Abstract

Frequency upconversion (UC) luminescence was investigated in terbium (Tb3+) doped lutetium silicate powders when the samples were irradiated with femtosecond lasers operating either at 800 nm or 1500 nm. The samples with three different Tb3+ concentrations were prepared by the combustion synthesis method. Rietveld analysis of the X-ray powder diffraction data showed the predominance of monoclinic Lu2SiO5 phase. UC luminescence signals induced by three- and four-photon absorption were identified. The mechanisms that originate the anti-Stokes luminescence were discussed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and applications,” Adv. Funct. Mater.13(7), 511–516 (2003).
    [CrossRef]
  2. R. Martín-Rodríguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini, and F. Piccinelli, “Upconversion luminescence in nanocrystals of Gd3Ga5O12 and Y3Al5O12 doped with Tb3+-Yb3+ and Eu3+-Yb3+,” J. Phys. Chem. C113(28), 12195–12200 (2009).
    [CrossRef]
  3. I. R. Martín, A. C. Yanes, J. Méndez-Ramos, M. E. Torres, and V. D. Rodríguez, “Cooperative energy transfer in Yb3+-Tb3+ codoped sílica sol-gel glasses,” J. Appl. Phys.89(5), 2520–2524 (2001).
    [CrossRef]
  4. Z. Boruc, B. Fetlinski, M. Kaczkan, S. Turczynski, D. Pawlak, and M. Malinowski, “Temperature and concentration quenching of Tb3+ emissions in Y4Al2O9 crystals,” J. Alloy. Comp.532, 92–97 (2012).
    [CrossRef]
  5. D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in a barium fluoride-thorium fluoride glass,” Phys. Rev. B Condens. Matter39(1), 80–90 (1989).
    [CrossRef] [PubMed]
  6. N. Rakov, G. S. Maciel, W. B. Lozano, and C. B. de Araújo, “Investigation of Eu3+ luminescence intensification in Al2O3 powders codoped with Tb3+ and prepared by low-temperature direct combustion synthesis,” Appl. Phys. Lett.88, 081908 (2006).
  7. N. Rakov and G. S. Maciel, “Enhancement of luminescence efficiency of f-f transitions from Tb3+ due to energy transfer from Ce3+ in Al2O3 crystalline ceramic powders prepared by low temperature direct combustion synthesis,” Chem. Phys. Lett.400(4-6), 553–557 (2004).
    [CrossRef]
  8. L. R. P. Kassab, R. de Almeida, D. M. da Silva, and C. B. de Araújo, “Luminescence of Tb3+ doped TeO2-ZnO-Na2O-PbO glasses containing silver nanoparticles,” J. Appl. Phys.104(9), 093531–093533 (2008).
    [CrossRef]
  9. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–174 (2004).
    [CrossRef] [PubMed]
  10. L. Y. Yang, Y. J. Dong, D. P. Chen, C. Wang, X. Hu, N. Da, G. J. Zhao, J. Xu, X. W. Jiang, C. S. Zhu, and J. R. Qiu, “Three-photon-excited upconversion luminescence of Ce3+ YAP crystal by femtosecond laser irradiation,” Opt. Express14(1), 243–247 (2006).
    [CrossRef] [PubMed]
  11. H. P. Ma, B. W. Zhu, and F. L. Zou, “Three-photon-excited fluorescence of Tb3+-doped CaO-Al2O3-SiO2 glass by femtosecond laser irradiation,” J. Rare Earths26(6), 928–931 (2008).
    [CrossRef]
  12. D. Hreniak, W. Strek, A. Speghini, M. Bettinelli, G. Boulon, and Y. Guyot, “Infrared induced red luminescence of Eu3+-doped polycrystalline LiNbO3,” Appl. Phys. Lett.88(16), 161118 (2006).
    [CrossRef]
  13. M. Yamaga, Y. Ohsumi, T. Nakayama, and T. P. J. Han, “Persistent phosphorescence in Ce-doped Lu2SiO5,” Opt. Mater. Express2(4), 413–419 (2012).
    [CrossRef]
  14. A. J. Wojtowicz, W. Drozdowski, D. Wisniewski, J.-L. Lefaucheur, Z. Galazka, Z. H. Gou, T. Lukasiewicz, and J. Kisielewski, “Scintillation properties of selected oxide monocrystals activated with Ce and Pr,” Opt. Mater.28(1-2), 85–93 (2006).
    [CrossRef]
  15. H. Feng, D. Z. Ding, H. Y. Li, F. Yang, S. Lu, S. K. Pan, X. F. Chen, W. D. Zhang, and G. H. Ren, “Scintillation and thermoluminescence properties of a new scintillator YPS:Ce,” J. Inorg. Mater.25(8), 801–805 (2010).
    [CrossRef]
  16. Y. H. Zhou, J. Lin, S. B. Wang, and H. J. Zhang, “Preparation of Y3Al5O12:Eu phosphors by citric-gel method and their luminescent properties,” Opt. Mater.20(1), 13–20 (2002).
    [CrossRef]
  17. Y. C. Li, Y. H. Chang, Y. F. Lin, Y. S. Chang, and Y. J. Lin, “Synthesis and luminescent properties of Ln3+(Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors,” J. Alloy. Comp.439(1-2), 367–375 (2007).
    [CrossRef]
  18. L. E. Shea, J. McKittrick, L. A. Lopez, and E. Sluzky, “Synthesis of red-emitting, small particle size luminescent oxides using an optimized combustion process,” J. Am. Ceram. Soc.79(12), 3257–3265 (1996).
    [CrossRef]
  19. R. V. Mangalaraja, J. Mouzon, P. Hedström, I. Kero, K. V. S. Ramam, C. P. Camurri, and M. Odén, “Combustion synthesis of Y2O3 and Yb-Y2O3: Part I. Nanopowders and their characterization,” J. Mater. Process. Technol.208(1-3), 415–422 (2008).
    [CrossRef]
  20. A. C. Larson, R. B. von Dreele, General Structure Analysis System (GSAS); Los Alamos National Laboratory Report LAUR 86–748, 2004.
  21. M. Gu, L. Jia, X. L. Liu, S. Huang, B. Liu, and C. Ni, “Luminescent properties of Na-codoped Lu2SiO5:Ce phosphor,” J. Alloy. Comp.502(1), 190–194 (2010).
    [CrossRef]
  22. H. Huang and B. Yan, “Luminescence of nanophoshors Lu2SiO5 doped with different concentration of Tb3+ by in situ composition of hybrid precursors,” Mater. Sci. Eng. B117(3), 261–264 (2005).
    [CrossRef]
  23. C. Mansuy, F. Leroux, R. Mahiou, and J. M. Nedelec, “Preferential site substitution in sol-gel derived Eu3+ doped Lu2SiO5: a combined study by X-ray absorption and luminescence spectroscopies,” J. Mater. Chem.15(38), 4129–4135 (2005).
    [CrossRef]
  24. S. Ye, B. Zhu, J. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett.92(14), 141112 (2008).
    [CrossRef]

2012 (2)

Z. Boruc, B. Fetlinski, M. Kaczkan, S. Turczynski, D. Pawlak, and M. Malinowski, “Temperature and concentration quenching of Tb3+ emissions in Y4Al2O9 crystals,” J. Alloy. Comp.532, 92–97 (2012).
[CrossRef]

M. Yamaga, Y. Ohsumi, T. Nakayama, and T. P. J. Han, “Persistent phosphorescence in Ce-doped Lu2SiO5,” Opt. Mater. Express2(4), 413–419 (2012).
[CrossRef]

2010 (2)

H. Feng, D. Z. Ding, H. Y. Li, F. Yang, S. Lu, S. K. Pan, X. F. Chen, W. D. Zhang, and G. H. Ren, “Scintillation and thermoluminescence properties of a new scintillator YPS:Ce,” J. Inorg. Mater.25(8), 801–805 (2010).
[CrossRef]

M. Gu, L. Jia, X. L. Liu, S. Huang, B. Liu, and C. Ni, “Luminescent properties of Na-codoped Lu2SiO5:Ce phosphor,” J. Alloy. Comp.502(1), 190–194 (2010).
[CrossRef]

2009 (1)

R. Martín-Rodríguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini, and F. Piccinelli, “Upconversion luminescence in nanocrystals of Gd3Ga5O12 and Y3Al5O12 doped with Tb3+-Yb3+ and Eu3+-Yb3+,” J. Phys. Chem. C113(28), 12195–12200 (2009).
[CrossRef]

2008 (4)

L. R. P. Kassab, R. de Almeida, D. M. da Silva, and C. B. de Araújo, “Luminescence of Tb3+ doped TeO2-ZnO-Na2O-PbO glasses containing silver nanoparticles,” J. Appl. Phys.104(9), 093531–093533 (2008).
[CrossRef]

H. P. Ma, B. W. Zhu, and F. L. Zou, “Three-photon-excited fluorescence of Tb3+-doped CaO-Al2O3-SiO2 glass by femtosecond laser irradiation,” J. Rare Earths26(6), 928–931 (2008).
[CrossRef]

R. V. Mangalaraja, J. Mouzon, P. Hedström, I. Kero, K. V. S. Ramam, C. P. Camurri, and M. Odén, “Combustion synthesis of Y2O3 and Yb-Y2O3: Part I. Nanopowders and their characterization,” J. Mater. Process. Technol.208(1-3), 415–422 (2008).
[CrossRef]

S. Ye, B. Zhu, J. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett.92(14), 141112 (2008).
[CrossRef]

2007 (1)

Y. C. Li, Y. H. Chang, Y. F. Lin, Y. S. Chang, and Y. J. Lin, “Synthesis and luminescent properties of Ln3+(Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors,” J. Alloy. Comp.439(1-2), 367–375 (2007).
[CrossRef]

2006 (4)

D. Hreniak, W. Strek, A. Speghini, M. Bettinelli, G. Boulon, and Y. Guyot, “Infrared induced red luminescence of Eu3+-doped polycrystalline LiNbO3,” Appl. Phys. Lett.88(16), 161118 (2006).
[CrossRef]

L. Y. Yang, Y. J. Dong, D. P. Chen, C. Wang, X. Hu, N. Da, G. J. Zhao, J. Xu, X. W. Jiang, C. S. Zhu, and J. R. Qiu, “Three-photon-excited upconversion luminescence of Ce3+ YAP crystal by femtosecond laser irradiation,” Opt. Express14(1), 243–247 (2006).
[CrossRef] [PubMed]

A. J. Wojtowicz, W. Drozdowski, D. Wisniewski, J.-L. Lefaucheur, Z. Galazka, Z. H. Gou, T. Lukasiewicz, and J. Kisielewski, “Scintillation properties of selected oxide monocrystals activated with Ce and Pr,” Opt. Mater.28(1-2), 85–93 (2006).
[CrossRef]

N. Rakov, G. S. Maciel, W. B. Lozano, and C. B. de Araújo, “Investigation of Eu3+ luminescence intensification in Al2O3 powders codoped with Tb3+ and prepared by low-temperature direct combustion synthesis,” Appl. Phys. Lett.88, 081908 (2006).

2005 (2)

H. Huang and B. Yan, “Luminescence of nanophoshors Lu2SiO5 doped with different concentration of Tb3+ by in situ composition of hybrid precursors,” Mater. Sci. Eng. B117(3), 261–264 (2005).
[CrossRef]

C. Mansuy, F. Leroux, R. Mahiou, and J. M. Nedelec, “Preferential site substitution in sol-gel derived Eu3+ doped Lu2SiO5: a combined study by X-ray absorption and luminescence spectroscopies,” J. Mater. Chem.15(38), 4129–4135 (2005).
[CrossRef]

2004 (2)

N. Rakov and G. S. Maciel, “Enhancement of luminescence efficiency of f-f transitions from Tb3+ due to energy transfer from Ce3+ in Al2O3 crystalline ceramic powders prepared by low temperature direct combustion synthesis,” Chem. Phys. Lett.400(4-6), 553–557 (2004).
[CrossRef]

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–174 (2004).
[CrossRef] [PubMed]

2003 (1)

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and applications,” Adv. Funct. Mater.13(7), 511–516 (2003).
[CrossRef]

2002 (1)

Y. H. Zhou, J. Lin, S. B. Wang, and H. J. Zhang, “Preparation of Y3Al5O12:Eu phosphors by citric-gel method and their luminescent properties,” Opt. Mater.20(1), 13–20 (2002).
[CrossRef]

2001 (1)

I. R. Martín, A. C. Yanes, J. Méndez-Ramos, M. E. Torres, and V. D. Rodríguez, “Cooperative energy transfer in Yb3+-Tb3+ codoped sílica sol-gel glasses,” J. Appl. Phys.89(5), 2520–2524 (2001).
[CrossRef]

1996 (1)

L. E. Shea, J. McKittrick, L. A. Lopez, and E. Sluzky, “Synthesis of red-emitting, small particle size luminescent oxides using an optimized combustion process,” J. Am. Ceram. Soc.79(12), 3257–3265 (1996).
[CrossRef]

1989 (1)

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in a barium fluoride-thorium fluoride glass,” Phys. Rev. B Condens. Matter39(1), 80–90 (1989).
[CrossRef] [PubMed]

Adam, J. L.

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in a barium fluoride-thorium fluoride glass,” Phys. Rev. B Condens. Matter39(1), 80–90 (1989).
[CrossRef] [PubMed]

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–174 (2004).
[CrossRef] [PubMed]

Bettinelli, M.

R. Martín-Rodríguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini, and F. Piccinelli, “Upconversion luminescence in nanocrystals of Gd3Ga5O12 and Y3Al5O12 doped with Tb3+-Yb3+ and Eu3+-Yb3+,” J. Phys. Chem. C113(28), 12195–12200 (2009).
[CrossRef]

D. Hreniak, W. Strek, A. Speghini, M. Bettinelli, G. Boulon, and Y. Guyot, “Infrared induced red luminescence of Eu3+-doped polycrystalline LiNbO3,” Appl. Phys. Lett.88(16), 161118 (2006).
[CrossRef]

Boruc, Z.

Z. Boruc, B. Fetlinski, M. Kaczkan, S. Turczynski, D. Pawlak, and M. Malinowski, “Temperature and concentration quenching of Tb3+ emissions in Y4Al2O9 crystals,” J. Alloy. Comp.532, 92–97 (2012).
[CrossRef]

Boulon, G.

D. Hreniak, W. Strek, A. Speghini, M. Bettinelli, G. Boulon, and Y. Guyot, “Infrared induced red luminescence of Eu3+-doped polycrystalline LiNbO3,” Appl. Phys. Lett.88(16), 161118 (2006).
[CrossRef]

Camurri, C. P.

R. V. Mangalaraja, J. Mouzon, P. Hedström, I. Kero, K. V. S. Ramam, C. P. Camurri, and M. Odén, “Combustion synthesis of Y2O3 and Yb-Y2O3: Part I. Nanopowders and their characterization,” J. Mater. Process. Technol.208(1-3), 415–422 (2008).
[CrossRef]

Chang, Y. H.

Y. C. Li, Y. H. Chang, Y. F. Lin, Y. S. Chang, and Y. J. Lin, “Synthesis and luminescent properties of Ln3+(Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors,” J. Alloy. Comp.439(1-2), 367–375 (2007).
[CrossRef]

Chang, Y. S.

Y. C. Li, Y. H. Chang, Y. F. Lin, Y. S. Chang, and Y. J. Lin, “Synthesis and luminescent properties of Ln3+(Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors,” J. Alloy. Comp.439(1-2), 367–375 (2007).
[CrossRef]

Chen, D. P.

Chen, J.

S. Ye, B. Zhu, J. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett.92(14), 141112 (2008).
[CrossRef]

Chen, X. F.

H. Feng, D. Z. Ding, H. Y. Li, F. Yang, S. Lu, S. K. Pan, X. F. Chen, W. D. Zhang, and G. H. Ren, “Scintillation and thermoluminescence properties of a new scintillator YPS:Ce,” J. Inorg. Mater.25(8), 801–805 (2010).
[CrossRef]

Da, N.

da Silva, D. M.

L. R. P. Kassab, R. de Almeida, D. M. da Silva, and C. B. de Araújo, “Luminescence of Tb3+ doped TeO2-ZnO-Na2O-PbO glasses containing silver nanoparticles,” J. Appl. Phys.104(9), 093531–093533 (2008).
[CrossRef]

de Almeida, R.

L. R. P. Kassab, R. de Almeida, D. M. da Silva, and C. B. de Araújo, “Luminescence of Tb3+ doped TeO2-ZnO-Na2O-PbO glasses containing silver nanoparticles,” J. Appl. Phys.104(9), 093531–093533 (2008).
[CrossRef]

de Araújo, C. B.

L. R. P. Kassab, R. de Almeida, D. M. da Silva, and C. B. de Araújo, “Luminescence of Tb3+ doped TeO2-ZnO-Na2O-PbO glasses containing silver nanoparticles,” J. Appl. Phys.104(9), 093531–093533 (2008).
[CrossRef]

N. Rakov, G. S. Maciel, W. B. Lozano, and C. B. de Araújo, “Investigation of Eu3+ luminescence intensification in Al2O3 powders codoped with Tb3+ and prepared by low-temperature direct combustion synthesis,” Appl. Phys. Lett.88, 081908 (2006).

Ding, D. Z.

H. Feng, D. Z. Ding, H. Y. Li, F. Yang, S. Lu, S. K. Pan, X. F. Chen, W. D. Zhang, and G. H. Ren, “Scintillation and thermoluminescence properties of a new scintillator YPS:Ce,” J. Inorg. Mater.25(8), 801–805 (2010).
[CrossRef]

Dong, Y. J.

Drozdowski, W.

A. J. Wojtowicz, W. Drozdowski, D. Wisniewski, J.-L. Lefaucheur, Z. Galazka, Z. H. Gou, T. Lukasiewicz, and J. Kisielewski, “Scintillation properties of selected oxide monocrystals activated with Ce and Pr,” Opt. Mater.28(1-2), 85–93 (2006).
[CrossRef]

Feldmann, C.

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and applications,” Adv. Funct. Mater.13(7), 511–516 (2003).
[CrossRef]

Feng, H.

H. Feng, D. Z. Ding, H. Y. Li, F. Yang, S. Lu, S. K. Pan, X. F. Chen, W. D. Zhang, and G. H. Ren, “Scintillation and thermoluminescence properties of a new scintillator YPS:Ce,” J. Inorg. Mater.25(8), 801–805 (2010).
[CrossRef]

Fetlinski, B.

Z. Boruc, B. Fetlinski, M. Kaczkan, S. Turczynski, D. Pawlak, and M. Malinowski, “Temperature and concentration quenching of Tb3+ emissions in Y4Al2O9 crystals,” J. Alloy. Comp.532, 92–97 (2012).
[CrossRef]

Galazka, Z.

A. J. Wojtowicz, W. Drozdowski, D. Wisniewski, J.-L. Lefaucheur, Z. Galazka, Z. H. Gou, T. Lukasiewicz, and J. Kisielewski, “Scintillation properties of selected oxide monocrystals activated with Ce and Pr,” Opt. Mater.28(1-2), 85–93 (2006).
[CrossRef]

Gou, Z. H.

A. J. Wojtowicz, W. Drozdowski, D. Wisniewski, J.-L. Lefaucheur, Z. Galazka, Z. H. Gou, T. Lukasiewicz, and J. Kisielewski, “Scintillation properties of selected oxide monocrystals activated with Ce and Pr,” Opt. Mater.28(1-2), 85–93 (2006).
[CrossRef]

Gu, M.

M. Gu, L. Jia, X. L. Liu, S. Huang, B. Liu, and C. Ni, “Luminescent properties of Na-codoped Lu2SiO5:Ce phosphor,” J. Alloy. Comp.502(1), 190–194 (2010).
[CrossRef]

Guyot, Y.

D. Hreniak, W. Strek, A. Speghini, M. Bettinelli, G. Boulon, and Y. Guyot, “Infrared induced red luminescence of Eu3+-doped polycrystalline LiNbO3,” Appl. Phys. Lett.88(16), 161118 (2006).
[CrossRef]

Han, T. P. J.

Hedström, P.

R. V. Mangalaraja, J. Mouzon, P. Hedström, I. Kero, K. V. S. Ramam, C. P. Camurri, and M. Odén, “Combustion synthesis of Y2O3 and Yb-Y2O3: Part I. Nanopowders and their characterization,” J. Mater. Process. Technol.208(1-3), 415–422 (2008).
[CrossRef]

Hreniak, D.

D. Hreniak, W. Strek, A. Speghini, M. Bettinelli, G. Boulon, and Y. Guyot, “Infrared induced red luminescence of Eu3+-doped polycrystalline LiNbO3,” Appl. Phys. Lett.88(16), 161118 (2006).
[CrossRef]

Hu, X.

Huang, H.

H. Huang and B. Yan, “Luminescence of nanophoshors Lu2SiO5 doped with different concentration of Tb3+ by in situ composition of hybrid precursors,” Mater. Sci. Eng. B117(3), 261–264 (2005).
[CrossRef]

Huang, S.

M. Gu, L. Jia, X. L. Liu, S. Huang, B. Liu, and C. Ni, “Luminescent properties of Na-codoped Lu2SiO5:Ce phosphor,” J. Alloy. Comp.502(1), 190–194 (2010).
[CrossRef]

Jia, L.

M. Gu, L. Jia, X. L. Liu, S. Huang, B. Liu, and C. Ni, “Luminescent properties of Na-codoped Lu2SiO5:Ce phosphor,” J. Alloy. Comp.502(1), 190–194 (2010).
[CrossRef]

Jiang, X. W.

Jüstel, T.

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and applications,” Adv. Funct. Mater.13(7), 511–516 (2003).
[CrossRef]

Kaczkan, M.

Z. Boruc, B. Fetlinski, M. Kaczkan, S. Turczynski, D. Pawlak, and M. Malinowski, “Temperature and concentration quenching of Tb3+ emissions in Y4Al2O9 crystals,” J. Alloy. Comp.532, 92–97 (2012).
[CrossRef]

Kassab, L. R. P.

L. R. P. Kassab, R. de Almeida, D. M. da Silva, and C. B. de Araújo, “Luminescence of Tb3+ doped TeO2-ZnO-Na2O-PbO glasses containing silver nanoparticles,” J. Appl. Phys.104(9), 093531–093533 (2008).
[CrossRef]

Kero, I.

R. V. Mangalaraja, J. Mouzon, P. Hedström, I. Kero, K. V. S. Ramam, C. P. Camurri, and M. Odén, “Combustion synthesis of Y2O3 and Yb-Y2O3: Part I. Nanopowders and their characterization,” J. Mater. Process. Technol.208(1-3), 415–422 (2008).
[CrossRef]

Kisielewski, J.

A. J. Wojtowicz, W. Drozdowski, D. Wisniewski, J.-L. Lefaucheur, Z. Galazka, Z. H. Gou, T. Lukasiewicz, and J. Kisielewski, “Scintillation properties of selected oxide monocrystals activated with Ce and Pr,” Opt. Mater.28(1-2), 85–93 (2006).
[CrossRef]

Lefaucheur, J.-L.

A. J. Wojtowicz, W. Drozdowski, D. Wisniewski, J.-L. Lefaucheur, Z. Galazka, Z. H. Gou, T. Lukasiewicz, and J. Kisielewski, “Scintillation properties of selected oxide monocrystals activated with Ce and Pr,” Opt. Mater.28(1-2), 85–93 (2006).
[CrossRef]

Leroux, F.

C. Mansuy, F. Leroux, R. Mahiou, and J. M. Nedelec, “Preferential site substitution in sol-gel derived Eu3+ doped Lu2SiO5: a combined study by X-ray absorption and luminescence spectroscopies,” J. Mater. Chem.15(38), 4129–4135 (2005).
[CrossRef]

Li, H. Y.

H. Feng, D. Z. Ding, H. Y. Li, F. Yang, S. Lu, S. K. Pan, X. F. Chen, W. D. Zhang, and G. H. Ren, “Scintillation and thermoluminescence properties of a new scintillator YPS:Ce,” J. Inorg. Mater.25(8), 801–805 (2010).
[CrossRef]

Li, Y. C.

Y. C. Li, Y. H. Chang, Y. F. Lin, Y. S. Chang, and Y. J. Lin, “Synthesis and luminescent properties of Ln3+(Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors,” J. Alloy. Comp.439(1-2), 367–375 (2007).
[CrossRef]

Lin, J.

Y. H. Zhou, J. Lin, S. B. Wang, and H. J. Zhang, “Preparation of Y3Al5O12:Eu phosphors by citric-gel method and their luminescent properties,” Opt. Mater.20(1), 13–20 (2002).
[CrossRef]

Lin, Y. F.

Y. C. Li, Y. H. Chang, Y. F. Lin, Y. S. Chang, and Y. J. Lin, “Synthesis and luminescent properties of Ln3+(Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors,” J. Alloy. Comp.439(1-2), 367–375 (2007).
[CrossRef]

Lin, Y. J.

Y. C. Li, Y. H. Chang, Y. F. Lin, Y. S. Chang, and Y. J. Lin, “Synthesis and luminescent properties of Ln3+(Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors,” J. Alloy. Comp.439(1-2), 367–375 (2007).
[CrossRef]

Liu, B.

M. Gu, L. Jia, X. L. Liu, S. Huang, B. Liu, and C. Ni, “Luminescent properties of Na-codoped Lu2SiO5:Ce phosphor,” J. Alloy. Comp.502(1), 190–194 (2010).
[CrossRef]

Liu, X. L.

M. Gu, L. Jia, X. L. Liu, S. Huang, B. Liu, and C. Ni, “Luminescent properties of Na-codoped Lu2SiO5:Ce phosphor,” J. Alloy. Comp.502(1), 190–194 (2010).
[CrossRef]

Lopez, L. A.

L. E. Shea, J. McKittrick, L. A. Lopez, and E. Sluzky, “Synthesis of red-emitting, small particle size luminescent oxides using an optimized combustion process,” J. Am. Ceram. Soc.79(12), 3257–3265 (1996).
[CrossRef]

Lozano, W. B.

N. Rakov, G. S. Maciel, W. B. Lozano, and C. B. de Araújo, “Investigation of Eu3+ luminescence intensification in Al2O3 powders codoped with Tb3+ and prepared by low-temperature direct combustion synthesis,” Appl. Phys. Lett.88, 081908 (2006).

Lu, S.

H. Feng, D. Z. Ding, H. Y. Li, F. Yang, S. Lu, S. K. Pan, X. F. Chen, W. D. Zhang, and G. H. Ren, “Scintillation and thermoluminescence properties of a new scintillator YPS:Ce,” J. Inorg. Mater.25(8), 801–805 (2010).
[CrossRef]

Lukasiewicz, T.

A. J. Wojtowicz, W. Drozdowski, D. Wisniewski, J.-L. Lefaucheur, Z. Galazka, Z. H. Gou, T. Lukasiewicz, and J. Kisielewski, “Scintillation properties of selected oxide monocrystals activated with Ce and Pr,” Opt. Mater.28(1-2), 85–93 (2006).
[CrossRef]

Luo, J.

S. Ye, B. Zhu, J. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett.92(14), 141112 (2008).
[CrossRef]

Ma, H. P.

H. P. Ma, B. W. Zhu, and F. L. Zou, “Three-photon-excited fluorescence of Tb3+-doped CaO-Al2O3-SiO2 glass by femtosecond laser irradiation,” J. Rare Earths26(6), 928–931 (2008).
[CrossRef]

Maciel, G. S.

N. Rakov, G. S. Maciel, W. B. Lozano, and C. B. de Araújo, “Investigation of Eu3+ luminescence intensification in Al2O3 powders codoped with Tb3+ and prepared by low-temperature direct combustion synthesis,” Appl. Phys. Lett.88, 081908 (2006).

N. Rakov and G. S. Maciel, “Enhancement of luminescence efficiency of f-f transitions from Tb3+ due to energy transfer from Ce3+ in Al2O3 crystalline ceramic powders prepared by low temperature direct combustion synthesis,” Chem. Phys. Lett.400(4-6), 553–557 (2004).
[CrossRef]

Madigou, V.

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in a barium fluoride-thorium fluoride glass,” Phys. Rev. B Condens. Matter39(1), 80–90 (1989).
[CrossRef] [PubMed]

Mahiou, R.

C. Mansuy, F. Leroux, R. Mahiou, and J. M. Nedelec, “Preferential site substitution in sol-gel derived Eu3+ doped Lu2SiO5: a combined study by X-ray absorption and luminescence spectroscopies,” J. Mater. Chem.15(38), 4129–4135 (2005).
[CrossRef]

Malinowski, M.

Z. Boruc, B. Fetlinski, M. Kaczkan, S. Turczynski, D. Pawlak, and M. Malinowski, “Temperature and concentration quenching of Tb3+ emissions in Y4Al2O9 crystals,” J. Alloy. Comp.532, 92–97 (2012).
[CrossRef]

Mangalaraja, R. V.

R. V. Mangalaraja, J. Mouzon, P. Hedström, I. Kero, K. V. S. Ramam, C. P. Camurri, and M. Odén, “Combustion synthesis of Y2O3 and Yb-Y2O3: Part I. Nanopowders and their characterization,” J. Mater. Process. Technol.208(1-3), 415–422 (2008).
[CrossRef]

Mansuy, C.

C. Mansuy, F. Leroux, R. Mahiou, and J. M. Nedelec, “Preferential site substitution in sol-gel derived Eu3+ doped Lu2SiO5: a combined study by X-ray absorption and luminescence spectroscopies,” J. Mater. Chem.15(38), 4129–4135 (2005).
[CrossRef]

Martín, I. R.

I. R. Martín, A. C. Yanes, J. Méndez-Ramos, M. E. Torres, and V. D. Rodríguez, “Cooperative energy transfer in Yb3+-Tb3+ codoped sílica sol-gel glasses,” J. Appl. Phys.89(5), 2520–2524 (2001).
[CrossRef]

Martín-Rodríguez, R.

R. Martín-Rodríguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini, and F. Piccinelli, “Upconversion luminescence in nanocrystals of Gd3Ga5O12 and Y3Al5O12 doped with Tb3+-Yb3+ and Eu3+-Yb3+,” J. Phys. Chem. C113(28), 12195–12200 (2009).
[CrossRef]

McKittrick, J.

L. E. Shea, J. McKittrick, L. A. Lopez, and E. Sluzky, “Synthesis of red-emitting, small particle size luminescent oxides using an optimized combustion process,” J. Am. Ceram. Soc.79(12), 3257–3265 (1996).
[CrossRef]

Méndez-Ramos, J.

I. R. Martín, A. C. Yanes, J. Méndez-Ramos, M. E. Torres, and V. D. Rodríguez, “Cooperative energy transfer in Yb3+-Tb3+ codoped sílica sol-gel glasses,” J. Appl. Phys.89(5), 2520–2524 (2001).
[CrossRef]

Mouzon, J.

R. V. Mangalaraja, J. Mouzon, P. Hedström, I. Kero, K. V. S. Ramam, C. P. Camurri, and M. Odén, “Combustion synthesis of Y2O3 and Yb-Y2O3: Part I. Nanopowders and their characterization,” J. Mater. Process. Technol.208(1-3), 415–422 (2008).
[CrossRef]

Nakayama, T.

Nedelec, J. M.

C. Mansuy, F. Leroux, R. Mahiou, and J. M. Nedelec, “Preferential site substitution in sol-gel derived Eu3+ doped Lu2SiO5: a combined study by X-ray absorption and luminescence spectroscopies,” J. Mater. Chem.15(38), 4129–4135 (2005).
[CrossRef]

Ni, C.

M. Gu, L. Jia, X. L. Liu, S. Huang, B. Liu, and C. Ni, “Luminescent properties of Na-codoped Lu2SiO5:Ce phosphor,” J. Alloy. Comp.502(1), 190–194 (2010).
[CrossRef]

Odén, M.

R. V. Mangalaraja, J. Mouzon, P. Hedström, I. Kero, K. V. S. Ramam, C. P. Camurri, and M. Odén, “Combustion synthesis of Y2O3 and Yb-Y2O3: Part I. Nanopowders and their characterization,” J. Mater. Process. Technol.208(1-3), 415–422 (2008).
[CrossRef]

Ohsumi, Y.

Pan, S. K.

H. Feng, D. Z. Ding, H. Y. Li, F. Yang, S. Lu, S. K. Pan, X. F. Chen, W. D. Zhang, and G. H. Ren, “Scintillation and thermoluminescence properties of a new scintillator YPS:Ce,” J. Inorg. Mater.25(8), 801–805 (2010).
[CrossRef]

Pawlak, D.

Z. Boruc, B. Fetlinski, M. Kaczkan, S. Turczynski, D. Pawlak, and M. Malinowski, “Temperature and concentration quenching of Tb3+ emissions in Y4Al2O9 crystals,” J. Alloy. Comp.532, 92–97 (2012).
[CrossRef]

Petrin, R. R.

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in a barium fluoride-thorium fluoride glass,” Phys. Rev. B Condens. Matter39(1), 80–90 (1989).
[CrossRef] [PubMed]

Piccinelli, F.

R. Martín-Rodríguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini, and F. Piccinelli, “Upconversion luminescence in nanocrystals of Gd3Ga5O12 and Y3Al5O12 doped with Tb3+-Yb3+ and Eu3+-Yb3+,” J. Phys. Chem. C113(28), 12195–12200 (2009).
[CrossRef]

Polizzi, S.

R. Martín-Rodríguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini, and F. Piccinelli, “Upconversion luminescence in nanocrystals of Gd3Ga5O12 and Y3Al5O12 doped with Tb3+-Yb3+ and Eu3+-Yb3+,” J. Phys. Chem. C113(28), 12195–12200 (2009).
[CrossRef]

Qiu, J. R.

S. Ye, B. Zhu, J. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett.92(14), 141112 (2008).
[CrossRef]

L. Y. Yang, Y. J. Dong, D. P. Chen, C. Wang, X. Hu, N. Da, G. J. Zhao, J. Xu, X. W. Jiang, C. S. Zhu, and J. R. Qiu, “Three-photon-excited upconversion luminescence of Ce3+ YAP crystal by femtosecond laser irradiation,” Opt. Express14(1), 243–247 (2006).
[CrossRef] [PubMed]

Rakov, N.

N. Rakov, G. S. Maciel, W. B. Lozano, and C. B. de Araújo, “Investigation of Eu3+ luminescence intensification in Al2O3 powders codoped with Tb3+ and prepared by low-temperature direct combustion synthesis,” Appl. Phys. Lett.88, 081908 (2006).

N. Rakov and G. S. Maciel, “Enhancement of luminescence efficiency of f-f transitions from Tb3+ due to energy transfer from Ce3+ in Al2O3 crystalline ceramic powders prepared by low temperature direct combustion synthesis,” Chem. Phys. Lett.400(4-6), 553–557 (2004).
[CrossRef]

Ramam, K. V. S.

R. V. Mangalaraja, J. Mouzon, P. Hedström, I. Kero, K. V. S. Ramam, C. P. Camurri, and M. Odén, “Combustion synthesis of Y2O3 and Yb-Y2O3: Part I. Nanopowders and their characterization,” J. Mater. Process. Technol.208(1-3), 415–422 (2008).
[CrossRef]

Ren, G. H.

H. Feng, D. Z. Ding, H. Y. Li, F. Yang, S. Lu, S. K. Pan, X. F. Chen, W. D. Zhang, and G. H. Ren, “Scintillation and thermoluminescence properties of a new scintillator YPS:Ce,” J. Inorg. Mater.25(8), 801–805 (2010).
[CrossRef]

Rodríguez, V. D.

I. R. Martín, A. C. Yanes, J. Méndez-Ramos, M. E. Torres, and V. D. Rodríguez, “Cooperative energy transfer in Yb3+-Tb3+ codoped sílica sol-gel glasses,” J. Appl. Phys.89(5), 2520–2524 (2001).
[CrossRef]

Ronda, C. R.

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and applications,” Adv. Funct. Mater.13(7), 511–516 (2003).
[CrossRef]

Schmidt, P. J.

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and applications,” Adv. Funct. Mater.13(7), 511–516 (2003).
[CrossRef]

Shea, L. E.

L. E. Shea, J. McKittrick, L. A. Lopez, and E. Sluzky, “Synthesis of red-emitting, small particle size luminescent oxides using an optimized combustion process,” J. Am. Ceram. Soc.79(12), 3257–3265 (1996).
[CrossRef]

Sibley, W. A.

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in a barium fluoride-thorium fluoride glass,” Phys. Rev. B Condens. Matter39(1), 80–90 (1989).
[CrossRef] [PubMed]

Sluzky, E.

L. E. Shea, J. McKittrick, L. A. Lopez, and E. Sluzky, “Synthesis of red-emitting, small particle size luminescent oxides using an optimized combustion process,” J. Am. Ceram. Soc.79(12), 3257–3265 (1996).
[CrossRef]

Speghini, A.

R. Martín-Rodríguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini, and F. Piccinelli, “Upconversion luminescence in nanocrystals of Gd3Ga5O12 and Y3Al5O12 doped with Tb3+-Yb3+ and Eu3+-Yb3+,” J. Phys. Chem. C113(28), 12195–12200 (2009).
[CrossRef]

D. Hreniak, W. Strek, A. Speghini, M. Bettinelli, G. Boulon, and Y. Guyot, “Infrared induced red luminescence of Eu3+-doped polycrystalline LiNbO3,” Appl. Phys. Lett.88(16), 161118 (2006).
[CrossRef]

Strek, W.

D. Hreniak, W. Strek, A. Speghini, M. Bettinelli, G. Boulon, and Y. Guyot, “Infrared induced red luminescence of Eu3+-doped polycrystalline LiNbO3,” Appl. Phys. Lett.88(16), 161118 (2006).
[CrossRef]

Suscavage, M. J.

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in a barium fluoride-thorium fluoride glass,” Phys. Rev. B Condens. Matter39(1), 80–90 (1989).
[CrossRef] [PubMed]

Torres, M. E.

I. R. Martín, A. C. Yanes, J. Méndez-Ramos, M. E. Torres, and V. D. Rodríguez, “Cooperative energy transfer in Yb3+-Tb3+ codoped sílica sol-gel glasses,” J. Appl. Phys.89(5), 2520–2524 (2001).
[CrossRef]

Turczynski, S.

Z. Boruc, B. Fetlinski, M. Kaczkan, S. Turczynski, D. Pawlak, and M. Malinowski, “Temperature and concentration quenching of Tb3+ emissions in Y4Al2O9 crystals,” J. Alloy. Comp.532, 92–97 (2012).
[CrossRef]

Valiente, R.

R. Martín-Rodríguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini, and F. Piccinelli, “Upconversion luminescence in nanocrystals of Gd3Ga5O12 and Y3Al5O12 doped with Tb3+-Yb3+ and Eu3+-Yb3+,” J. Phys. Chem. C113(28), 12195–12200 (2009).
[CrossRef]

Wang, C.

Wang, S. B.

Y. H. Zhou, J. Lin, S. B. Wang, and H. J. Zhang, “Preparation of Y3Al5O12:Eu phosphors by citric-gel method and their luminescent properties,” Opt. Mater.20(1), 13–20 (2002).
[CrossRef]

Wisniewski, D.

A. J. Wojtowicz, W. Drozdowski, D. Wisniewski, J.-L. Lefaucheur, Z. Galazka, Z. H. Gou, T. Lukasiewicz, and J. Kisielewski, “Scintillation properties of selected oxide monocrystals activated with Ce and Pr,” Opt. Mater.28(1-2), 85–93 (2006).
[CrossRef]

Wojtowicz, A. J.

A. J. Wojtowicz, W. Drozdowski, D. Wisniewski, J.-L. Lefaucheur, Z. Galazka, Z. H. Gou, T. Lukasiewicz, and J. Kisielewski, “Scintillation properties of selected oxide monocrystals activated with Ce and Pr,” Opt. Mater.28(1-2), 85–93 (2006).
[CrossRef]

Xu, J.

Yamaga, M.

Yan, B.

H. Huang and B. Yan, “Luminescence of nanophoshors Lu2SiO5 doped with different concentration of Tb3+ by in situ composition of hybrid precursors,” Mater. Sci. Eng. B117(3), 261–264 (2005).
[CrossRef]

Yanes, A. C.

I. R. Martín, A. C. Yanes, J. Méndez-Ramos, M. E. Torres, and V. D. Rodríguez, “Cooperative energy transfer in Yb3+-Tb3+ codoped sílica sol-gel glasses,” J. Appl. Phys.89(5), 2520–2524 (2001).
[CrossRef]

Yang, F.

H. Feng, D. Z. Ding, H. Y. Li, F. Yang, S. Lu, S. K. Pan, X. F. Chen, W. D. Zhang, and G. H. Ren, “Scintillation and thermoluminescence properties of a new scintillator YPS:Ce,” J. Inorg. Mater.25(8), 801–805 (2010).
[CrossRef]

Yang, L. Y.

Ye, S.

S. Ye, B. Zhu, J. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett.92(14), 141112 (2008).
[CrossRef]

Yeh, D. C.

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in a barium fluoride-thorium fluoride glass,” Phys. Rev. B Condens. Matter39(1), 80–90 (1989).
[CrossRef] [PubMed]

Zhang, H. J.

Y. H. Zhou, J. Lin, S. B. Wang, and H. J. Zhang, “Preparation of Y3Al5O12:Eu phosphors by citric-gel method and their luminescent properties,” Opt. Mater.20(1), 13–20 (2002).
[CrossRef]

Zhang, W. D.

H. Feng, D. Z. Ding, H. Y. Li, F. Yang, S. Lu, S. K. Pan, X. F. Chen, W. D. Zhang, and G. H. Ren, “Scintillation and thermoluminescence properties of a new scintillator YPS:Ce,” J. Inorg. Mater.25(8), 801–805 (2010).
[CrossRef]

Zhao, G. J.

Zhou, Y. H.

Y. H. Zhou, J. Lin, S. B. Wang, and H. J. Zhang, “Preparation of Y3Al5O12:Eu phosphors by citric-gel method and their luminescent properties,” Opt. Mater.20(1), 13–20 (2002).
[CrossRef]

Zhu, B.

S. Ye, B. Zhu, J. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett.92(14), 141112 (2008).
[CrossRef]

Zhu, B. W.

H. P. Ma, B. W. Zhu, and F. L. Zou, “Three-photon-excited fluorescence of Tb3+-doped CaO-Al2O3-SiO2 glass by femtosecond laser irradiation,” J. Rare Earths26(6), 928–931 (2008).
[CrossRef]

Zhu, C. S.

Zou, F. L.

H. P. Ma, B. W. Zhu, and F. L. Zou, “Three-photon-excited fluorescence of Tb3+-doped CaO-Al2O3-SiO2 glass by femtosecond laser irradiation,” J. Rare Earths26(6), 928–931 (2008).
[CrossRef]

Adv. Funct. Mater. (1)

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and applications,” Adv. Funct. Mater.13(7), 511–516 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

N. Rakov, G. S. Maciel, W. B. Lozano, and C. B. de Araújo, “Investigation of Eu3+ luminescence intensification in Al2O3 powders codoped with Tb3+ and prepared by low-temperature direct combustion synthesis,” Appl. Phys. Lett.88, 081908 (2006).

D. Hreniak, W. Strek, A. Speghini, M. Bettinelli, G. Boulon, and Y. Guyot, “Infrared induced red luminescence of Eu3+-doped polycrystalline LiNbO3,” Appl. Phys. Lett.88(16), 161118 (2006).
[CrossRef]

S. Ye, B. Zhu, J. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett.92(14), 141112 (2008).
[CrossRef]

Chem. Phys. Lett. (1)

N. Rakov and G. S. Maciel, “Enhancement of luminescence efficiency of f-f transitions from Tb3+ due to energy transfer from Ce3+ in Al2O3 crystalline ceramic powders prepared by low temperature direct combustion synthesis,” Chem. Phys. Lett.400(4-6), 553–557 (2004).
[CrossRef]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–174 (2004).
[CrossRef] [PubMed]

J. Alloy. Comp. (3)

Z. Boruc, B. Fetlinski, M. Kaczkan, S. Turczynski, D. Pawlak, and M. Malinowski, “Temperature and concentration quenching of Tb3+ emissions in Y4Al2O9 crystals,” J. Alloy. Comp.532, 92–97 (2012).
[CrossRef]

Y. C. Li, Y. H. Chang, Y. F. Lin, Y. S. Chang, and Y. J. Lin, “Synthesis and luminescent properties of Ln3+(Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors,” J. Alloy. Comp.439(1-2), 367–375 (2007).
[CrossRef]

M. Gu, L. Jia, X. L. Liu, S. Huang, B. Liu, and C. Ni, “Luminescent properties of Na-codoped Lu2SiO5:Ce phosphor,” J. Alloy. Comp.502(1), 190–194 (2010).
[CrossRef]

J. Am. Ceram. Soc. (1)

L. E. Shea, J. McKittrick, L. A. Lopez, and E. Sluzky, “Synthesis of red-emitting, small particle size luminescent oxides using an optimized combustion process,” J. Am. Ceram. Soc.79(12), 3257–3265 (1996).
[CrossRef]

J. Appl. Phys. (2)

I. R. Martín, A. C. Yanes, J. Méndez-Ramos, M. E. Torres, and V. D. Rodríguez, “Cooperative energy transfer in Yb3+-Tb3+ codoped sílica sol-gel glasses,” J. Appl. Phys.89(5), 2520–2524 (2001).
[CrossRef]

L. R. P. Kassab, R. de Almeida, D. M. da Silva, and C. B. de Araújo, “Luminescence of Tb3+ doped TeO2-ZnO-Na2O-PbO glasses containing silver nanoparticles,” J. Appl. Phys.104(9), 093531–093533 (2008).
[CrossRef]

J. Inorg. Mater. (1)

H. Feng, D. Z. Ding, H. Y. Li, F. Yang, S. Lu, S. K. Pan, X. F. Chen, W. D. Zhang, and G. H. Ren, “Scintillation and thermoluminescence properties of a new scintillator YPS:Ce,” J. Inorg. Mater.25(8), 801–805 (2010).
[CrossRef]

J. Mater. Chem. (1)

C. Mansuy, F. Leroux, R. Mahiou, and J. M. Nedelec, “Preferential site substitution in sol-gel derived Eu3+ doped Lu2SiO5: a combined study by X-ray absorption and luminescence spectroscopies,” J. Mater. Chem.15(38), 4129–4135 (2005).
[CrossRef]

J. Mater. Process. Technol. (1)

R. V. Mangalaraja, J. Mouzon, P. Hedström, I. Kero, K. V. S. Ramam, C. P. Camurri, and M. Odén, “Combustion synthesis of Y2O3 and Yb-Y2O3: Part I. Nanopowders and their characterization,” J. Mater. Process. Technol.208(1-3), 415–422 (2008).
[CrossRef]

J. Phys. Chem. C (1)

R. Martín-Rodríguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini, and F. Piccinelli, “Upconversion luminescence in nanocrystals of Gd3Ga5O12 and Y3Al5O12 doped with Tb3+-Yb3+ and Eu3+-Yb3+,” J. Phys. Chem. C113(28), 12195–12200 (2009).
[CrossRef]

J. Rare Earths (1)

H. P. Ma, B. W. Zhu, and F. L. Zou, “Three-photon-excited fluorescence of Tb3+-doped CaO-Al2O3-SiO2 glass by femtosecond laser irradiation,” J. Rare Earths26(6), 928–931 (2008).
[CrossRef]

Mater. Sci. Eng. B (1)

H. Huang and B. Yan, “Luminescence of nanophoshors Lu2SiO5 doped with different concentration of Tb3+ by in situ composition of hybrid precursors,” Mater. Sci. Eng. B117(3), 261–264 (2005).
[CrossRef]

Opt. Express (1)

Opt. Mater. (2)

Y. H. Zhou, J. Lin, S. B. Wang, and H. J. Zhang, “Preparation of Y3Al5O12:Eu phosphors by citric-gel method and their luminescent properties,” Opt. Mater.20(1), 13–20 (2002).
[CrossRef]

A. J. Wojtowicz, W. Drozdowski, D. Wisniewski, J.-L. Lefaucheur, Z. Galazka, Z. H. Gou, T. Lukasiewicz, and J. Kisielewski, “Scintillation properties of selected oxide monocrystals activated with Ce and Pr,” Opt. Mater.28(1-2), 85–93 (2006).
[CrossRef]

Opt. Mater. Express (1)

Phys. Rev. B Condens. Matter (1)

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in a barium fluoride-thorium fluoride glass,” Phys. Rev. B Condens. Matter39(1), 80–90 (1989).
[CrossRef] [PubMed]

Other (1)

A. C. Larson, R. B. von Dreele, General Structure Analysis System (GSAS); Los Alamos National Laboratory Report LAUR 86–748, 2004.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) SEM image and (b) XRPD pattern for one of the samples studied in this work. The SEM image full scale bar: 20 μm.

Fig. 2
Fig. 2

Stokes luminescence spectra of the lutetium silicate samples excited at 255 nm.

Fig. 3
Fig. 3

Anti-Stokes luminescence spectra of the lutetium silicate samples excited at 800 nm (a) and at 1500 nm (b).

Fig. 4
Fig. 4

Log-log plot of the upconversion intensity at 549 nm as a function of the laser peak power.

Fig. 5
Fig. 5

Tb3+ energy level diagram illustrating the single-photon and multi-photon absorption and luminescence.

Fig. 6
Fig. 6

Semi-logarithmic plot of the decay signal at 549nm after laser excitation at 800 nm.

Tables (1)

Tables Icon

Table 1 Rietveld refinement results of our lutetium silicate powder prepared by combustion synthesis.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ d = t 0 [ I( t ) / I( t 0 ) ]dt ,

Metrics