–15 (2000).
[CrossRef]

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B60, 9959–9964 (1999).
[CrossRef]

Watanabe, W.

K. Yamada, W. Watanabe, K. Kintaka, J. Nishii, and K. Itoh, “Volume grating induced by a self-trapped long filament of femtosecond laser pulses in silica glass,” Jpn. J. Appl. Phys.42, 6916–6919 (2003).
[CrossRef]

T. Toma, Y. Furuya, W. Watanabe, K. Itoh, J. Nishii, and K. Hayashi, “Estimation of the refractive index change in glass induced by femtosecond laser pulses,” Opt. Rev.7, 14–17 (2000).
[CrossRef]

Weickman, A.

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [invited],” Opt. Mat. Express1, 998–1008 (2012).
[CrossRef]

Withford, M. J.

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc.427, 806–815 (2012).
[CrossRef]

N. Jovanovic, M. Aslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett.32, 2804–2806 (2007).
[CrossRef] [PubMed]

Yamada, K.

K. Yamada, W. Watanabe, K. Kintaka, J. Nishii, and K. Itoh, “Volume grating induced by a self-trapped long filament of femtosecond laser pulses in silica glass,” Jpn. J. Appl. Phys.42, 6916–6919 (2003).
[CrossRef]

Yamasaki, K.

S. Juodkazis, K. Yamasaki, S. Matsuo, and H. Misawa, “Glass transition-assisted microstructuring in polystyrene,” Appl. Phys. Lett.84, 514–516 (2004).
[CrossRef]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A79, 1549–1553 (2004).
[CrossRef]

Zeldovich, B. Y.

Zemánek, P.

Žukauskas, A.

Appl. Phys A - Mater. Sci. Process. (1)

C. Voigtländer, D. Richter, J. Thomas, A. Tünnermann, and S. Nolte, “Inscription of high contrast volume bragg gratings in fused silica with femtosecond laser pulses,” Appl. Phys A - Mater. Sci. Process.102, 35–38 (2011).
[CrossRef]

Appl. Phys. A (2)

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A104, 503–507 (2011).
[CrossRef]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A79, 1549–1553 (2004).
[CrossRef]

Appl. Phys. A. (1)

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A.76, 257–260 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

S. Juodkazis, K. Yamasaki, S. Matsuo, and H. Misawa, “Glass transition-assisted microstructuring in polystyrene,” Appl. Phys. Lett.84, 514–516 (2004).
[CrossRef]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett.97, 081102 (2010).
[CrossRef]

M. Watanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Two-photon readout of three-dimensional memory in silica,” Appl. Phys. Lett.77, 13–15 (2000).
[CrossRef]

Appl. Phys.Lett. (1)

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys.Lett.87, 014104 (2005).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell Syst. Tech. J.48, 2909–2947 (1969).
[CrossRef]

Bull. Chem. Soc. Jpn. (1)

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn.81, 411–448 (2008).
[CrossRef]

J. Laser Micro Nanoeng. (1)

D. Paipulas, V. Kudriasov, K. Kurselis, M. Malinauskas, S. Ost, and V. Sirutkaitis, “Volume bragg grating formation in fused silica with high repetition rate femtosecond Yb:KGW laser pulses,” J. Laser Micro Nanoeng.5, 218–222 (2010).
[CrossRef]

J. Vac. Sci. Technol. (1)

C. R. K. Marrian and D. M. Tennant, “Nanofabrication,” J. Vac. Sci. Technol.21, S207–S215 (2003).
[CrossRef]

Jpn. J. Appl. Phys. (2)

A. Marcinkevicius, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel beams for microfabrication of dielectrics by femtosecond laser,” Jpn. J. Appl. Phys.40, L1197–L1199 (2001).
[CrossRef]

K. Yamada, W. Watanabe, K. Kintaka, J. Nishii, and K. Itoh, “Volume grating induced by a self-trapped long filament of femtosecond laser pulses in silica glass,” Jpn. J. Appl. Phys.42, 6916–6919 (2003).
[CrossRef]

Las. Phot. Rev. (1)

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Las. Phot. Rev.6, 607–621 (2012).
[CrossRef]

Mon. Not. R. Astron. Soc. (1)

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc.427, 806–815 (2012).
[CrossRef]

Nanotechnology (1)

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011).
[CrossRef]

Opt. Eng. (1)

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of phase volume diffractive gratings, part 1: transmitting sinusoidal uniform gratings,” Opt. Eng.45, 015802 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Opt. Mat. Express (2)

M. Beresna, M. Gecevičius, and P. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mat. Express4, 783–795 (2011).
[CrossRef]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [invited],” Opt. Mat. Express1, 998–1008 (2012).
[CrossRef]

Opt. Mater. Express (2)

Opt. Rev. (1)

T. Toma, Y. Furuya, W. Watanabe, K. Itoh, J. Nishii, and K. Hayashi, “Estimation of the refractive index change in glass induced by femtosecond laser pulses,” Opt. Rev.7, 14–17 (2000).
[CrossRef]

Phys. Rev. B (1)

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B60, 9959–9964 (1999).
[CrossRef]

Proc. of SPIE (1)

J. Arns, W. Colburn, and S. Barden, “Volume phase gratings for spectroscopy, ultrafast laser compressors, and wavelength division multiplexing,” Proc. of SPIE3779, 313–323 (1999).
[CrossRef]

Other (2)

H. Misawa, S. Juodkazis, S. Matsuo, and T. Kondo, “3D holographic recording method and 3D holographic recording system,” US7542186 B2 patent (2009).

A. Marcinkevicius, S. Juodkazis, S. Matsuo, and H. Misawa, “Application of femtosecond non-diffracting bessel beams in micro-structuring of transparent dielectrics,” in “Optical Pulse and Beam Propagation III, LASE (Jan. 20–26 2001, San Jose, U.S.A.) SPIE Proc. 4271,” (2001), pp. 150–158.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematics of experimental setup for GB beam generation and its downsizing by a telescope. Plano-convex lens with focal length f1 is used together with NA = 0.42 objective lens of a focal length f2 to produce a conjugated image of GB beam inside the volume of fused silica sample ( f 2 / f 1 t 1 / z max t = 1 / 75). (b) Image of the GB beam in the z max t region (at the edge of the region) produced with an axicon having the 179° apex angle. Scale bar is 5 μm.

Fig. 2
Fig. 2

(a) Schematics of the VBG recorded with GB laser beam. Several layers (N1 to Nn) of zmax depth gratings are stitched together to form one thick grating with overall thickness t. Grating period is d and diffraction is caused by a homogeneous modulation of the refractive index Δn, induced by femtosecond laser pulses. When incident beam satisfies the Bragg condition ( θ inc = θ B = | θ dif | = | θ B * |), diffraction efficiencies up to 100% could be achieved. (b) Optical images of fused silica sample with VBGs formed by Gaussian and Gauss-Bessel (GB) ultra short laser pulses at different energies, scanning velocities, and having different grating depths.

Fig. 3
Fig. 3

(a) An optical side-view image of modifications induced with the GB beam and their axial stitching. Central part of the GB trace has intensity above the threshold appearance of type-II modifications causing the scattering centers in fused silica (box enclosure). (b) Axial and lateral intensity cross sections of the GB beam measured after demagnifying telescope in air. The GB in (a) and (b) were generated using an axicon with a 178° apex angle.

Fig. 4
Fig. 4

(a) Diffraction efficiency vs grating thickness for GB beam written VBG. Incident wavelength was 633 nm at the Bragg condition (θB = 8.3°) and grating period of 1.5 μm. Thickness was varied by changing multiplexing number from N1 to N4. Single layer had (t1 = 88 μm thickness. Solid lines are theoretical curves calculated by ηexp = (Eq. (4)), where A ≈ 0.91. Gratings recorded with higher pulse energies have maximum efficiency peak shifted to the left due to increased variation in refractive index Δn. Inset shows images of diffracted WLC light at the same incident angle 8.3° from gratings with different number of multiplexed layers. (b) Diffraction efficiency vs grating thickness for VBG made with a Gaussian beam. Grating period was 2 μm, and single layer axial length t1 = 4.5 μm. Pulse energy was 200 nJ, sample translation speed of 2 mm/s at 200 kHz repetition rate, focusing by NA =0.42 objective. Diffraction depends on polarization s and p of the incident beam due to strong birefringence at the modified zones. Solid lines represents theoretical curves with parameters A ≈ 0.72, Δns = 0.0013, Δnp = 0.0029.

Fig. 5
Fig. 5

(a) Spectral sensitivity of the VBG fixed at the 8.8° incidence angle. (b) Angular sensitivity of the grating fixed at the 569 nm wavelength. The data were collected from a normalized WLC spectrum of an undiffracted beam; thus y-scale is inverted. Solid lines represent theoretical simulation according to Eq. (5) and Eq. (6), with model parameters: t = 352 μm, Δn = 0.001, d = 1.5 μm. Additional peaks, with their side lobes are due to quality of stitching between regions recorded at different depths as well as axial modulation of refractive index (shaded region in (a)).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ρ 0 = 1.2024 λ π sin ( α 0 ) ,
z max t = w 0 cos ( α 0 ) sin ( α 0 ) ,
m λ / n = 2 d sin ( θ B ) ;
η = sin 2 [ π Δ n t λ cos ( θ B ) ] ,
η ( Δ θ i ) = sin 2 [ π t Δ n 2 / ( λ 0 cos ( θ B ) ) 2 + ( d Δ θ i ) 2 ] 1 + ( λ 0 cos ( θ B ) Δ θ i / d Δ n ) 2 ,
η ( Δ λ ) = sin 2 [ π t ( Δ n / λ 0 ) 2 + ( d 2 Δ λ / 2 n ) 2 / cos θ B ] 1 + ( d 2 λ 0 Δ λ / 2 n Δ n ) 2 ,
Δ θ i H W F Z = 3 d 2 t 4 n 2 λ 0 2 d 2 4 λ 0 2 d 2 ; Δ λ 0 H W F Z = 3 n d 2 cos ( θ B ) t .

Metrics