Abstract

In this work we investigated the point defects at the origin of the degradation of radiation-tolerant optical fibers used in the visible part of the spectrum for plasma diagnostics in radiation environments. For this aim, the effects of γ-ray irradiation up to the dose of 10 MGy(SiO2) and post-irradiation thermal annealing at 550°C were studied for a Fluorine-doped fiber. An absorption peaking around 2 eV is mainly responsible for the measured radiation-induced losses, its origin being currently debated in the literature. On the basis of the unchanging shape of this band with the radiation dose, its correlation with the 1.9 eV photoluminescent band and the thermal treatment results we assign the asymmetric absorption around 2 eV to an unique defect, the NBOHC, instead of a set of various defects.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Bourgade, A. E. Costley, R. Reichle, E. R. Hodgson, W. Hsing, V. Glebov, M. Decreton, R. Leeper, J. L. Leray, M. Dentan, T. Hutter, A. Moroo, D. Eder, W. Shmayda, B. Brichard, J. Baggio, L. Bertalot, G. Vayakis, M. Moran, T. C. Sangster, L. Vermeeren, C. Stoeckl, S. Girard, and G. Pien, “Diagnostic components in harsh radiation environments: Possible overlap in R&D requirements of inertial confinement and magnetic fusion systems,” Rev. Sci. Instrum.79,10F304 (2008).
    [CrossRef]
  2. K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Role of Mobile Interstitial Oxygen Atoms in Defect Processes in Oxides: Interconversion between Oxygen-Associated Defects in SiO2Glass,” Phys. Rev. Lett.92,1 (2004).
    [CrossRef]
  3. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids239, 16–48 (1998).
    [CrossRef]
  4. K. Nagasawa, Y. Hoshi, Y. Ohki, and K. Yahagi, “Radiation effects on pure silica core optical fibers by γ-rays: relation between 2 eV band and Non-Bridging Oxygen Hole Centers,” Jpn. J. Appl. Phys.25, 464–468 (1986).
    [CrossRef]
  5. K. Nagasawa, Y. Ohki, and Y. Hama, “Gamma-ray induced 2 eV optical absorption band in pure silica core fibers,” Jpn. J. Appl. Phys.26, L1009–L1011 (1987).
    [CrossRef]
  6. D. L. Griscom and M. Mizuguchi, “Determination of the visible range optical absorption spectrum of peroxy radicals in gamma-irradiated fused silica,” J. Non-Cryst. Solids239, 66–77 (1998).
    [CrossRef]
  7. D. L. Griscom, “γ-Ray-induced visible/infrared optical absorption bands in pure and F-doped silica-core fibers: are they due to self-trapped holes?,” J. Non-Cryst. Solids349, 139–147 (2004).
    [CrossRef]
  8. Y. Sasajima and K. Tanimura, “Optical transitions of self-trapped holes in amorphous SiO2,” Phys. Rev. B68, 014204 (2003).
    [CrossRef]
  9. S. Girard, D.L. Griscom, J. Baggio, B. Brichard, and F. Berghmans, “Transient optical absorption in pulsed-X-ray-irradiated pure-silica-core optical fibers: Influence of self-trapped holes,” J. Non-Cryst. Solids352, 2637–2642 (2006).
    [CrossRef]
  10. B. Brichard, A. Fernandez Fernandez, H. Ooms, P. Borgermans, and F. Berghmans, “Dependence of the POR and NBOHC defects as function of the dose in hydrogen-treated and untreated KU1 Glass Fibers,” IEEE Trans. Nucl. Sci.50, 2024–2029 (2003).
    [CrossRef]
  11. S. Girard, J.-P. Meunier, Y. Ouerdane, A. Boukenter, B. Vincent, and A. Boudrioua, “Spatial distribution of the red luminescence in pristine, gamma rays, and ultraviolet-irradiated multimode optical fibers,” Appl. Phys. Lett.84, 4215–4217 (2004).
    [CrossRef]
  12. L. Vaccaro, M. Cannas, S. Girard, A. Alessi, A. Morana, A. Boukenter, Y. Ouerdane, and R. Boscaino, “Influence of fluorine on the fiber resistance studied through the nonbridging oxygen hole center related luminescence,” Appl. Phys.113, 193107 (2013).
  13. M. Cannas and F.M. Gelardi, “Vacuum ultraviolet excitation of the 1.9 eV emission band related to nonbridging oxygen hole centers in silica,” Phys. Rev. B69, 153201 (2004).
    [CrossRef]
  14. G. H. Sigel and M. J. Marrone, “Photoluminescence In As-Drawn and Irradiated Silica Optical Fibers: An Assessment of the Role of Non-Bridging Oxygen Defect Centers,” J. Non-Cryst. Solids45, 235–247 (1981).
    [CrossRef]
  15. M. Cannas, L. Vaccaro, and B. Boizot, “Spectroscopic parameters related to non-bridging oxygen hole centers in amorphous SiO2,” J. Non-Cryst. Solids352, 203–208 (2006).
    [CrossRef]
  16. L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin.128, 1132–1136 (2008).
    [CrossRef]
  17. M. Leone, M. Cannas, and F. M. Gelardi, “Local dynamic properties of vitreous silica probed by photolumines-cence spectroscopy in the temperature range 300 ± 4.5 K,” J. Non-Cryst. Solids232–234,514–519 (1998).
    [CrossRef]
  18. L. Vaccaro and M. Cannas, “The structural disorder of a silica network probed by site selective luminescence of the nonbridging oxygen hole centre,” J. Phys. Condens. Matter.22, 235801 (2010).
    [CrossRef]
  19. S. Agnello, G. Buscarino, F. M. Gelardi, and R. Boscaino, “Optical absorption band at 5.8 eV associated with the E′γ centers in amorphous silicon dioxide: Optical absorption and EPR measurements,” Phys. Rev. B77, 195206 (2008).
    [CrossRef]
  20. M. León, P. Martín, A. Ibarra, and E. R. Hodgson, “Gamma irradiation induced defects in different types of fused silica,” J. Nucl. Mater.386–388, 1034–1037 (2009).
    [CrossRef]
  21. P. Martín, M. León, A. Ibarra, and E. R. Hodgson, “Thermal stability of gamma irradiation induced defects for different fused silica,” J. Nucl. Mater.417, 818–821 (2011).
    [CrossRef]

2013 (1)

L. Vaccaro, M. Cannas, S. Girard, A. Alessi, A. Morana, A. Boukenter, Y. Ouerdane, and R. Boscaino, “Influence of fluorine on the fiber resistance studied through the nonbridging oxygen hole center related luminescence,” Appl. Phys.113, 193107 (2013).

2011 (1)

P. Martín, M. León, A. Ibarra, and E. R. Hodgson, “Thermal stability of gamma irradiation induced defects for different fused silica,” J. Nucl. Mater.417, 818–821 (2011).
[CrossRef]

2010 (1)

L. Vaccaro and M. Cannas, “The structural disorder of a silica network probed by site selective luminescence of the nonbridging oxygen hole centre,” J. Phys. Condens. Matter.22, 235801 (2010).
[CrossRef]

2009 (1)

M. León, P. Martín, A. Ibarra, and E. R. Hodgson, “Gamma irradiation induced defects in different types of fused silica,” J. Nucl. Mater.386–388, 1034–1037 (2009).
[CrossRef]

2008 (3)

S. Agnello, G. Buscarino, F. M. Gelardi, and R. Boscaino, “Optical absorption band at 5.8 eV associated with the E′γ centers in amorphous silicon dioxide: Optical absorption and EPR measurements,” Phys. Rev. B77, 195206 (2008).
[CrossRef]

L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin.128, 1132–1136 (2008).
[CrossRef]

J. L. Bourgade, A. E. Costley, R. Reichle, E. R. Hodgson, W. Hsing, V. Glebov, M. Decreton, R. Leeper, J. L. Leray, M. Dentan, T. Hutter, A. Moroo, D. Eder, W. Shmayda, B. Brichard, J. Baggio, L. Bertalot, G. Vayakis, M. Moran, T. C. Sangster, L. Vermeeren, C. Stoeckl, S. Girard, and G. Pien, “Diagnostic components in harsh radiation environments: Possible overlap in R&D requirements of inertial confinement and magnetic fusion systems,” Rev. Sci. Instrum.79,10F304 (2008).
[CrossRef]

2006 (2)

M. Cannas, L. Vaccaro, and B. Boizot, “Spectroscopic parameters related to non-bridging oxygen hole centers in amorphous SiO2,” J. Non-Cryst. Solids352, 203–208 (2006).
[CrossRef]

S. Girard, D.L. Griscom, J. Baggio, B. Brichard, and F. Berghmans, “Transient optical absorption in pulsed-X-ray-irradiated pure-silica-core optical fibers: Influence of self-trapped holes,” J. Non-Cryst. Solids352, 2637–2642 (2006).
[CrossRef]

2004 (4)

M. Cannas and F.M. Gelardi, “Vacuum ultraviolet excitation of the 1.9 eV emission band related to nonbridging oxygen hole centers in silica,” Phys. Rev. B69, 153201 (2004).
[CrossRef]

S. Girard, J.-P. Meunier, Y. Ouerdane, A. Boukenter, B. Vincent, and A. Boudrioua, “Spatial distribution of the red luminescence in pristine, gamma rays, and ultraviolet-irradiated multimode optical fibers,” Appl. Phys. Lett.84, 4215–4217 (2004).
[CrossRef]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Role of Mobile Interstitial Oxygen Atoms in Defect Processes in Oxides: Interconversion between Oxygen-Associated Defects in SiO2Glass,” Phys. Rev. Lett.92,1 (2004).
[CrossRef]

D. L. Griscom, “γ-Ray-induced visible/infrared optical absorption bands in pure and F-doped silica-core fibers: are they due to self-trapped holes?,” J. Non-Cryst. Solids349, 139–147 (2004).
[CrossRef]

2003 (2)

Y. Sasajima and K. Tanimura, “Optical transitions of self-trapped holes in amorphous SiO2,” Phys. Rev. B68, 014204 (2003).
[CrossRef]

B. Brichard, A. Fernandez Fernandez, H. Ooms, P. Borgermans, and F. Berghmans, “Dependence of the POR and NBOHC defects as function of the dose in hydrogen-treated and untreated KU1 Glass Fibers,” IEEE Trans. Nucl. Sci.50, 2024–2029 (2003).
[CrossRef]

1998 (3)

M. Leone, M. Cannas, and F. M. Gelardi, “Local dynamic properties of vitreous silica probed by photolumines-cence spectroscopy in the temperature range 300 ± 4.5 K,” J. Non-Cryst. Solids232–234,514–519 (1998).
[CrossRef]

D. L. Griscom and M. Mizuguchi, “Determination of the visible range optical absorption spectrum of peroxy radicals in gamma-irradiated fused silica,” J. Non-Cryst. Solids239, 66–77 (1998).
[CrossRef]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids239, 16–48 (1998).
[CrossRef]

1987 (1)

K. Nagasawa, Y. Ohki, and Y. Hama, “Gamma-ray induced 2 eV optical absorption band in pure silica core fibers,” Jpn. J. Appl. Phys.26, L1009–L1011 (1987).
[CrossRef]

1986 (1)

K. Nagasawa, Y. Hoshi, Y. Ohki, and K. Yahagi, “Radiation effects on pure silica core optical fibers by γ-rays: relation between 2 eV band and Non-Bridging Oxygen Hole Centers,” Jpn. J. Appl. Phys.25, 464–468 (1986).
[CrossRef]

1981 (1)

G. H. Sigel and M. J. Marrone, “Photoluminescence In As-Drawn and Irradiated Silica Optical Fibers: An Assessment of the Role of Non-Bridging Oxygen Defect Centers,” J. Non-Cryst. Solids45, 235–247 (1981).
[CrossRef]

Agnello, S.

S. Agnello, G. Buscarino, F. M. Gelardi, and R. Boscaino, “Optical absorption band at 5.8 eV associated with the E′γ centers in amorphous silicon dioxide: Optical absorption and EPR measurements,” Phys. Rev. B77, 195206 (2008).
[CrossRef]

Alessi, A.

L. Vaccaro, M. Cannas, S. Girard, A. Alessi, A. Morana, A. Boukenter, Y. Ouerdane, and R. Boscaino, “Influence of fluorine on the fiber resistance studied through the nonbridging oxygen hole center related luminescence,” Appl. Phys.113, 193107 (2013).

Baggio, J.

J. L. Bourgade, A. E. Costley, R. Reichle, E. R. Hodgson, W. Hsing, V. Glebov, M. Decreton, R. Leeper, J. L. Leray, M. Dentan, T. Hutter, A. Moroo, D. Eder, W. Shmayda, B. Brichard, J. Baggio, L. Bertalot, G. Vayakis, M. Moran, T. C. Sangster, L. Vermeeren, C. Stoeckl, S. Girard, and G. Pien, “Diagnostic components in harsh radiation environments: Possible overlap in R&D requirements of inertial confinement and magnetic fusion systems,” Rev. Sci. Instrum.79,10F304 (2008).
[CrossRef]

S. Girard, D.L. Griscom, J. Baggio, B. Brichard, and F. Berghmans, “Transient optical absorption in pulsed-X-ray-irradiated pure-silica-core optical fibers: Influence of self-trapped holes,” J. Non-Cryst. Solids352, 2637–2642 (2006).
[CrossRef]

Berghmans, F.

S. Girard, D.L. Griscom, J. Baggio, B. Brichard, and F. Berghmans, “Transient optical absorption in pulsed-X-ray-irradiated pure-silica-core optical fibers: Influence of self-trapped holes,” J. Non-Cryst. Solids352, 2637–2642 (2006).
[CrossRef]

B. Brichard, A. Fernandez Fernandez, H. Ooms, P. Borgermans, and F. Berghmans, “Dependence of the POR and NBOHC defects as function of the dose in hydrogen-treated and untreated KU1 Glass Fibers,” IEEE Trans. Nucl. Sci.50, 2024–2029 (2003).
[CrossRef]

Bertalot, L.

J. L. Bourgade, A. E. Costley, R. Reichle, E. R. Hodgson, W. Hsing, V. Glebov, M. Decreton, R. Leeper, J. L. Leray, M. Dentan, T. Hutter, A. Moroo, D. Eder, W. Shmayda, B. Brichard, J. Baggio, L. Bertalot, G. Vayakis, M. Moran, T. C. Sangster, L. Vermeeren, C. Stoeckl, S. Girard, and G. Pien, “Diagnostic components in harsh radiation environments: Possible overlap in R&D requirements of inertial confinement and magnetic fusion systems,” Rev. Sci. Instrum.79,10F304 (2008).
[CrossRef]

Boizot, B.

M. Cannas, L. Vaccaro, and B. Boizot, “Spectroscopic parameters related to non-bridging oxygen hole centers in amorphous SiO2,” J. Non-Cryst. Solids352, 203–208 (2006).
[CrossRef]

Borgermans, P.

B. Brichard, A. Fernandez Fernandez, H. Ooms, P. Borgermans, and F. Berghmans, “Dependence of the POR and NBOHC defects as function of the dose in hydrogen-treated and untreated KU1 Glass Fibers,” IEEE Trans. Nucl. Sci.50, 2024–2029 (2003).
[CrossRef]

Boscaino, R.

L. Vaccaro, M. Cannas, S. Girard, A. Alessi, A. Morana, A. Boukenter, Y. Ouerdane, and R. Boscaino, “Influence of fluorine on the fiber resistance studied through the nonbridging oxygen hole center related luminescence,” Appl. Phys.113, 193107 (2013).

L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin.128, 1132–1136 (2008).
[CrossRef]

S. Agnello, G. Buscarino, F. M. Gelardi, and R. Boscaino, “Optical absorption band at 5.8 eV associated with the E′γ centers in amorphous silicon dioxide: Optical absorption and EPR measurements,” Phys. Rev. B77, 195206 (2008).
[CrossRef]

Boudrioua, A.

S. Girard, J.-P. Meunier, Y. Ouerdane, A. Boukenter, B. Vincent, and A. Boudrioua, “Spatial distribution of the red luminescence in pristine, gamma rays, and ultraviolet-irradiated multimode optical fibers,” Appl. Phys. Lett.84, 4215–4217 (2004).
[CrossRef]

Boukenter, A.

L. Vaccaro, M. Cannas, S. Girard, A. Alessi, A. Morana, A. Boukenter, Y. Ouerdane, and R. Boscaino, “Influence of fluorine on the fiber resistance studied through the nonbridging oxygen hole center related luminescence,” Appl. Phys.113, 193107 (2013).

S. Girard, J.-P. Meunier, Y. Ouerdane, A. Boukenter, B. Vincent, and A. Boudrioua, “Spatial distribution of the red luminescence in pristine, gamma rays, and ultraviolet-irradiated multimode optical fibers,” Appl. Phys. Lett.84, 4215–4217 (2004).
[CrossRef]

Bourgade, J. L.

J. L. Bourgade, A. E. Costley, R. Reichle, E. R. Hodgson, W. Hsing, V. Glebov, M. Decreton, R. Leeper, J. L. Leray, M. Dentan, T. Hutter, A. Moroo, D. Eder, W. Shmayda, B. Brichard, J. Baggio, L. Bertalot, G. Vayakis, M. Moran, T. C. Sangster, L. Vermeeren, C. Stoeckl, S. Girard, and G. Pien, “Diagnostic components in harsh radiation environments: Possible overlap in R&D requirements of inertial confinement and magnetic fusion systems,” Rev. Sci. Instrum.79,10F304 (2008).
[CrossRef]

Brichard, B.

J. L. Bourgade, A. E. Costley, R. Reichle, E. R. Hodgson, W. Hsing, V. Glebov, M. Decreton, R. Leeper, J. L. Leray, M. Dentan, T. Hutter, A. Moroo, D. Eder, W. Shmayda, B. Brichard, J. Baggio, L. Bertalot, G. Vayakis, M. Moran, T. C. Sangster, L. Vermeeren, C. Stoeckl, S. Girard, and G. Pien, “Diagnostic components in harsh radiation environments: Possible overlap in R&D requirements of inertial confinement and magnetic fusion systems,” Rev. Sci. Instrum.79,10F304 (2008).
[CrossRef]

S. Girard, D.L. Griscom, J. Baggio, B. Brichard, and F. Berghmans, “Transient optical absorption in pulsed-X-ray-irradiated pure-silica-core optical fibers: Influence of self-trapped holes,” J. Non-Cryst. Solids352, 2637–2642 (2006).
[CrossRef]

B. Brichard, A. Fernandez Fernandez, H. Ooms, P. Borgermans, and F. Berghmans, “Dependence of the POR and NBOHC defects as function of the dose in hydrogen-treated and untreated KU1 Glass Fibers,” IEEE Trans. Nucl. Sci.50, 2024–2029 (2003).
[CrossRef]

Buscarino, G.

S. Agnello, G. Buscarino, F. M. Gelardi, and R. Boscaino, “Optical absorption band at 5.8 eV associated with the E′γ centers in amorphous silicon dioxide: Optical absorption and EPR measurements,” Phys. Rev. B77, 195206 (2008).
[CrossRef]

Cannas, M.

L. Vaccaro, M. Cannas, S. Girard, A. Alessi, A. Morana, A. Boukenter, Y. Ouerdane, and R. Boscaino, “Influence of fluorine on the fiber resistance studied through the nonbridging oxygen hole center related luminescence,” Appl. Phys.113, 193107 (2013).

L. Vaccaro and M. Cannas, “The structural disorder of a silica network probed by site selective luminescence of the nonbridging oxygen hole centre,” J. Phys. Condens. Matter.22, 235801 (2010).
[CrossRef]

L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin.128, 1132–1136 (2008).
[CrossRef]

M. Cannas, L. Vaccaro, and B. Boizot, “Spectroscopic parameters related to non-bridging oxygen hole centers in amorphous SiO2,” J. Non-Cryst. Solids352, 203–208 (2006).
[CrossRef]

M. Cannas and F.M. Gelardi, “Vacuum ultraviolet excitation of the 1.9 eV emission band related to nonbridging oxygen hole centers in silica,” Phys. Rev. B69, 153201 (2004).
[CrossRef]

M. Leone, M. Cannas, and F. M. Gelardi, “Local dynamic properties of vitreous silica probed by photolumines-cence spectroscopy in the temperature range 300 ± 4.5 K,” J. Non-Cryst. Solids232–234,514–519 (1998).
[CrossRef]

Costley, A. E.

J. L. Bourgade, A. E. Costley, R. Reichle, E. R. Hodgson, W. Hsing, V. Glebov, M. Decreton, R. Leeper, J. L. Leray, M. Dentan, T. Hutter, A. Moroo, D. Eder, W. Shmayda, B. Brichard, J. Baggio, L. Bertalot, G. Vayakis, M. Moran, T. C. Sangster, L. Vermeeren, C. Stoeckl, S. Girard, and G. Pien, “Diagnostic components in harsh radiation environments: Possible overlap in R&D requirements of inertial confinement and magnetic fusion systems,” Rev. Sci. Instrum.79,10F304 (2008).
[CrossRef]

Decreton, M.

J. L. Bourgade, A. E. Costley, R. Reichle, E. R. Hodgson, W. Hsing, V. Glebov, M. Decreton, R. Leeper, J. L. Leray, M. Dentan, T. Hutter, A. Moroo, D. Eder, W. Shmayda, B. Brichard, J. Baggio, L. Bertalot, G. Vayakis, M. Moran, T. C. Sangster, L. Vermeeren, C. Stoeckl, S. Girard, and G. Pien, “Diagnostic components in harsh radiation environments: Possible overlap in R&D requirements of inertial confinement and magnetic fusion systems,” Rev. Sci. Instrum.79,10F304 (2008).
[CrossRef]

Dentan, M.

J. L. Bourgade, A. E. Costley, R. Reichle, E. R. Hodgson, W. Hsing, V. Glebov, M. Decreton, R. Leeper, J. L. Leray, M. Dentan, T. Hutter, A. Moroo, D. Eder, W. Shmayda, B. Brichard, J. Baggio, L. Bertalot, G. Vayakis, M. Moran, T. C. Sangster, L. Vermeeren, C. Stoeckl, S. Girard, and G. Pien, “Diagnostic components in harsh radiation environments: Possible overlap in R&D requirements of inertial confinement and magnetic fusion systems,” Rev. Sci. Instrum.79,10F304 (2008).
[CrossRef]

Eder, D.

J. L. Bourgade, A. E. Costley, R. Reichle, E. R. Hodgson, W. Hsing, V. Glebov, M. Decreton, R. Leeper, J. L. Leray, M. Dentan, T. Hutter, A. Moroo, D. Eder, W. Shmayda, B. Brichard, J. Baggio, L. Bertalot, G. Vayakis, M. Moran, T. C. Sangster, L. Vermeeren, C. Stoeckl, S. Girard, and G. Pien, “Diagnostic components in harsh radiation environments: Possible overlap in R&D requirements of inertial confinement and magnetic fusion systems,” Rev. Sci. Instrum.79,10F304 (2008).
[CrossRef]

Fernandez Fernandez, A.

B. Brichard, A. Fernandez Fernandez, H. Ooms, P. Borgermans, and F. Berghmans, “Dependence of the POR and NBOHC defects as function of the dose in hydrogen-treated and untreated KU1 Glass Fibers,” IEEE Trans. Nucl. Sci.50, 2024–2029 (2003).
[CrossRef]

Gelardi, F. M.

S. Agnello, G. Buscarino, F. M. Gelardi, and R. Boscaino, “Optical absorption band at 5.8 eV associated with the E′γ centers in amorphous silicon dioxide: Optical absorption and EPR measurements,” Phys. Rev. B77, 195206 (2008).
[CrossRef]

M. Leone, M. Cannas, and F. M. Gelardi, “Local dynamic properties of vitreous silica probed by photolumines-cence spectroscopy in the temperature range 300 ± 4.5 K,” J. Non-Cryst. Solids232–234,514–519 (1998).
[CrossRef]

Gelardi, F.M.

M. Cannas and F.M. Gelardi, “Vacuum ultraviolet excitation of the 1.9 eV emission band related to nonbridging oxygen hole centers in silica,” Phys. Rev. B69, 153201 (2004).
[CrossRef]

Girard, S.

L. Vaccaro, M. Cannas, S. Girard, A. Alessi, A. Morana, A. Boukenter, Y. Ouerdane, and R. Boscaino, “Influence of fluorine on the fiber resistance studied through the nonbridging oxygen hole center related luminescence,” Appl. Phys.113, 193107 (2013).

J. L. Bourgade, A. E. Costley, R. Reichle, E. R. Hodgson, W. Hsing, V. Glebov, M. Decreton, R. Leeper, J. L. Leray, M. Dentan, T. Hutter, A. Moroo, D. Eder, W. Shmayda, B. Brichard, J. Baggio, L. Bertalot, G. Vayakis, M. Moran, T. C. Sangster, L. Vermeeren, C. Stoeckl, S. Girard, and G. Pien, “Diagnostic components in harsh radiation environments: Possible overlap in R&D requirements of inertial confinement and magnetic fusion systems,” Rev. Sci. Instrum.79,10F304 (2008).
[CrossRef]

S. Girard, D.L. Griscom, J. Baggio, B. Brichard, and F. Berghmans, “Transient optical absorption in pulsed-X-ray-irradiated pure-silica-core optical fibers: Influence of self-trapped holes,” J. Non-Cryst. Solids352, 2637–2642 (2006).
[CrossRef]

S. Girard, J.-P. Meunier, Y. Ouerdane, A. Boukenter, B. Vincent, and A. Boudrioua, “Spatial distribution of the red luminescence in pristine, gamma rays, and ultraviolet-irradiated multimode optical fibers,” Appl. Phys. Lett.84, 4215–4217 (2004).
[CrossRef]

Glebov, V.

J. L. Bourgade, A. E. Costley, R. Reichle, E. R. Hodgson, W. Hsing, V. Glebov, M. Decreton, R. Leeper, J. L. Leray, M. Dentan, T. Hutter, A. Moroo, D. Eder, W. Shmayda, B. Brichard, J. Baggio, L. Bertalot, G. Vayakis, M. Moran, T. C. Sangster, L. Vermeeren, C. Stoeckl, S. Girard, and G. Pien, “Diagnostic components in harsh radiation environments: Possible overlap in R&D requirements of inertial confinement and magnetic fusion systems,” Rev. Sci. Instrum.79,10F304 (2008).
[CrossRef]

Griscom, D. L.

D. L. Griscom, “γ-Ray-induced visible/infrared optical absorption bands in pure and F-doped silica-core fibers: are they due to self-trapped holes?,” J. Non-Cryst. Solids349, 139–147 (2004).
[CrossRef]

D. L. Griscom and M. Mizuguchi, “Determination of the visible range optical absorption spectrum of peroxy radicals in gamma-irradiated fused silica,” J. Non-Cryst. Solids239, 66–77 (1998).
[CrossRef]

Griscom, D.L.

S. Girard, D.L. Griscom, J. Baggio, B. Brichard, and F. Berghmans, “Transient optical absorption in pulsed-X-ray-irradiated pure-silica-core optical fibers: Influence of self-trapped holes,” J. Non-Cryst. Solids352, 2637–2642 (2006).
[CrossRef]

Hama, Y.

K. Nagasawa, Y. Ohki, and Y. Hama, “Gamma-ray induced 2 eV optical absorption band in pure silica core fibers,” Jpn. J. Appl. Phys.26, L1009–L1011 (1987).
[CrossRef]

Hirano, M.

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Role of Mobile Interstitial Oxygen Atoms in Defect Processes in Oxides: Interconversion between Oxygen-Associated Defects in SiO2Glass,” Phys. Rev. Lett.92,1 (2004).
[CrossRef]

Hodgson, E. R.

P. Martín, M. León, A. Ibarra, and E. R. Hodgson, “Thermal stability of gamma irradiation induced defects for different fused silica,” J. Nucl. Mater.417, 818–821 (2011).
[CrossRef]

M. León, P. Martín, A. Ibarra, and E. R. Hodgson, “Gamma irradiation induced defects in different types of fused silica,” J. Nucl. Mater.386–388, 1034–1037 (2009).
[CrossRef]

J. L. Bourgade, A. E. Costley, R. Reichle, E. R. Hodgson, W. Hsing, V. Glebov, M. Decreton, R. Leeper, J. L. Leray, M. Dentan, T. Hutter, A. Moroo, D. Eder, W. Shmayda, B. Brichard, J. Baggio, L. Bertalot, G. Vayakis, M. Moran, T. C. Sangster, L. Vermeeren, C. Stoeckl, S. Girard, and G. Pien, “Diagnostic components in harsh radiation environments: Possible overlap in R&D requirements of inertial confinement and magnetic fusion systems,” Rev. Sci. Instrum.79,10F304 (2008).
[CrossRef]

Hoshi, Y.

K. Nagasawa, Y. Hoshi, Y. Ohki, and K. Yahagi, “Radiation effects on pure silica core optical fibers by γ-rays: relation between 2 eV band and Non-Bridging Oxygen Hole Centers,” Jpn. J. Appl. Phys.25, 464–468 (1986).
[CrossRef]

Hosono, H.

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Role of Mobile Interstitial Oxygen Atoms in Defect Processes in Oxides: Interconversion between Oxygen-Associated Defects in SiO2Glass,” Phys. Rev. Lett.92,1 (2004).
[CrossRef]

Hsing, W.

J. L. Bourgade, A. E. Costley, R. Reichle, E. R. Hodgson, W. Hsing, V. Glebov, M. Decreton, R. Leeper, J. L. Leray, M. Dentan, T. Hutter, A. Moroo, D. Eder, W. Shmayda, B. Brichard, J. Baggio, L. Bertalot, G. Vayakis, M. Moran, T. C. Sangster, L. Vermeeren, C. Stoeckl, S. Girard, and G. Pien, “Diagnostic components in harsh radiation environments: Possible overlap in R&D requirements of inertial confinement and magnetic fusion systems,” Rev. Sci. Instrum.79,10F304 (2008).
[CrossRef]

Hutter, T.

J. L. Bourgade, A. E. Costley, R. Reichle, E. R. Hodgson, W. Hsing, V. Glebov, M. Decreton, R. Leeper, J. L. Leray, M. Dentan, T. Hutter, A. Moroo, D. Eder, W. Shmayda, B. Brichard, J. Baggio, L. Bertalot, G. Vayakis, M. Moran, T. C. Sangster, L. Vermeeren, C. Stoeckl, S. Girard, and G. Pien, “Diagnostic components in harsh radiation environments: Possible overlap in R&D requirements of inertial confinement and magnetic fusion systems,” Rev. Sci. Instrum.79,10F304 (2008).
[CrossRef]

Ibarra, A.

P. Martín, M. León, A. Ibarra, and E. R. Hodgson, “Thermal stability of gamma irradiation induced defects for different fused silica,” J. Nucl. Mater.417, 818–821 (2011).
[CrossRef]

M. León, P. Martín, A. Ibarra, and E. R. Hodgson, “Gamma irradiation induced defects in different types of fused silica,” J. Nucl. Mater.386–388, 1034–1037 (2009).
[CrossRef]

Kajihara, K.

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Role of Mobile Interstitial Oxygen Atoms in Defect Processes in Oxides: Interconversion between Oxygen-Associated Defects in SiO2Glass,” Phys. Rev. Lett.92,1 (2004).
[CrossRef]

Leeper, R.

J. L. Bourgade, A. E. Costley, R. Reichle, E. R. Hodgson, W. Hsing, V. Glebov, M. Decreton, R. Leeper, J. L. Leray, M. Dentan, T. Hutter, A. Moroo, D. Eder, W. Shmayda, B. Brichard, J. Baggio, L. Bertalot, G. Vayakis, M. Moran, T. C. Sangster, L. Vermeeren, C. Stoeckl, S. Girard, and G. Pien, “Diagnostic components in harsh radiation environments: Possible overlap in R&D requirements of inertial confinement and magnetic fusion systems,” Rev. Sci. Instrum.79,10F304 (2008).
[CrossRef]

León, M.

P. Martín, M. León, A. Ibarra, and E. R. Hodgson, “Thermal stability of gamma irradiation induced defects for different fused silica,” J. Nucl. Mater.417, 818–821 (2011).
[CrossRef]

M. León, P. Martín, A. Ibarra, and E. R. Hodgson, “Gamma irradiation induced defects in different types of fused silica,” J. Nucl. Mater.386–388, 1034–1037 (2009).
[CrossRef]

Leone, M.

M. Leone, M. Cannas, and F. M. Gelardi, “Local dynamic properties of vitreous silica probed by photolumines-cence spectroscopy in the temperature range 300 ± 4.5 K,” J. Non-Cryst. Solids232–234,514–519 (1998).
[CrossRef]

Leray, J. L.

J. L. Bourgade, A. E. Costley, R. Reichle, E. R. Hodgson, W. Hsing, V. Glebov, M. Decreton, R. Leeper, J. L. Leray, M. Dentan, T. Hutter, A. Moroo, D. Eder, W. Shmayda, B. Brichard, J. Baggio, L. Bertalot, G. Vayakis, M. Moran, T. C. Sangster, L. Vermeeren, C. Stoeckl, S. Girard, and G. Pien, “Diagnostic components in harsh radiation environments: Possible overlap in R&D requirements of inertial confinement and magnetic fusion systems,” Rev. Sci. Instrum.79,10F304 (2008).
[CrossRef]

Marrone, M. J.

G. H. Sigel and M. J. Marrone, “Photoluminescence In As-Drawn and Irradiated Silica Optical Fibers: An Assessment of the Role of Non-Bridging Oxygen Defect Centers,” J. Non-Cryst. Solids45, 235–247 (1981).
[CrossRef]

Martín, P.

P. Martín, M. León, A. Ibarra, and E. R. Hodgson, “Thermal stability of gamma irradiation induced defects for different fused silica,” J. Nucl. Mater.417, 818–821 (2011).
[CrossRef]

M. León, P. Martín, A. Ibarra, and E. R. Hodgson, “Gamma irradiation induced defects in different types of fused silica,” J. Nucl. Mater.386–388, 1034–1037 (2009).
[CrossRef]

Meunier, J.-P.

S. Girard, J.-P. Meunier, Y. Ouerdane, A. Boukenter, B. Vincent, and A. Boudrioua, “Spatial distribution of the red luminescence in pristine, gamma rays, and ultraviolet-irradiated multimode optical fibers,” Appl. Phys. Lett.84, 4215–4217 (2004).
[CrossRef]

Mizuguchi, M.

D. L. Griscom and M. Mizuguchi, “Determination of the visible range optical absorption spectrum of peroxy radicals in gamma-irradiated fused silica,” J. Non-Cryst. Solids239, 66–77 (1998).
[CrossRef]

Moran, M.

J. L. Bourgade, A. E. Costley, R. Reichle, E. R. Hodgson, W. Hsing, V. Glebov, M. Decreton, R. Leeper, J. L. Leray, M. Dentan, T. Hutter, A. Moroo, D. Eder, W. Shmayda, B. Brichard, J. Baggio, L. Bertalot, G. Vayakis, M. Moran, T. C. Sangster, L. Vermeeren, C. Stoeckl, S. Girard, and G. Pien, “Diagnostic components in harsh radiation environments: Possible overlap in R&D requirements of inertial confinement and magnetic fusion systems,” Rev. Sci. Instrum.79,10F304 (2008).
[CrossRef]

Morana, A.

L. Vaccaro, M. Cannas, S. Girard, A. Alessi, A. Morana, A. Boukenter, Y. Ouerdane, and R. Boscaino, “Influence of fluorine on the fiber resistance studied through the nonbridging oxygen hole center related luminescence,” Appl. Phys.113, 193107 (2013).

Moroo, A.

J. L. Bourgade, A. E. Costley, R. Reichle, E. R. Hodgson, W. Hsing, V. Glebov, M. Decreton, R. Leeper, J. L. Leray, M. Dentan, T. Hutter, A. Moroo, D. Eder, W. Shmayda, B. Brichard, J. Baggio, L. Bertalot, G. Vayakis, M. Moran, T. C. Sangster, L. Vermeeren, C. Stoeckl, S. Girard, and G. Pien, “Diagnostic components in harsh radiation environments: Possible overlap in R&D requirements of inertial confinement and magnetic fusion systems,” Rev. Sci. Instrum.79,10F304 (2008).
[CrossRef]

Nagasawa, K.

K. Nagasawa, Y. Ohki, and Y. Hama, “Gamma-ray induced 2 eV optical absorption band in pure silica core fibers,” Jpn. J. Appl. Phys.26, L1009–L1011 (1987).
[CrossRef]

K. Nagasawa, Y. Hoshi, Y. Ohki, and K. Yahagi, “Radiation effects on pure silica core optical fibers by γ-rays: relation between 2 eV band and Non-Bridging Oxygen Hole Centers,” Jpn. J. Appl. Phys.25, 464–468 (1986).
[CrossRef]

Ohki, Y.

K. Nagasawa, Y. Ohki, and Y. Hama, “Gamma-ray induced 2 eV optical absorption band in pure silica core fibers,” Jpn. J. Appl. Phys.26, L1009–L1011 (1987).
[CrossRef]

K. Nagasawa, Y. Hoshi, Y. Ohki, and K. Yahagi, “Radiation effects on pure silica core optical fibers by γ-rays: relation between 2 eV band and Non-Bridging Oxygen Hole Centers,” Jpn. J. Appl. Phys.25, 464–468 (1986).
[CrossRef]

Ooms, H.

B. Brichard, A. Fernandez Fernandez, H. Ooms, P. Borgermans, and F. Berghmans, “Dependence of the POR and NBOHC defects as function of the dose in hydrogen-treated and untreated KU1 Glass Fibers,” IEEE Trans. Nucl. Sci.50, 2024–2029 (2003).
[CrossRef]

Ouerdane, Y.

L. Vaccaro, M. Cannas, S. Girard, A. Alessi, A. Morana, A. Boukenter, Y. Ouerdane, and R. Boscaino, “Influence of fluorine on the fiber resistance studied through the nonbridging oxygen hole center related luminescence,” Appl. Phys.113, 193107 (2013).

S. Girard, J.-P. Meunier, Y. Ouerdane, A. Boukenter, B. Vincent, and A. Boudrioua, “Spatial distribution of the red luminescence in pristine, gamma rays, and ultraviolet-irradiated multimode optical fibers,” Appl. Phys. Lett.84, 4215–4217 (2004).
[CrossRef]

Pien, G.

J. L. Bourgade, A. E. Costley, R. Reichle, E. R. Hodgson, W. Hsing, V. Glebov, M. Decreton, R. Leeper, J. L. Leray, M. Dentan, T. Hutter, A. Moroo, D. Eder, W. Shmayda, B. Brichard, J. Baggio, L. Bertalot, G. Vayakis, M. Moran, T. C. Sangster, L. Vermeeren, C. Stoeckl, S. Girard, and G. Pien, “Diagnostic components in harsh radiation environments: Possible overlap in R&D requirements of inertial confinement and magnetic fusion systems,” Rev. Sci. Instrum.79,10F304 (2008).
[CrossRef]

Reichle, R.

J. L. Bourgade, A. E. Costley, R. Reichle, E. R. Hodgson, W. Hsing, V. Glebov, M. Decreton, R. Leeper, J. L. Leray, M. Dentan, T. Hutter, A. Moroo, D. Eder, W. Shmayda, B. Brichard, J. Baggio, L. Bertalot, G. Vayakis, M. Moran, T. C. Sangster, L. Vermeeren, C. Stoeckl, S. Girard, and G. Pien, “Diagnostic components in harsh radiation environments: Possible overlap in R&D requirements of inertial confinement and magnetic fusion systems,” Rev. Sci. Instrum.79,10F304 (2008).
[CrossRef]

Sangster, T. C.

J. L. Bourgade, A. E. Costley, R. Reichle, E. R. Hodgson, W. Hsing, V. Glebov, M. Decreton, R. Leeper, J. L. Leray, M. Dentan, T. Hutter, A. Moroo, D. Eder, W. Shmayda, B. Brichard, J. Baggio, L. Bertalot, G. Vayakis, M. Moran, T. C. Sangster, L. Vermeeren, C. Stoeckl, S. Girard, and G. Pien, “Diagnostic components in harsh radiation environments: Possible overlap in R&D requirements of inertial confinement and magnetic fusion systems,” Rev. Sci. Instrum.79,10F304 (2008).
[CrossRef]

Sasajima, Y.

Y. Sasajima and K. Tanimura, “Optical transitions of self-trapped holes in amorphous SiO2,” Phys. Rev. B68, 014204 (2003).
[CrossRef]

Shmayda, W.

J. L. Bourgade, A. E. Costley, R. Reichle, E. R. Hodgson, W. Hsing, V. Glebov, M. Decreton, R. Leeper, J. L. Leray, M. Dentan, T. Hutter, A. Moroo, D. Eder, W. Shmayda, B. Brichard, J. Baggio, L. Bertalot, G. Vayakis, M. Moran, T. C. Sangster, L. Vermeeren, C. Stoeckl, S. Girard, and G. Pien, “Diagnostic components in harsh radiation environments: Possible overlap in R&D requirements of inertial confinement and magnetic fusion systems,” Rev. Sci. Instrum.79,10F304 (2008).
[CrossRef]

Sigel, G. H.

G. H. Sigel and M. J. Marrone, “Photoluminescence In As-Drawn and Irradiated Silica Optical Fibers: An Assessment of the Role of Non-Bridging Oxygen Defect Centers,” J. Non-Cryst. Solids45, 235–247 (1981).
[CrossRef]

Skuja, L.

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Role of Mobile Interstitial Oxygen Atoms in Defect Processes in Oxides: Interconversion between Oxygen-Associated Defects in SiO2Glass,” Phys. Rev. Lett.92,1 (2004).
[CrossRef]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids239, 16–48 (1998).
[CrossRef]

Stoeckl, C.

J. L. Bourgade, A. E. Costley, R. Reichle, E. R. Hodgson, W. Hsing, V. Glebov, M. Decreton, R. Leeper, J. L. Leray, M. Dentan, T. Hutter, A. Moroo, D. Eder, W. Shmayda, B. Brichard, J. Baggio, L. Bertalot, G. Vayakis, M. Moran, T. C. Sangster, L. Vermeeren, C. Stoeckl, S. Girard, and G. Pien, “Diagnostic components in harsh radiation environments: Possible overlap in R&D requirements of inertial confinement and magnetic fusion systems,” Rev. Sci. Instrum.79,10F304 (2008).
[CrossRef]

Tanimura, K.

Y. Sasajima and K. Tanimura, “Optical transitions of self-trapped holes in amorphous SiO2,” Phys. Rev. B68, 014204 (2003).
[CrossRef]

Vaccaro, L.

L. Vaccaro, M. Cannas, S. Girard, A. Alessi, A. Morana, A. Boukenter, Y. Ouerdane, and R. Boscaino, “Influence of fluorine on the fiber resistance studied through the nonbridging oxygen hole center related luminescence,” Appl. Phys.113, 193107 (2013).

L. Vaccaro and M. Cannas, “The structural disorder of a silica network probed by site selective luminescence of the nonbridging oxygen hole centre,” J. Phys. Condens. Matter.22, 235801 (2010).
[CrossRef]

L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin.128, 1132–1136 (2008).
[CrossRef]

M. Cannas, L. Vaccaro, and B. Boizot, “Spectroscopic parameters related to non-bridging oxygen hole centers in amorphous SiO2,” J. Non-Cryst. Solids352, 203–208 (2006).
[CrossRef]

Vayakis, G.

J. L. Bourgade, A. E. Costley, R. Reichle, E. R. Hodgson, W. Hsing, V. Glebov, M. Decreton, R. Leeper, J. L. Leray, M. Dentan, T. Hutter, A. Moroo, D. Eder, W. Shmayda, B. Brichard, J. Baggio, L. Bertalot, G. Vayakis, M. Moran, T. C. Sangster, L. Vermeeren, C. Stoeckl, S. Girard, and G. Pien, “Diagnostic components in harsh radiation environments: Possible overlap in R&D requirements of inertial confinement and magnetic fusion systems,” Rev. Sci. Instrum.79,10F304 (2008).
[CrossRef]

Vermeeren, L.

J. L. Bourgade, A. E. Costley, R. Reichle, E. R. Hodgson, W. Hsing, V. Glebov, M. Decreton, R. Leeper, J. L. Leray, M. Dentan, T. Hutter, A. Moroo, D. Eder, W. Shmayda, B. Brichard, J. Baggio, L. Bertalot, G. Vayakis, M. Moran, T. C. Sangster, L. Vermeeren, C. Stoeckl, S. Girard, and G. Pien, “Diagnostic components in harsh radiation environments: Possible overlap in R&D requirements of inertial confinement and magnetic fusion systems,” Rev. Sci. Instrum.79,10F304 (2008).
[CrossRef]

Vincent, B.

S. Girard, J.-P. Meunier, Y. Ouerdane, A. Boukenter, B. Vincent, and A. Boudrioua, “Spatial distribution of the red luminescence in pristine, gamma rays, and ultraviolet-irradiated multimode optical fibers,” Appl. Phys. Lett.84, 4215–4217 (2004).
[CrossRef]

Yahagi, K.

K. Nagasawa, Y. Hoshi, Y. Ohki, and K. Yahagi, “Radiation effects on pure silica core optical fibers by γ-rays: relation between 2 eV band and Non-Bridging Oxygen Hole Centers,” Jpn. J. Appl. Phys.25, 464–468 (1986).
[CrossRef]

Appl. Phys. (1)

L. Vaccaro, M. Cannas, S. Girard, A. Alessi, A. Morana, A. Boukenter, Y. Ouerdane, and R. Boscaino, “Influence of fluorine on the fiber resistance studied through the nonbridging oxygen hole center related luminescence,” Appl. Phys.113, 193107 (2013).

Appl. Phys. Lett. (1)

S. Girard, J.-P. Meunier, Y. Ouerdane, A. Boukenter, B. Vincent, and A. Boudrioua, “Spatial distribution of the red luminescence in pristine, gamma rays, and ultraviolet-irradiated multimode optical fibers,” Appl. Phys. Lett.84, 4215–4217 (2004).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

B. Brichard, A. Fernandez Fernandez, H. Ooms, P. Borgermans, and F. Berghmans, “Dependence of the POR and NBOHC defects as function of the dose in hydrogen-treated and untreated KU1 Glass Fibers,” IEEE Trans. Nucl. Sci.50, 2024–2029 (2003).
[CrossRef]

J. Lumin. (1)

L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin.128, 1132–1136 (2008).
[CrossRef]

J. Non-Cryst. Solids (7)

M. Leone, M. Cannas, and F. M. Gelardi, “Local dynamic properties of vitreous silica probed by photolumines-cence spectroscopy in the temperature range 300 ± 4.5 K,” J. Non-Cryst. Solids232–234,514–519 (1998).
[CrossRef]

G. H. Sigel and M. J. Marrone, “Photoluminescence In As-Drawn and Irradiated Silica Optical Fibers: An Assessment of the Role of Non-Bridging Oxygen Defect Centers,” J. Non-Cryst. Solids45, 235–247 (1981).
[CrossRef]

M. Cannas, L. Vaccaro, and B. Boizot, “Spectroscopic parameters related to non-bridging oxygen hole centers in amorphous SiO2,” J. Non-Cryst. Solids352, 203–208 (2006).
[CrossRef]

S. Girard, D.L. Griscom, J. Baggio, B. Brichard, and F. Berghmans, “Transient optical absorption in pulsed-X-ray-irradiated pure-silica-core optical fibers: Influence of self-trapped holes,” J. Non-Cryst. Solids352, 2637–2642 (2006).
[CrossRef]

D. L. Griscom and M. Mizuguchi, “Determination of the visible range optical absorption spectrum of peroxy radicals in gamma-irradiated fused silica,” J. Non-Cryst. Solids239, 66–77 (1998).
[CrossRef]

D. L. Griscom, “γ-Ray-induced visible/infrared optical absorption bands in pure and F-doped silica-core fibers: are they due to self-trapped holes?,” J. Non-Cryst. Solids349, 139–147 (2004).
[CrossRef]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids239, 16–48 (1998).
[CrossRef]

J. Nucl. Mater. (2)

M. León, P. Martín, A. Ibarra, and E. R. Hodgson, “Gamma irradiation induced defects in different types of fused silica,” J. Nucl. Mater.386–388, 1034–1037 (2009).
[CrossRef]

P. Martín, M. León, A. Ibarra, and E. R. Hodgson, “Thermal stability of gamma irradiation induced defects for different fused silica,” J. Nucl. Mater.417, 818–821 (2011).
[CrossRef]

J. Phys. Condens. Matter. (1)

L. Vaccaro and M. Cannas, “The structural disorder of a silica network probed by site selective luminescence of the nonbridging oxygen hole centre,” J. Phys. Condens. Matter.22, 235801 (2010).
[CrossRef]

Jpn. J. Appl. Phys. (2)

K. Nagasawa, Y. Hoshi, Y. Ohki, and K. Yahagi, “Radiation effects on pure silica core optical fibers by γ-rays: relation between 2 eV band and Non-Bridging Oxygen Hole Centers,” Jpn. J. Appl. Phys.25, 464–468 (1986).
[CrossRef]

K. Nagasawa, Y. Ohki, and Y. Hama, “Gamma-ray induced 2 eV optical absorption band in pure silica core fibers,” Jpn. J. Appl. Phys.26, L1009–L1011 (1987).
[CrossRef]

Phys. Rev. B (3)

Y. Sasajima and K. Tanimura, “Optical transitions of self-trapped holes in amorphous SiO2,” Phys. Rev. B68, 014204 (2003).
[CrossRef]

S. Agnello, G. Buscarino, F. M. Gelardi, and R. Boscaino, “Optical absorption band at 5.8 eV associated with the E′γ centers in amorphous silicon dioxide: Optical absorption and EPR measurements,” Phys. Rev. B77, 195206 (2008).
[CrossRef]

M. Cannas and F.M. Gelardi, “Vacuum ultraviolet excitation of the 1.9 eV emission band related to nonbridging oxygen hole centers in silica,” Phys. Rev. B69, 153201 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Role of Mobile Interstitial Oxygen Atoms in Defect Processes in Oxides: Interconversion between Oxygen-Associated Defects in SiO2Glass,” Phys. Rev. Lett.92,1 (2004).
[CrossRef]

Rev. Sci. Instrum. (1)

J. L. Bourgade, A. E. Costley, R. Reichle, E. R. Hodgson, W. Hsing, V. Glebov, M. Decreton, R. Leeper, J. L. Leray, M. Dentan, T. Hutter, A. Moroo, D. Eder, W. Shmayda, B. Brichard, J. Baggio, L. Bertalot, G. Vayakis, M. Moran, T. C. Sangster, L. Vermeeren, C. Stoeckl, S. Girard, and G. Pien, “Diagnostic components in harsh radiation environments: Possible overlap in R&D requirements of inertial confinement and magnetic fusion systems,” Rev. Sci. Instrum.79,10F304 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) RIA spectra for the three doses γ-ray irradiated fibers. (b) RIA changes caused by thermal treatment at 550°C in the 10 MGy irradiated fiber irradiated.

Fig. 2
Fig. 2

PL intensity emitted from the fiber-transverse-surface of the samples, as a function of the optical absorption at 620 nm for pristine, 3, 5.5 and 10 MGy irradiated fibers. The dashed line is the fitted straight line (correlation coefficient R = 0.997). In the inset, the PL spectrum observed in the 10 MGy irradiated fiber, under excitation at 3.82 eV (325 nm).

Fig. 3
Fig. 3

Time-resolved PL spectra recorded on the pristine fiber (continuous line) and the irradiated one at the dose of 10 MGy (dotted line) under laser excitation at 2.07 eV (600 nm). The temporal parameters were fixed: TD = 1 μs and Δt = 10 μs. Inset shows the semilog plot of the PL decay measured at 1.9 eV in the irradiated sample.

Fig. 4
Fig. 4

Visible-excitation spectra of the PL at 1.9 eV measured with TD = 1 μs and Δt = 10 μs in the pristine (full circles) and the 10 MGy irradiated sample (empty circles).

Fig. 5
Fig. 5

Decomposition into gaussian bands of the RIA spectrum for the 10 MGy irradiated fiber: measured spectrum (dots) and fitted curve (lines).

Fig. 6
Fig. 6

Normalized PL, PLE and absorption spectra of the sample irradiated at 10 MGy. Solid curves represent the best-fitting functions (Eq. (1)). The inset shows the quantum yield calculated as the ratio between PLE and absorption.

Tables (1)

Tables Icon

Table 1 Spectral parameters of the bands used for the decomposition of all the OA spectra recorded in 3, 5.5 and 10 MGy irradiated samples. The error accounts for half of the maximum deviation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( E ) n e S S n n ! exp [ ( E E 00 ± n h ¯ ω ) 2 2 σ inh 2 ]

Metrics