Abstract

The incorporation of fluorine into porous silica by gas phase doping with hexafluoroethane C2F6 in N2 was studied using thermodynamic calculations and complementary fluorination experiments up to 1300 °C. With online FTIR analysis of the gas phase, the main products SiF4, CO2, CO, and CF4, and the traces H2O, HF, Si2F6O, and COF2 were detected and three consecutive kinetic phases deduced: the unique sorption phase, a combined etching and fluorination phase, and the thermal decomposition of C2F6 accompanied by a deposition of solid carbon. The chemical species were connected to a framework of chemical reactions. Carbon deposition and mass loss by etching are principle problems of this fluorine precursor, that cannot be completely avoided. According to the origin, three types of carbon can be distinguished. Because of its high thermodynamic stability, SiF4 is a key product of etching.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Mühlich, K. Rau, F. Simmat, and N. Treber, “A new doped synthetic fused silica as bulk material for low-loss optical fibers,” presented at the First European Conference on Optical Fiber Communication, London (1975).
  2. K. Rau, A. Muehlich, F. Simat, and N. Treber, “Verfahren zur Herstellung eines Vorproduktes für die Erzeugung eines optischen Lichtleiters,” Patent DE 2538313A1, 1975.
  3. S. Shiraishi, K. Fujiwara, and S. Kurosaki, “An optical transmission fiber containing fluorine,” Patent US 4082420, 1976.
  4. J. W. Fleming and D. L. Wood, “Refractive index dispersion and related properties in fluorine doped silica,” Appl. Opt.22(19), 3102–3104 (1983).
    [CrossRef] [PubMed]
  5. M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci.28(10), 2738–2744 (1993).
    [CrossRef]
  6. R. Clasen, Herstellung sehr reiner Kieselgläser durch Sintern submikroskopischer Glasteilchen (Habilation, RWTH Aachen, 1989).
  7. K. Abe, “Fluorine doped silica for optical waveguides,” presented at the 2. European Conf. Opt. Fibre Comm., Paris, 1976.
  8. K. L. Walker, R. Csenscit, and D. L. Wood, “The chemistry of fluorine incorporation in silica,” presented at the 6th Topical Meeting on Optical Communication, New Orleans, 1983.
  9. J. Kirchhof, P. Kleinert, S. Unger, and A. Funke, “About the fluorine chemistry in MCVD: The influence of fluorine doping in SiO2 deposition,” Cryst. Res. Technol.21(11), 1437–1444 (1986).
    [CrossRef]
  10. A. Mühlich, K. Rau, and N. Treber, “Preparation of fluorine doped silica preforms by plasma chemical technique,” presented at the 3. European Conf. Opt. Fibre Comm., München, 1977.
  11. P. Bachmann, H. Hübner, M. Lenartz, E. Steinbeck, and J. Ungelenk, “Fluorine doped single mode and step index fibres prepared by the low pressure PCVD process,” presented at the 8. European Conf. Opt. Fibre Comm., Cannes, 1982.
  12. H. Kanamori, N. Yoshioka, M. Kyoto, M. Watanabe, and G. Tanaka, “Fluorine doping in the VAD method and its application to optical fibre fabrication,” presented at the 9. European Conf. Opt. Fibre Comm., Geneva, 1983.
  13. P. C. Schultz and A. Sarkar, “Recent advances in the outside vapor deposition (OVD) process,” presented at the Fourth International Conference on Integrated Optics and Optical Fiber Communication, Tokyo, 1983.
  14. S. Sudo, T. Miya, and T. Nakahara, “Fabrication of fluorine doped VAD nother rod,” in Proc. National Convention of IECE of Japan, (Senai, Japan, 1983), .
  15. J. Kirchhof and S. Unger, “Thermodynamics of fluorine incorporation into silica glass,” J. Non-Cryst. Solids354(2-9), 540–545 (2008).
    [CrossRef]
  16. M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud, JANAF Thermochemical Tables, Third Edition (American Institute of Physics, Inc., New York, 1986).
  17. I. Barin, Thermochemical Data of Pure Substances, 2. Auflage (VCH, Weinheim, 1993).
  18. M. Shinmei, T. Imai, T. Yokokawa, and C. R. Masson, “Thermodynamic study of Si2OF6(g) from 723-1288 K by mass spectrometry,” J. Chem. Thermodyn.18(3), 241–246 (1986).
    [CrossRef]
  19. P. Dumas, J. Corset, Y. Levy, and V. Neuman, “Raman spectral characterization of pure and fluorine-doped vitreous silica material,” J. Raman Spectrosc.13(2), 134–138 (1982).
    [CrossRef]
  20. J. Kirchhof, S. Unger, B. Knappe, P. Kleinert, and A. Funke, “About the fluorine chemistry in MCVD: The mechanism of fluorine incorporation into SiO2 layers,” Cryst. Res. Technol.22(4), 495–501 (1987).
    [CrossRef]
  21. P. L. Hanst and S. T. Hanst, Infrared Spectra for Quantitative Analysis of Gases (Infrared Analysis, Inc., Anaheim, 2000).
  22. W. Hermann, A. Raith, and H. Rau, “Diffusion of fluorine in silica,” Ber. Bunsenges. Phys. Chem91(1), 56–58 (1987).
    [CrossRef]
  23. J. Kirchhof, P. Kleinert, W. Radloff, and E. Below, “Diffusion Processes in Lightguide Materials: The Diffusion of OH in Silica Glass at High Temperatures,” Phys. Status Solidi, A Appl. Res.101(2), 391–401 (1987).
    [CrossRef]
  24. A. Marshall and K. R. Hallam, “Fluorine doping and etching reactions of freon 12 in optical fiber manufacture,” J. Lightwave Technol.4(7), 746–750 (1986).
    [CrossRef]

2008 (1)

J. Kirchhof and S. Unger, “Thermodynamics of fluorine incorporation into silica glass,” J. Non-Cryst. Solids354(2-9), 540–545 (2008).
[CrossRef]

1993 (1)

M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci.28(10), 2738–2744 (1993).
[CrossRef]

1987 (3)

J. Kirchhof, S. Unger, B. Knappe, P. Kleinert, and A. Funke, “About the fluorine chemistry in MCVD: The mechanism of fluorine incorporation into SiO2 layers,” Cryst. Res. Technol.22(4), 495–501 (1987).
[CrossRef]

W. Hermann, A. Raith, and H. Rau, “Diffusion of fluorine in silica,” Ber. Bunsenges. Phys. Chem91(1), 56–58 (1987).
[CrossRef]

J. Kirchhof, P. Kleinert, W. Radloff, and E. Below, “Diffusion Processes in Lightguide Materials: The Diffusion of OH in Silica Glass at High Temperatures,” Phys. Status Solidi, A Appl. Res.101(2), 391–401 (1987).
[CrossRef]

1986 (3)

A. Marshall and K. R. Hallam, “Fluorine doping and etching reactions of freon 12 in optical fiber manufacture,” J. Lightwave Technol.4(7), 746–750 (1986).
[CrossRef]

J. Kirchhof, P. Kleinert, S. Unger, and A. Funke, “About the fluorine chemistry in MCVD: The influence of fluorine doping in SiO2 deposition,” Cryst. Res. Technol.21(11), 1437–1444 (1986).
[CrossRef]

M. Shinmei, T. Imai, T. Yokokawa, and C. R. Masson, “Thermodynamic study of Si2OF6(g) from 723-1288 K by mass spectrometry,” J. Chem. Thermodyn.18(3), 241–246 (1986).
[CrossRef]

1983 (1)

1982 (1)

P. Dumas, J. Corset, Y. Levy, and V. Neuman, “Raman spectral characterization of pure and fluorine-doped vitreous silica material,” J. Raman Spectrosc.13(2), 134–138 (1982).
[CrossRef]

Below, E.

J. Kirchhof, P. Kleinert, W. Radloff, and E. Below, “Diffusion Processes in Lightguide Materials: The Diffusion of OH in Silica Glass at High Temperatures,” Phys. Status Solidi, A Appl. Res.101(2), 391–401 (1987).
[CrossRef]

Corset, J.

P. Dumas, J. Corset, Y. Levy, and V. Neuman, “Raman spectral characterization of pure and fluorine-doped vitreous silica material,” J. Raman Spectrosc.13(2), 134–138 (1982).
[CrossRef]

Dumas, P.

P. Dumas, J. Corset, Y. Levy, and V. Neuman, “Raman spectral characterization of pure and fluorine-doped vitreous silica material,” J. Raman Spectrosc.13(2), 134–138 (1982).
[CrossRef]

Fleming, J. W.

Funke, A.

J. Kirchhof, S. Unger, B. Knappe, P. Kleinert, and A. Funke, “About the fluorine chemistry in MCVD: The mechanism of fluorine incorporation into SiO2 layers,” Cryst. Res. Technol.22(4), 495–501 (1987).
[CrossRef]

J. Kirchhof, P. Kleinert, S. Unger, and A. Funke, “About the fluorine chemistry in MCVD: The influence of fluorine doping in SiO2 deposition,” Cryst. Res. Technol.21(11), 1437–1444 (1986).
[CrossRef]

Hallam, K. R.

A. Marshall and K. R. Hallam, “Fluorine doping and etching reactions of freon 12 in optical fiber manufacture,” J. Lightwave Technol.4(7), 746–750 (1986).
[CrossRef]

Hermann, W.

W. Hermann, A. Raith, and H. Rau, “Diffusion of fluorine in silica,” Ber. Bunsenges. Phys. Chem91(1), 56–58 (1987).
[CrossRef]

Imai, T.

M. Shinmei, T. Imai, T. Yokokawa, and C. R. Masson, “Thermodynamic study of Si2OF6(g) from 723-1288 K by mass spectrometry,” J. Chem. Thermodyn.18(3), 241–246 (1986).
[CrossRef]

Ishiguro, Y.

M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci.28(10), 2738–2744 (1993).
[CrossRef]

Ishikawa, S.

M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci.28(10), 2738–2744 (1993).
[CrossRef]

Kirchhof, J.

J. Kirchhof and S. Unger, “Thermodynamics of fluorine incorporation into silica glass,” J. Non-Cryst. Solids354(2-9), 540–545 (2008).
[CrossRef]

J. Kirchhof, S. Unger, B. Knappe, P. Kleinert, and A. Funke, “About the fluorine chemistry in MCVD: The mechanism of fluorine incorporation into SiO2 layers,” Cryst. Res. Technol.22(4), 495–501 (1987).
[CrossRef]

J. Kirchhof, P. Kleinert, W. Radloff, and E. Below, “Diffusion Processes in Lightguide Materials: The Diffusion of OH in Silica Glass at High Temperatures,” Phys. Status Solidi, A Appl. Res.101(2), 391–401 (1987).
[CrossRef]

J. Kirchhof, P. Kleinert, S. Unger, and A. Funke, “About the fluorine chemistry in MCVD: The influence of fluorine doping in SiO2 deposition,” Cryst. Res. Technol.21(11), 1437–1444 (1986).
[CrossRef]

Kleinert, P.

J. Kirchhof, P. Kleinert, W. Radloff, and E. Below, “Diffusion Processes in Lightguide Materials: The Diffusion of OH in Silica Glass at High Temperatures,” Phys. Status Solidi, A Appl. Res.101(2), 391–401 (1987).
[CrossRef]

J. Kirchhof, S. Unger, B. Knappe, P. Kleinert, and A. Funke, “About the fluorine chemistry in MCVD: The mechanism of fluorine incorporation into SiO2 layers,” Cryst. Res. Technol.22(4), 495–501 (1987).
[CrossRef]

J. Kirchhof, P. Kleinert, S. Unger, and A. Funke, “About the fluorine chemistry in MCVD: The influence of fluorine doping in SiO2 deposition,” Cryst. Res. Technol.21(11), 1437–1444 (1986).
[CrossRef]

Knappe, B.

J. Kirchhof, S. Unger, B. Knappe, P. Kleinert, and A. Funke, “About the fluorine chemistry in MCVD: The mechanism of fluorine incorporation into SiO2 layers,” Cryst. Res. Technol.22(4), 495–501 (1987).
[CrossRef]

Kyoto, M.

M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci.28(10), 2738–2744 (1993).
[CrossRef]

Levy, Y.

P. Dumas, J. Corset, Y. Levy, and V. Neuman, “Raman spectral characterization of pure and fluorine-doped vitreous silica material,” J. Raman Spectrosc.13(2), 134–138 (1982).
[CrossRef]

Marshall, A.

A. Marshall and K. R. Hallam, “Fluorine doping and etching reactions of freon 12 in optical fiber manufacture,” J. Lightwave Technol.4(7), 746–750 (1986).
[CrossRef]

Masson, C. R.

M. Shinmei, T. Imai, T. Yokokawa, and C. R. Masson, “Thermodynamic study of Si2OF6(g) from 723-1288 K by mass spectrometry,” J. Chem. Thermodyn.18(3), 241–246 (1986).
[CrossRef]

Miya, T.

S. Sudo, T. Miya, and T. Nakahara, “Fabrication of fluorine doped VAD nother rod,” in Proc. National Convention of IECE of Japan, (Senai, Japan, 1983), .

Nakahara, T.

S. Sudo, T. Miya, and T. Nakahara, “Fabrication of fluorine doped VAD nother rod,” in Proc. National Convention of IECE of Japan, (Senai, Japan, 1983), .

Neuman, V.

P. Dumas, J. Corset, Y. Levy, and V. Neuman, “Raman spectral characterization of pure and fluorine-doped vitreous silica material,” J. Raman Spectrosc.13(2), 134–138 (1982).
[CrossRef]

Ohoga, Y.

M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci.28(10), 2738–2744 (1993).
[CrossRef]

Radloff, W.

J. Kirchhof, P. Kleinert, W. Radloff, and E. Below, “Diffusion Processes in Lightguide Materials: The Diffusion of OH in Silica Glass at High Temperatures,” Phys. Status Solidi, A Appl. Res.101(2), 391–401 (1987).
[CrossRef]

Raith, A.

W. Hermann, A. Raith, and H. Rau, “Diffusion of fluorine in silica,” Ber. Bunsenges. Phys. Chem91(1), 56–58 (1987).
[CrossRef]

Rau, H.

W. Hermann, A. Raith, and H. Rau, “Diffusion of fluorine in silica,” Ber. Bunsenges. Phys. Chem91(1), 56–58 (1987).
[CrossRef]

Shinmei, M.

M. Shinmei, T. Imai, T. Yokokawa, and C. R. Masson, “Thermodynamic study of Si2OF6(g) from 723-1288 K by mass spectrometry,” J. Chem. Thermodyn.18(3), 241–246 (1986).
[CrossRef]

Sudo, S.

S. Sudo, T. Miya, and T. Nakahara, “Fabrication of fluorine doped VAD nother rod,” in Proc. National Convention of IECE of Japan, (Senai, Japan, 1983), .

Unger, S.

J. Kirchhof and S. Unger, “Thermodynamics of fluorine incorporation into silica glass,” J. Non-Cryst. Solids354(2-9), 540–545 (2008).
[CrossRef]

J. Kirchhof, S. Unger, B. Knappe, P. Kleinert, and A. Funke, “About the fluorine chemistry in MCVD: The mechanism of fluorine incorporation into SiO2 layers,” Cryst. Res. Technol.22(4), 495–501 (1987).
[CrossRef]

J. Kirchhof, P. Kleinert, S. Unger, and A. Funke, “About the fluorine chemistry in MCVD: The influence of fluorine doping in SiO2 deposition,” Cryst. Res. Technol.21(11), 1437–1444 (1986).
[CrossRef]

Wood, D. L.

Yokokawa, T.

M. Shinmei, T. Imai, T. Yokokawa, and C. R. Masson, “Thermodynamic study of Si2OF6(g) from 723-1288 K by mass spectrometry,” J. Chem. Thermodyn.18(3), 241–246 (1986).
[CrossRef]

Appl. Opt. (1)

Ber. Bunsenges. Phys. Chem (1)

W. Hermann, A. Raith, and H. Rau, “Diffusion of fluorine in silica,” Ber. Bunsenges. Phys. Chem91(1), 56–58 (1987).
[CrossRef]

Cryst. Res. Technol. (2)

J. Kirchhof, P. Kleinert, S. Unger, and A. Funke, “About the fluorine chemistry in MCVD: The influence of fluorine doping in SiO2 deposition,” Cryst. Res. Technol.21(11), 1437–1444 (1986).
[CrossRef]

J. Kirchhof, S. Unger, B. Knappe, P. Kleinert, and A. Funke, “About the fluorine chemistry in MCVD: The mechanism of fluorine incorporation into SiO2 layers,” Cryst. Res. Technol.22(4), 495–501 (1987).
[CrossRef]

J. Chem. Thermodyn. (1)

M. Shinmei, T. Imai, T. Yokokawa, and C. R. Masson, “Thermodynamic study of Si2OF6(g) from 723-1288 K by mass spectrometry,” J. Chem. Thermodyn.18(3), 241–246 (1986).
[CrossRef]

J. Lightwave Technol. (1)

A. Marshall and K. R. Hallam, “Fluorine doping and etching reactions of freon 12 in optical fiber manufacture,” J. Lightwave Technol.4(7), 746–750 (1986).
[CrossRef]

J. Mater. Sci. (1)

M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci.28(10), 2738–2744 (1993).
[CrossRef]

J. Non-Cryst. Solids (1)

J. Kirchhof and S. Unger, “Thermodynamics of fluorine incorporation into silica glass,” J. Non-Cryst. Solids354(2-9), 540–545 (2008).
[CrossRef]

J. Raman Spectrosc. (1)

P. Dumas, J. Corset, Y. Levy, and V. Neuman, “Raman spectral characterization of pure and fluorine-doped vitreous silica material,” J. Raman Spectrosc.13(2), 134–138 (1982).
[CrossRef]

Phys. Status Solidi, A Appl. Res. (1)

J. Kirchhof, P. Kleinert, W. Radloff, and E. Below, “Diffusion Processes in Lightguide Materials: The Diffusion of OH in Silica Glass at High Temperatures,” Phys. Status Solidi, A Appl. Res.101(2), 391–401 (1987).
[CrossRef]

Other (14)

P. L. Hanst and S. T. Hanst, Infrared Spectra for Quantitative Analysis of Gases (Infrared Analysis, Inc., Anaheim, 2000).

M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud, JANAF Thermochemical Tables, Third Edition (American Institute of Physics, Inc., New York, 1986).

I. Barin, Thermochemical Data of Pure Substances, 2. Auflage (VCH, Weinheim, 1993).

A. Mühlich, K. Rau, F. Simmat, and N. Treber, “A new doped synthetic fused silica as bulk material for low-loss optical fibers,” presented at the First European Conference on Optical Fiber Communication, London (1975).

K. Rau, A. Muehlich, F. Simat, and N. Treber, “Verfahren zur Herstellung eines Vorproduktes für die Erzeugung eines optischen Lichtleiters,” Patent DE 2538313A1, 1975.

S. Shiraishi, K. Fujiwara, and S. Kurosaki, “An optical transmission fiber containing fluorine,” Patent US 4082420, 1976.

R. Clasen, Herstellung sehr reiner Kieselgläser durch Sintern submikroskopischer Glasteilchen (Habilation, RWTH Aachen, 1989).

K. Abe, “Fluorine doped silica for optical waveguides,” presented at the 2. European Conf. Opt. Fibre Comm., Paris, 1976.

K. L. Walker, R. Csenscit, and D. L. Wood, “The chemistry of fluorine incorporation in silica,” presented at the 6th Topical Meeting on Optical Communication, New Orleans, 1983.

A. Mühlich, K. Rau, and N. Treber, “Preparation of fluorine doped silica preforms by plasma chemical technique,” presented at the 3. European Conf. Opt. Fibre Comm., München, 1977.

P. Bachmann, H. Hübner, M. Lenartz, E. Steinbeck, and J. Ungelenk, “Fluorine doped single mode and step index fibres prepared by the low pressure PCVD process,” presented at the 8. European Conf. Opt. Fibre Comm., Cannes, 1982.

H. Kanamori, N. Yoshioka, M. Kyoto, M. Watanabe, and G. Tanaka, “Fluorine doping in the VAD method and its application to optical fibre fabrication,” presented at the 9. European Conf. Opt. Fibre Comm., Geneva, 1983.

P. C. Schultz and A. Sarkar, “Recent advances in the outside vapor deposition (OVD) process,” presented at the Fourth International Conference on Integrated Optics and Optical Fiber Communication, Tokyo, 1983.

S. Sudo, T. Miya, and T. Nakahara, “Fabrication of fluorine doped VAD nother rod,” in Proc. National Convention of IECE of Japan, (Senai, Japan, 1983), .

Supplementary Material (1)

» Media 1: PDF (53 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Reactor setup for the gas phase fluorination of porous VAD pellets.

Fig. 2
Fig. 2

FTIR spectra of (a) carbon-containing gases and (b) carbon-free gases during gas phase fluorination with C2F6 (qualitative comparison of characteristic bands; staggered spectra with different concentrations of the gases in nitrogen) (Media 1).

Fig. 3
Fig. 3

(a) Silicon-containing species and (b) carbon-containing species in the equilibrium of the C2F6-SiO2-N2 system.

Fig. 4
Fig. 4

Influence of the C2F6 starting amount on (a) the silicon-containing species and (b) the carbon-containing species in the C2F6-SiO2 system (equilibrium composition at 800 °C).

Fig. 5
Fig. 5

Influence of the C2F6 starting amount on the equilibrium concentration of SiO1.5F in the solid phase at 800 °C (C2F6-SiO2 system).

Fig. 6
Fig. 6

Equilibrium composition in the C2F6-SiO2-N2-O2 system after the removal of solid carbon by adding oxygen.

Fig. 7
Fig. 7

Hydrogen-containing species in the C2F6-SiO2-N2-OH system.

Fig. 8
Fig. 8

Influence of OH on SiF4 and SiO2 in the equilibrium of the C2F6-SiO2-N2-OH system.

Fig. 9
Fig. 9

Quartz carrier tube with an etched silica pellet and carbon depositions after fluorination with 5 vol% C2F6 in N2 up to 1300 °C.

Fig. 10
Fig. 10

IR active products during fluorination of porous silica with 5 vol% C2F6 in N2: (a) fluorine-free and (b) fluorine-containing gases (heating phase; the numbers at the bars refer to the kinetic phases in Table 2).

Fig. 11
Fig. 11

Deactivation of fluorination with C2F6 by carbon soot, demonstrated at the selected species CO2 and CF4 (Overview of heating, holding, and cooling phase; the arrow marks the unique sorption phase).

Fig. 12
Fig. 12

Kinetic framework of the fluorination of porous silica with C2F6 in N2 (without sorption phase).

Tables (2)

Tables Icon

Table 1 Equilibrium concentrations of species in the two phases of the SiO2-C2F6-N2 system at 1000 °C

Tables Icon

Table 2 Kinetic phases during the first heating of an untreated silica pellet in 5 vol% C2F6 and N2 up to 1300 °C (FTIR indicator molecules bold)

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

2 C 2 F 6 3 CF 4 + C( s )
3 S iO 2 ( s ) + 2 C 2 F 6 3 SiF 4 + 3 CO 2 + C( s )
2 SiO 2 ( s ) + C 2 F 6 Si 2 F 6 O + 1.5 CO 2 + 0.5 C( s )
2 Si 2 F 6 O 3 SiF 4 + SiO 2 ( s )
CO 2 + C( s ) 2 CO
3 SiO 2 ( s ) + 2 C 2 F 6 3 SiF 4 + 2 CO 2 + 2 CO
2 SiO 2 ( s ) + C 2 F 6    Si 2 F 6 O + CO 2 + CO
3 SiO 2 ( s ) + SiF 4 4 SiO 1.5 F( s )
2 C 2 F 6 + 3 CO 2 4 COF 2 + CF 4 + 2 CO
SiF 4 + 2 H 2 O SiO 2 ( s ) + 4 HF
2 Si-OH Si-O-Si + H 2 O
6 Si-OH + C 2 F 6 6 Si-F + 3 H 2 O + CO 2 + CO
2 SiF 4 + H 2 O Si 2 F 6 O + 2 HF
2 SiF 4 + 2 SiO 2 ( s ) Si 2 F 6 O + 2 SiO 1.5 F( s )
6 SiO 2 ( s ) + C 2 F 6 6 SiO 1.5 F( s ) + CO 2 + CO

Metrics