Abstract

Ultrafast laser-induced refractive index changes in a-SiO2 consist, depending on the irradiation conditions, of either positive variations, voids, or regular nanoscale patterns, each of these underlying specific structural transformations. These allow for obtaining a large palette of optical functions ranging from low loss guiding to anisotropic scattering. While briefly reviewing the excitation mechanisms, we spectroscopically interrogate local electronic and structural transformations of the glass in the isotropic index zones and in the regular self-organized nanostructures, indicating bond breaking and matrix oxygen deficiency. A spatial defect segregation marks the material transformation in the different photoinscription regimes. We equally propose a method of real time control of nanogratings formation under the action of ultrashort laser pulse with variable envelopes. Application as polarizing optical devices is discussed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21, 1729–1731 (1996).
    [CrossRef] [PubMed]
  2. K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull.31, 620–625 (2006).
    [CrossRef]
  3. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Phot.2, 219–225 (2008).
    [CrossRef]
  4. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to threedimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process.77, 109–111 (2003).
    [CrossRef]
  5. W. Watanabe, T. Asano, K. Yamada, K. Itoh, and J. Nishii, “Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses,” Opt. Lett.28, 2491–2493 (2003).
    [CrossRef] [PubMed]
  6. Y. Bellouard, A. A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express13, 6635–6644 (2005).
    [CrossRef] [PubMed]
  7. H. Zhang, S. M. Eaton, and P. R. Herman, “Low-loss Type II waveguide writing in fused silica with single picosecond laser pulses,” Opt. Express14, 4826–4834 (2006).
    [CrossRef] [PubMed]
  8. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106, 051101 (2009).
    [CrossRef]
  9. L. Sansoni, F. Sciarrino, V. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett.105, 200503 (2010).
    [CrossRef]
  10. A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B71, 125435 (2005).
    [CrossRef]
  11. A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses,” Opt. Commun.241, 529–538 (2004).
    [CrossRef]
  12. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101, 043506 (2007).
    [CrossRef]
  13. C. Mauclair, Spatio-Temporal Ultrafast Laser Tailoring for Bulk Functionalization of Transparent Materials, PhD thesis, Jean Monnet University Saint Etienne and Free University Berlin 2010.
  14. A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.94, 041911 (2009).
    [CrossRef]
  15. F. Quéré, S. Guizard, and Ph. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett.56, 138–144 (2001).
    [CrossRef]
  16. A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B73, 224117 (2006).
    [CrossRef]
  17. M. Watanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B60, 9959–9964 (1999).
    [CrossRef]
  18. W. J. Reichman, J. W. Chan, C. W. Smelser, S. J. Mihailov, and D. M. Krol, “Spectroscopic characterization of different femtosecond laser modification regimes in fused silica,” J. Opt. Soc. Am. B24, 1627–1632 (2007).
    [CrossRef]
  19. D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, and M. J. Withford, “Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure,” Opt. Express16, 20029–20037 (2008).
    [CrossRef] [PubMed]
  20. C. W. Ponader, J. F. Schroeder, and A. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys.103, 063516 (2008).
    [CrossRef]
  21. M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mat. Express1, 711–723 (2011).
    [CrossRef]
  22. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
    [CrossRef] [PubMed]
  23. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109, 023503 (2011).
    [CrossRef]
  24. P. G. Kazansky and Y. Shimotsuma, “Self-assembled sub-wavelength structures and form birefrigence created by femtosecond laser writing in glass: properties and applications,” J. Ceram. Soc. Japan116, 1052–1062 (2008).
    [CrossRef]
  25. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser and Photon. Rev.2, 26–46 (2008).
    [CrossRef]
  26. G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express17, 9515–9525 (2009).
    [CrossRef] [PubMed]
  27. K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, “Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica,” Opt. Express18, 24809–24824 (2010).
    [CrossRef] [PubMed]
  28. J. Canning, M. Lancry, K. Cook, and B. Poumellec, “New theory of femtosecond induced changes and nanopore formation,” arXiv:1109.1084 (2011).
  29. C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Multipoint focusing of single ultrafast laser pulses,” J. Las. Micro. Nanoeng.6, 239 (2011).
    [CrossRef]
  30. K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, Y Ouerdane, A. Boukenter, and R. Stoian, “Ultrafast laser-induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. (2013).
  31. Y. Bellouard, E. Barthel, A. A. Said, M. Dugan, and P. Bado, “Scanning thermal microscopy and Raman analysis of bulk fused silica exposed to lowenergy femtosecond laser pulses,” Opt. Express16, 19520–19534 (2008).
    [CrossRef] [PubMed]
  32. K. Mishchik, Ultrafast laser-induced modification of optical glasses: a spectroscopy insight into the microscopic mechanisms, PhD thesis, Jean Monnet University Saint Etienne 2012.
  33. A. Mouskeftaras, Study of the physical mechanisms involved in the femtosecond laser optical breakdown of dielectric materials, PhD thesis, Ecole Polytechnique 2013.
  34. A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82, 033703 (2011).
    [CrossRef] [PubMed]
  35. R. Stoian, M. Wollenhaupt, T. Baumert, and I. V. Hertel, Temporal Pulse Tailoring in Ultrafast Laser Manufacturing Technologies in Laser Precission Microfabrication, ed. by K. Sugioka, M. Meunier, and A. Pique, (Springer VerlagHeidelberg Germany, 121–144, 2010).
    [CrossRef]
  36. A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett.93, 021921 (2008).
    [CrossRef]
  37. L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express15, 17855–17862 (2007).
    [CrossRef] [PubMed]
  38. C. Mauclair, M. Zamfirescu, G. Cheng, J.P. Colombier, E. Audouard, and R. Stoian, “Control of ultrafast laser-induced bulk nanogratings in fused silica via pulse time envelopes,” Opt. Express20, 12997–13005 (2012).
    [CrossRef] [PubMed]
  39. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71, 1929–1960 (2000).
    [CrossRef]
  40. C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express17, 3531–3542 (2009).
    [CrossRef] [PubMed]
  41. V. Diez-Blanco, J. Siegel, and J. Solis, “Femtosecond laser writing of optical waveguides with controllable core size in high refractive index glass,” Appl. Phys. A: Mater. Sci. Process.88, 239–242 (2007).
    [CrossRef]
  42. C. Mauclair, A. Mermillod-Blondin, S. Landon, N. Huot, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Single-pulse ultrafast laser imprinting of axial dot arrays in bulk glasses,” Opt. Lett.36, 325–327 (2011).
    [CrossRef] [PubMed]
  43. G. Cheng, C. D’Amico, X. Liu, and R. Stoian, “Large mode area waveguides with polarization functions by volume ultrafast laser photoinscription of fused silica,” Opt. Lett.38, 1924–1926 (2013).
    [CrossRef] [PubMed]

2013 (2)

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, Y Ouerdane, A. Boukenter, and R. Stoian, “Ultrafast laser-induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. (2013).

G. Cheng, C. D’Amico, X. Liu, and R. Stoian, “Large mode area waveguides with polarization functions by volume ultrafast laser photoinscription of fused silica,” Opt. Lett.38, 1924–1926 (2013).
[CrossRef] [PubMed]

2012 (1)

2011 (6)

C. Mauclair, A. Mermillod-Blondin, S. Landon, N. Huot, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Single-pulse ultrafast laser imprinting of axial dot arrays in bulk glasses,” Opt. Lett.36, 325–327 (2011).
[CrossRef] [PubMed]

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82, 033703 (2011).
[CrossRef] [PubMed]

J. Canning, M. Lancry, K. Cook, and B. Poumellec, “New theory of femtosecond induced changes and nanopore formation,” arXiv:1109.1084 (2011).

C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Multipoint focusing of single ultrafast laser pulses,” J. Las. Micro. Nanoeng.6, 239 (2011).
[CrossRef]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109, 023503 (2011).
[CrossRef]

M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mat. Express1, 711–723 (2011).
[CrossRef]

2010 (2)

2009 (4)

C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express17, 3531–3542 (2009).
[CrossRef] [PubMed]

G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express17, 9515–9525 (2009).
[CrossRef] [PubMed]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106, 051101 (2009).
[CrossRef]

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.94, 041911 (2009).
[CrossRef]

2008 (7)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Phot.2, 219–225 (2008).
[CrossRef]

P. G. Kazansky and Y. Shimotsuma, “Self-assembled sub-wavelength structures and form birefrigence created by femtosecond laser writing in glass: properties and applications,” J. Ceram. Soc. Japan116, 1052–1062 (2008).
[CrossRef]

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser and Photon. Rev.2, 26–46 (2008).
[CrossRef]

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett.93, 021921 (2008).
[CrossRef]

C. W. Ponader, J. F. Schroeder, and A. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys.103, 063516 (2008).
[CrossRef]

Y. Bellouard, E. Barthel, A. A. Said, M. Dugan, and P. Bado, “Scanning thermal microscopy and Raman analysis of bulk fused silica exposed to lowenergy femtosecond laser pulses,” Opt. Express16, 19520–19534 (2008).
[CrossRef] [PubMed]

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, and M. J. Withford, “Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure,” Opt. Express16, 20029–20037 (2008).
[CrossRef] [PubMed]

2007 (4)

W. J. Reichman, J. W. Chan, C. W. Smelser, S. J. Mihailov, and D. M. Krol, “Spectroscopic characterization of different femtosecond laser modification regimes in fused silica,” J. Opt. Soc. Am. B24, 1627–1632 (2007).
[CrossRef]

L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express15, 17855–17862 (2007).
[CrossRef] [PubMed]

V. Diez-Blanco, J. Siegel, and J. Solis, “Femtosecond laser writing of optical waveguides with controllable core size in high refractive index glass,” Appl. Phys. A: Mater. Sci. Process.88, 239–242 (2007).
[CrossRef]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101, 043506 (2007).
[CrossRef]

2006 (4)

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B73, 224117 (2006).
[CrossRef]

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull.31, 620–625 (2006).
[CrossRef]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

H. Zhang, S. M. Eaton, and P. R. Herman, “Low-loss Type II waveguide writing in fused silica with single picosecond laser pulses,” Opt. Express14, 4826–4834 (2006).
[CrossRef] [PubMed]

2005 (2)

Y. Bellouard, A. A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express13, 6635–6644 (2005).
[CrossRef] [PubMed]

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B71, 125435 (2005).
[CrossRef]

2004 (1)

A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses,” Opt. Commun.241, 529–538 (2004).
[CrossRef]

2003 (2)

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to threedimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process.77, 109–111 (2003).
[CrossRef]

W. Watanabe, T. Asano, K. Yamada, K. Itoh, and J. Nishii, “Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses,” Opt. Lett.28, 2491–2493 (2003).
[CrossRef] [PubMed]

2001 (1)

F. Quéré, S. Guizard, and Ph. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett.56, 138–144 (2001).
[CrossRef]

2000 (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71, 1929–1960 (2000).
[CrossRef]

1999 (1)

M. Watanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B60, 9959–9964 (1999).
[CrossRef]

1996 (1)

Ams, M.

Asano, T.

Audouard, E.

C. Mauclair, M. Zamfirescu, G. Cheng, J.P. Colombier, E. Audouard, and R. Stoian, “Control of ultrafast laser-induced bulk nanogratings in fused silica via pulse time envelopes,” Opt. Express20, 12997–13005 (2012).
[CrossRef] [PubMed]

C. Mauclair, A. Mermillod-Blondin, S. Landon, N. Huot, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Single-pulse ultrafast laser imprinting of axial dot arrays in bulk glasses,” Opt. Lett.36, 325–327 (2011).
[CrossRef] [PubMed]

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82, 033703 (2011).
[CrossRef] [PubMed]

C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Multipoint focusing of single ultrafast laser pulses,” J. Las. Micro. Nanoeng.6, 239 (2011).
[CrossRef]

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.94, 041911 (2009).
[CrossRef]

G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express17, 9515–9525 (2009).
[CrossRef] [PubMed]

C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express17, 3531–3542 (2009).
[CrossRef] [PubMed]

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett.93, 021921 (2008).
[CrossRef]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101, 043506 (2007).
[CrossRef]

Bado, P.

Barthel, E.

Baumert, T.

L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express15, 17855–17862 (2007).
[CrossRef] [PubMed]

R. Stoian, M. Wollenhaupt, T. Baumert, and I. V. Hertel, Temporal Pulse Tailoring in Ultrafast Laser Manufacturing Technologies in Laser Precission Microfabrication, ed. by K. Sugioka, M. Meunier, and A. Pique, (Springer VerlagHeidelberg Germany, 121–144, 2010).
[CrossRef]

Bellouard, Y.

Beresna, M.

M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mat. Express1, 711–723 (2011).
[CrossRef]

Bonse, J.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82, 033703 (2011).
[CrossRef] [PubMed]

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.94, 041911 (2009).
[CrossRef]

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett.93, 021921 (2008).
[CrossRef]

Boukenter, A.

Bulgakova, N. M.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.94, 041911 (2009).
[CrossRef]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101, 043506 (2007).
[CrossRef]

Burakov, I. M.

K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, “Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica,” Opt. Express18, 24809–24824 (2010).
[CrossRef] [PubMed]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101, 043506 (2007).
[CrossRef]

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to threedimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process.77, 109–111 (2003).
[CrossRef]

Canning, J.

J. Canning, M. Lancry, K. Cook, and B. Poumellec, “New theory of femtosecond induced changes and nanopore formation,” arXiv:1109.1084 (2011).

Cardinal, T.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B73, 224117 (2006).
[CrossRef]

Chahid-Erraji, A.

M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mat. Express1, 711–723 (2011).
[CrossRef]

Chan, J. W.

Cheng, G.

Chin, S. L.

A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses,” Opt. Commun.241, 529–538 (2004).
[CrossRef]

Colombier, J.P.

Cook, K.

J. Canning, M. Lancry, K. Cook, and B. Poumellec, “New theory of femtosecond induced changes and nanopore formation,” arXiv:1109.1084 (2011).

Couairon, A.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B71, 125435 (2005).
[CrossRef]

Couzi, M.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B73, 224117 (2006).
[CrossRef]

Crespi, A.

L. Sansoni, F. Sciarrino, V. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett.105, 200503 (2010).
[CrossRef]

D’Amico, C.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, Y Ouerdane, A. Boukenter, and R. Stoian, “Ultrafast laser-induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. (2013).

G. Cheng, C. D’Amico, X. Liu, and R. Stoian, “Large mode area waveguides with polarization functions by volume ultrafast laser photoinscription of fused silica,” Opt. Lett.38, 1924–1926 (2013).
[CrossRef] [PubMed]

Davis, K. M.

Dawes, J. M.

Dekker, P.

Diez-Blanco, V.

V. Diez-Blanco, J. Siegel, and J. Solis, “Femtosecond laser writing of optical waveguides with controllable core size in high refractive index glass,” Appl. Phys. A: Mater. Sci. Process.88, 239–242 (2007).
[CrossRef]

Dugan, M.

Eaton, S. M.

Englert, L.

Franco, M.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B71, 125435 (2005).
[CrossRef]

Gamaly, E. G.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Phot.2, 219–225 (2008).
[CrossRef]

Grodsky, R.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B73, 224117 (2006).
[CrossRef]

Guizard, S.

F. Quéré, S. Guizard, and Ph. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett.56, 138–144 (2001).
[CrossRef]

Haag, L.

Hallo, L.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

Herman, P. R.

Hertel, I. V.

C. Mauclair, A. Mermillod-Blondin, S. Landon, N. Huot, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Single-pulse ultrafast laser imprinting of axial dot arrays in bulk glasses,” Opt. Lett.36, 325–327 (2011).
[CrossRef] [PubMed]

C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Multipoint focusing of single ultrafast laser pulses,” J. Las. Micro. Nanoeng.6, 239 (2011).
[CrossRef]

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82, 033703 (2011).
[CrossRef] [PubMed]

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.94, 041911 (2009).
[CrossRef]

C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express17, 3531–3542 (2009).
[CrossRef] [PubMed]

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett.93, 021921 (2008).
[CrossRef]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101, 043506 (2007).
[CrossRef]

R. Stoian, M. Wollenhaupt, T. Baumert, and I. V. Hertel, Temporal Pulse Tailoring in Ultrafast Laser Manufacturing Technologies in Laser Precission Microfabrication, ed. by K. Sugioka, M. Meunier, and A. Pique, (Springer VerlagHeidelberg Germany, 121–144, 2010).
[CrossRef]

Hirao, K.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109, 023503 (2011).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21, 1729–1731 (1996).
[CrossRef] [PubMed]

Hnatovsky, C.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser and Photon. Rev.2, 26–46 (2008).
[CrossRef]

Huo, G.

Huot, N.

Husakou, A.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101, 043506 (2007).
[CrossRef]

Itoh, K.

Juodkazis, S.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106, 051101 (2009).
[CrossRef]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

M. Watanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B60, 9959–9964 (1999).
[CrossRef]

Kazansky, P. G.

M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mat. Express1, 711–723 (2011).
[CrossRef]

P. G. Kazansky and Y. Shimotsuma, “Self-assembled sub-wavelength structures and form birefrigence created by femtosecond laser writing in glass: properties and applications,” J. Ceram. Soc. Japan116, 1052–1062 (2008).
[CrossRef]

Krol, D. M.

Lancry, M.

J. Canning, M. Lancry, K. Cook, and B. Poumellec, “New theory of femtosecond induced changes and nanopore formation,” arXiv:1109.1084 (2011).

M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mat. Express1, 711–723 (2011).
[CrossRef]

Landon, S.

Little, D. J.

Liu, X.

Luther-Davies, B.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

Marshall, G. D.

Martin, Ph.

F. Quéré, S. Guizard, and Ph. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett.56, 138–144 (2001).
[CrossRef]

Mataloni, P.

L. Sansoni, F. Sciarrino, V. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett.105, 200503 (2010).
[CrossRef]

Matsuo, S.

M. Watanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B60, 9959–9964 (1999).
[CrossRef]

Mauclair, C.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, Y Ouerdane, A. Boukenter, and R. Stoian, “Ultrafast laser-induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. (2013).

C. Mauclair, M. Zamfirescu, G. Cheng, J.P. Colombier, E. Audouard, and R. Stoian, “Control of ultrafast laser-induced bulk nanogratings in fused silica via pulse time envelopes,” Opt. Express20, 12997–13005 (2012).
[CrossRef] [PubMed]

C. Mauclair, A. Mermillod-Blondin, S. Landon, N. Huot, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Single-pulse ultrafast laser imprinting of axial dot arrays in bulk glasses,” Opt. Lett.36, 325–327 (2011).
[CrossRef] [PubMed]

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82, 033703 (2011).
[CrossRef] [PubMed]

C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Multipoint focusing of single ultrafast laser pulses,” J. Las. Micro. Nanoeng.6, 239 (2011).
[CrossRef]

K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, “Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica,” Opt. Express18, 24809–24824 (2010).
[CrossRef] [PubMed]

G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express17, 9515–9525 (2009).
[CrossRef] [PubMed]

C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express17, 3531–3542 (2009).
[CrossRef] [PubMed]

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett.93, 021921 (2008).
[CrossRef]

C. Mauclair, Spatio-Temporal Ultrafast Laser Tailoring for Bulk Functionalization of Transparent Materials, PhD thesis, Jean Monnet University Saint Etienne and Free University Berlin 2010.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Phot.2, 219–225 (2008).
[CrossRef]

Mermillod-Blondin, A.

C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Multipoint focusing of single ultrafast laser pulses,” J. Las. Micro. Nanoeng.6, 239 (2011).
[CrossRef]

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82, 033703 (2011).
[CrossRef] [PubMed]

C. Mauclair, A. Mermillod-Blondin, S. Landon, N. Huot, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Single-pulse ultrafast laser imprinting of axial dot arrays in bulk glasses,” Opt. Lett.36, 325–327 (2011).
[CrossRef] [PubMed]

K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, “Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica,” Opt. Express18, 24809–24824 (2010).
[CrossRef] [PubMed]

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.94, 041911 (2009).
[CrossRef]

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett.93, 021921 (2008).
[CrossRef]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101, 043506 (2007).
[CrossRef]

Meshcheryakov, Yu. P.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.94, 041911 (2009).
[CrossRef]

Mihailov, S. J.

Misawa, H.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106, 051101 (2009).
[CrossRef]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

M. Watanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B60, 9959–9964 (1999).
[CrossRef]

Mishchik, K.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, Y Ouerdane, A. Boukenter, and R. Stoian, “Ultrafast laser-induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. (2013).

K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, “Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica,” Opt. Express18, 24809–24824 (2010).
[CrossRef] [PubMed]

G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express17, 9515–9525 (2009).
[CrossRef] [PubMed]

K. Mishchik, Ultrafast laser-induced modification of optical glasses: a spectroscopy insight into the microscopic mechanisms, PhD thesis, Jean Monnet University Saint Etienne 2012.

Miura, K.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109, 023503 (2011).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21, 1729–1731 (1996).
[CrossRef] [PubMed]

Mizeikis, V.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106, 051101 (2009).
[CrossRef]

Mouskeftaras, A.

A. Mouskeftaras, Study of the physical mechanisms involved in the femtosecond laser optical breakdown of dielectric materials, PhD thesis, Ecole Polytechnique 2013.

Myiamoto, I.

C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Multipoint focusing of single ultrafast laser pulses,” J. Las. Micro. Nanoeng.6, 239 (2011).
[CrossRef]

C. Mauclair, A. Mermillod-Blondin, S. Landon, N. Huot, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Single-pulse ultrafast laser imprinting of axial dot arrays in bulk glasses,” Opt. Lett.36, 325–327 (2011).
[CrossRef] [PubMed]

Mysyrowicz, A.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B71, 125435 (2005).
[CrossRef]

Nguyen, N. T.

A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses,” Opt. Commun.241, 529–538 (2004).
[CrossRef]

Nicolai, P.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

Nishii, J.

Nishimura, K.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

Nolte, S.

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull.31, 620–625 (2006).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to threedimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process.77, 109–111 (2003).
[CrossRef]

Osellame, R.

L. Sansoni, F. Sciarrino, V. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett.105, 200503 (2010).
[CrossRef]

Ouerdane, Y

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, Y Ouerdane, A. Boukenter, and R. Stoian, “Ultrafast laser-induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. (2013).

Ouerdane, Y.

Parriaux, O.

Ponader, C. W.

C. W. Ponader, J. F. Schroeder, and A. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys.103, 063516 (2008).
[CrossRef]

Poumellec, B.

M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mat. Express1, 711–723 (2011).
[CrossRef]

J. Canning, M. Lancry, K. Cook, and B. Poumellec, “New theory of femtosecond induced changes and nanopore formation,” arXiv:1109.1084 (2011).

Prade, B.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B71, 125435 (2005).
[CrossRef]

Quéré, F.

F. Quéré, S. Guizard, and Ph. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett.56, 138–144 (2001).
[CrossRef]

Ramponi, R.

L. Sansoni, F. Sciarrino, V. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett.105, 200503 (2010).
[CrossRef]

Reichman, W. J.

Rethfeld, B.

Richardson, K.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B73, 224117 (2006).
[CrossRef]

Richardson, M.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B73, 224117 (2006).
[CrossRef]

Rivero, C.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B73, 224117 (2006).
[CrossRef]

Rosenfeld, A.

C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Multipoint focusing of single ultrafast laser pulses,” J. Las. Micro. Nanoeng.6, 239 (2011).
[CrossRef]

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82, 033703 (2011).
[CrossRef] [PubMed]

C. Mauclair, A. Mermillod-Blondin, S. Landon, N. Huot, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Single-pulse ultrafast laser imprinting of axial dot arrays in bulk glasses,” Opt. Lett.36, 325–327 (2011).
[CrossRef] [PubMed]

K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, “Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica,” Opt. Express18, 24809–24824 (2010).
[CrossRef] [PubMed]

C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express17, 3531–3542 (2009).
[CrossRef] [PubMed]

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.94, 041911 (2009).
[CrossRef]

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett.93, 021921 (2008).
[CrossRef]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101, 043506 (2007).
[CrossRef]

Said, A. A.

Sakakura, M.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109, 023503 (2011).
[CrossRef]

Saliminia, A.

A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses,” Opt. Commun.241, 529–538 (2004).
[CrossRef]

Sansoni, L.

L. Sansoni, F. Sciarrino, V. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett.105, 200503 (2010).
[CrossRef]

Sarpe-Tudoran, C.

Schaffer, C.

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull.31, 620–625 (2006).
[CrossRef]

Schroeder, J. F.

C. W. Ponader, J. F. Schroeder, and A. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys.103, 063516 (2008).
[CrossRef]

Sciarrino, F.

L. Sansoni, F. Sciarrino, V. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett.105, 200503 (2010).
[CrossRef]

Shimotsuma, Y.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109, 023503 (2011).
[CrossRef]

P. G. Kazansky and Y. Shimotsuma, “Self-assembled sub-wavelength structures and form birefrigence created by femtosecond laser writing in glass: properties and applications,” J. Ceram. Soc. Japan116, 1052–1062 (2008).
[CrossRef]

Siegel, J.

V. Diez-Blanco, J. Siegel, and J. Solis, “Femtosecond laser writing of optical waveguides with controllable core size in high refractive index glass,” Appl. Phys. A: Mater. Sci. Process.88, 239–242 (2007).
[CrossRef]

Simova, E.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser and Photon. Rev.2, 26–46 (2008).
[CrossRef]

Smelser, C. W.

Solis, J.

V. Diez-Blanco, J. Siegel, and J. Solis, “Femtosecond laser writing of optical waveguides with controllable core size in high refractive index glass,” Appl. Phys. A: Mater. Sci. Process.88, 239–242 (2007).
[CrossRef]

Stoian, R.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, Y Ouerdane, A. Boukenter, and R. Stoian, “Ultrafast laser-induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. (2013).

G. Cheng, C. D’Amico, X. Liu, and R. Stoian, “Large mode area waveguides with polarization functions by volume ultrafast laser photoinscription of fused silica,” Opt. Lett.38, 1924–1926 (2013).
[CrossRef] [PubMed]

C. Mauclair, M. Zamfirescu, G. Cheng, J.P. Colombier, E. Audouard, and R. Stoian, “Control of ultrafast laser-induced bulk nanogratings in fused silica via pulse time envelopes,” Opt. Express20, 12997–13005 (2012).
[CrossRef] [PubMed]

C. Mauclair, A. Mermillod-Blondin, S. Landon, N. Huot, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Single-pulse ultrafast laser imprinting of axial dot arrays in bulk glasses,” Opt. Lett.36, 325–327 (2011).
[CrossRef] [PubMed]

C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Multipoint focusing of single ultrafast laser pulses,” J. Las. Micro. Nanoeng.6, 239 (2011).
[CrossRef]

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82, 033703 (2011).
[CrossRef] [PubMed]

K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, “Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica,” Opt. Express18, 24809–24824 (2010).
[CrossRef] [PubMed]

G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express17, 9515–9525 (2009).
[CrossRef] [PubMed]

C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express17, 3531–3542 (2009).
[CrossRef] [PubMed]

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.94, 041911 (2009).
[CrossRef]

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett.93, 021921 (2008).
[CrossRef]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101, 043506 (2007).
[CrossRef]

R. Stoian, M. Wollenhaupt, T. Baumert, and I. V. Hertel, Temporal Pulse Tailoring in Ultrafast Laser Manufacturing Technologies in Laser Precission Microfabrication, ed. by K. Sugioka, M. Meunier, and A. Pique, (Springer VerlagHeidelberg Germany, 121–144, 2010).
[CrossRef]

Streltsov, A.

C. W. Ponader, J. F. Schroeder, and A. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys.103, 063516 (2008).
[CrossRef]

Sudrie, L.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B71, 125435 (2005).
[CrossRef]

Sugimoto, N.

Sun, H.

M. Watanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B60, 9959–9964 (1999).
[CrossRef]

Tanaka, S.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

Taylor, R.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser and Photon. Rev.2, 26–46 (2008).
[CrossRef]

Terazima, M.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109, 023503 (2011).
[CrossRef]

Tikhonchuk, V. T.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

Tünnermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to threedimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process.77, 109–111 (2003).
[CrossRef]

Vallée, R.

A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses,” Opt. Commun.241, 529–538 (2004).
[CrossRef]

Vallone, V.

L. Sansoni, F. Sciarrino, V. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett.105, 200503 (2010).
[CrossRef]

Velpula, P. K.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, Y Ouerdane, A. Boukenter, and R. Stoian, “Ultrafast laser-induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. (2013).

Watanabe, M.

M. Watanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B60, 9959–9964 (1999).
[CrossRef]

Watanabe, W.

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71, 1929–1960 (2000).
[CrossRef]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to threedimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process.77, 109–111 (2003).
[CrossRef]

Withford, M. J.

Wollenhaupt, M.

L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express15, 17855–17862 (2007).
[CrossRef] [PubMed]

R. Stoian, M. Wollenhaupt, T. Baumert, and I. V. Hertel, Temporal Pulse Tailoring in Ultrafast Laser Manufacturing Technologies in Laser Precission Microfabrication, ed. by K. Sugioka, M. Meunier, and A. Pique, (Springer VerlagHeidelberg Germany, 121–144, 2010).
[CrossRef]

Yamada, K.

Zamfirescu, M.

Zhang, H.

Zoubir, A.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B73, 224117 (2006).
[CrossRef]

Appl. Phys. A: Mater. Sci. Process. (2)

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to threedimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process.77, 109–111 (2003).
[CrossRef]

V. Diez-Blanco, J. Siegel, and J. Solis, “Femtosecond laser writing of optical waveguides with controllable core size in high refractive index glass,” Appl. Phys. A: Mater. Sci. Process.88, 239–242 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett.93, 021921 (2008).
[CrossRef]

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.94, 041911 (2009).
[CrossRef]

Europhys. Lett. (1)

F. Quéré, S. Guizard, and Ph. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett.56, 138–144 (2001).
[CrossRef]

J. Appl. Phys. (5)

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106, 051101 (2009).
[CrossRef]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101, 043506 (2007).
[CrossRef]

C. W. Ponader, J. F. Schroeder, and A. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys.103, 063516 (2008).
[CrossRef]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109, 023503 (2011).
[CrossRef]

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, Y Ouerdane, A. Boukenter, and R. Stoian, “Ultrafast laser-induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. (2013).

J. Ceram. Soc. Japan (1)

P. G. Kazansky and Y. Shimotsuma, “Self-assembled sub-wavelength structures and form birefrigence created by femtosecond laser writing in glass: properties and applications,” J. Ceram. Soc. Japan116, 1052–1062 (2008).
[CrossRef]

J. Las. Micro. Nanoeng. (1)

C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Multipoint focusing of single ultrafast laser pulses,” J. Las. Micro. Nanoeng.6, 239 (2011).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser and Photon. Rev. (1)

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser and Photon. Rev.2, 26–46 (2008).
[CrossRef]

MRS Bull. (1)

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull.31, 620–625 (2006).
[CrossRef]

Nature Phot. (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Phot.2, 219–225 (2008).
[CrossRef]

Opt. Commun. (1)

A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses,” Opt. Commun.241, 529–538 (2004).
[CrossRef]

Opt. Express (9)

L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express15, 17855–17862 (2007).
[CrossRef] [PubMed]

Y. Bellouard, E. Barthel, A. A. Said, M. Dugan, and P. Bado, “Scanning thermal microscopy and Raman analysis of bulk fused silica exposed to lowenergy femtosecond laser pulses,” Opt. Express16, 19520–19534 (2008).
[CrossRef] [PubMed]

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, and M. J. Withford, “Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure,” Opt. Express16, 20029–20037 (2008).
[CrossRef] [PubMed]

C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express17, 3531–3542 (2009).
[CrossRef] [PubMed]

G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express17, 9515–9525 (2009).
[CrossRef] [PubMed]

K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, “Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica,” Opt. Express18, 24809–24824 (2010).
[CrossRef] [PubMed]

C. Mauclair, M. Zamfirescu, G. Cheng, J.P. Colombier, E. Audouard, and R. Stoian, “Control of ultrafast laser-induced bulk nanogratings in fused silica via pulse time envelopes,” Opt. Express20, 12997–13005 (2012).
[CrossRef] [PubMed]

Y. Bellouard, A. A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express13, 6635–6644 (2005).
[CrossRef] [PubMed]

H. Zhang, S. M. Eaton, and P. R. Herman, “Low-loss Type II waveguide writing in fused silica with single picosecond laser pulses,” Opt. Express14, 4826–4834 (2006).
[CrossRef] [PubMed]

Opt. Lett. (4)

Opt. Mat. Express (1)

M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mat. Express1, 711–723 (2011).
[CrossRef]

Phys. Rev. B (3)

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B71, 125435 (2005).
[CrossRef]

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B73, 224117 (2006).
[CrossRef]

M. Watanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B60, 9959–9964 (1999).
[CrossRef]

Phys. Rev. Lett. (2)

L. Sansoni, F. Sciarrino, V. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett.105, 200503 (2010).
[CrossRef]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71, 1929–1960 (2000).
[CrossRef]

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82, 033703 (2011).
[CrossRef] [PubMed]

Other (5)

R. Stoian, M. Wollenhaupt, T. Baumert, and I. V. Hertel, Temporal Pulse Tailoring in Ultrafast Laser Manufacturing Technologies in Laser Precission Microfabrication, ed. by K. Sugioka, M. Meunier, and A. Pique, (Springer VerlagHeidelberg Germany, 121–144, 2010).
[CrossRef]

K. Mishchik, Ultrafast laser-induced modification of optical glasses: a spectroscopy insight into the microscopic mechanisms, PhD thesis, Jean Monnet University Saint Etienne 2012.

A. Mouskeftaras, Study of the physical mechanisms involved in the femtosecond laser optical breakdown of dielectric materials, PhD thesis, Ecole Polytechnique 2013.

J. Canning, M. Lancry, K. Cook, and B. Poumellec, “New theory of femtosecond induced changes and nanopore formation,” arXiv:1109.1084 (2011).

C. Mauclair, Spatio-Temporal Ultrafast Laser Tailoring for Bulk Functionalization of Transparent Materials, PhD thesis, Jean Monnet University Saint Etienne and Free University Berlin 2010.

Supplementary Material (1)

» Media 1: AVI (245 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Illustration of linear and nonlinear effects in laser pulse propagation in bulk a-SiO2 upon moderate focusing. Comparison of calculated fluence (a,b) and intensity (c,d) spatial charts assuming either linear Gaussian propagation (a,c) or nonlinear propagation by taking into account nonlinear effects within the NLSE formalism (b,d) which considers self-focusing, self phase modulation, plasma defocusing, self-steepening, and energy absorption due to photoionization [12,13]. Lower values are obtained in the nonlinear case. (e) Insights into the transient exposure of a-SiO2, with the time-resolved sequence of fluence distribution charts corresponding to specific time slices of the pulse (E=1 μJ, τp = 120 fs).

Fig. 2
Fig. 2

Dynamic stages of material transformation including the characteristic time history of primary excitation and relaxation processes: (a) free carriers effects: photoionization, thermalization, (b) electronic localization with defect formation (main defect types and their respective optical properties are illustrated), (c) hydrodynamic and macroscopic glass phenomena: pressure relaxation and generation of stress, viscosity decrease, etc [32].

Fig. 3
Fig. 3

Type I and II laser-generated traces and the underlying isotropic index change or nanogratings in a-SiO2 for various irradiation conditions at 100 kHz repetition rate and NA=0.42 focusing [27]. (a) Phase contrast microscopy images of type I modification traces in static (single and multishot) and longitudinally scanned conditions; dark and white are positive and negative index changes respectively. (b,c) Phase contrast microscopy images of type II modification traces in static and longitudinally scanned conditions with nonguiding (NG) and guiding (WG) properties. SEM cross-section of the traces showing the nanoscale arrangement are given together with corresponding guided modes at 800 nm. We note isotropic mode transport for type I traces and polarization type II guiding for electric field parallel to the nanoplanes. (d,e) Bulk nanograting patterns induced by radial and azimuthal polarization. (f,g) Indication of the pulse duration effects in localizing higher amounts of excitation with consequences in void dimensions [27]; single shot structures. (h) Void movement and merging with increasing number of pulses (N=1–50 at 1 Hz) suggesting the development of low viscosity phases ( Media 1).

Fig. 4
Fig. 4

Particular electronic transformations in a-SiO2, revealed by PL spectroscopy in a space-resolved manner. (a) Type I (left) and type II (right) regimes are depicted upon excitation at 633, 488 and 325 nm. One can note preferential NBOHC agglomeration in positive type I index zones, and in type II, particularly in the positive index change domains, with ODC accumulating in nanostructured type II regions. The unidentified LID is equally presented. PCM charts are also given for convenience. (b) Characteristic PL spectral signatures with a schematic band diagram in the insert (c), showing the defect radiative relaxation paths for NBOHC and ODC (e.g. potential E′δ) [30, 32].

Fig. 5
Fig. 5

(a) Typical Raman spectrum of pristine and type I modified a-SiO2 with relevant features. (b) The D2, marker of the number density of three-member rings, increases monotonously with the dose before saturating at high dose values.

Fig. 6
Fig. 6

(a,b,c) Time-resolved optical transmission imaging for high energy excitation (43 μJ) at: peak (0 ps), 1.5 ps, and 30 ps delay. (d,e,f) Post-irradiation PCM and spectroscopy analysis on the fast and slow decay zone in the high energy interaction domain. (d) PCM of the modification region with the appearance of voids in the long-living excitation zone. No permanent index modifications were seen in the rapidly decaying excitation wings. (e) Generation of NBOHC in the soft, fast decay region. (f) Accumulation of ODC in permanent void-like damage regions. (g,h,i) Moderate input fluences (1.5 μJ); single and multishot normalized transient plasma images at 0.2 ps delay and comparison with permanent absorption maps.

Fig. 7
Fig. 7

Tunable ultrafast laser-induced nanogratings periods as a function of the pulse temporal shape visualized via in-situ UV diffraction on periodic patterns. (a) Experimental concept. (b) Diffraction shift for exposure at various pulse durations, equivalent to period tunability. A period variation from 270 nm to 210 nm is achieved between the shortest fs pulse and the optimal 0.65 ps [38].

Fig. 8
Fig. 8

Examples of (a) 1D type I positive index traces at various scan velocities and (b) demonstration of multispot written 3D optical light guiding and division functions featuring type I positive index traces and evanescent coupling [40]. (c,d) Dot matrices via axial multipoint focusing following beam truncation [29, 42].

Fig. 9
Fig. 9

Polarization large mode area guiding concepts (a) and demonstration (b) using an evanescently coupled multicore design with mixed type I and II traces (WL transillumination image of the end face with marked type II defect positions). The hexagonal geometry of type I traces (8.7 mm long) includes the insertion of type II traces with horizontally-arranged nanogratings. (c,d) Near-field modes for horizontally and vertically polarized injection at 800 nm. Guiding of selective modes depending on the input polarization is observed [43].

Metrics