Abstract

A novel method for assembling endcaps to optical fibers is presented. The method relies on femtosecond laser welding and milling of a glass slide to the polished end of the fiber. The fiber is welded to the glass slide in the cladding region so as to seal the core area without affecting its optical transparency. The same laser is used to mill through the glass slide thereby shaping a microscopic endcap with a diameter slightly larger than that of the fiber. The method was applied to both a standard and a microstructured optical fiber. Preliminary results are also presented on femtosecond laser welding parallel to an interface showing the potential of this approach for optical fiber fusion splicing.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, “Photonic-crystal fibers,” J. Lightwave Technol.24(12), 4729–4749 (2006).
    [CrossRef]
  2. Y. Ariel, E. Sherman, A. Patlakh, and R. Bronstein, “Termination of end-faces of air-clad and photonic-crystal fibers,” U.S. patent 2003/0068150 (10 April, 2003).
  3. A. D. Yablon, Optical Fiber Fusion Splicing (Springer, Heidelberg, 2005).
  4. S. Böhme, S. Fabian, T. Schreiber, R. Eberhardt, and A. Tünnermann, “End cap splicing of photonic crystal fibers with outstanding quality for high power applications,” Proc. SPIE8244, 824406, 824406-9 (2012).
    [CrossRef]
  5. S. Boehme, E. Beckert, R. Eberhardt, and A. Tuennermann, “Laser splicing of end caps – process requirements in high power laser applications,” Proc. SPIE7202, 720205, 720205-11 (2009).
    [CrossRef]
  6. S. Sinha, K. E. Urbanek, A. Krzywicki, and R. L. Byer, “Investigation of the suitability of silicate bonding for facet termination in active fiber devices,” Opt. Express15(20), 13003–13022 (2007).
    [CrossRef] [PubMed]
  7. T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys.44(22), L687–L689 (2005).
    [CrossRef]
  8. D. Hélie, M. Bégin, F. Lacroix, and R. Vallée, “Reinforced direct bonding of optical materials by femtosecond laser welding,” Appl. Opt.51(12), 2098–2106 (2012).
    [CrossRef] [PubMed]
  9. S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process.103(2), 257–261 (2011).
    [CrossRef]
  10. J. Nishii, W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett.89(2), 021106 (2006).
    [CrossRef]
  11. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bluk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol.12(11), 1784–1794 (2001).
    [CrossRef]
  12. J. Haisma and G. A. C. M. Spierings, “Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry,” Mater. Sci. Eng. Rep.37(1-2), 1–60 (2002).
    [CrossRef]
  13. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
    [CrossRef]
  14. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent solids,” Phys. Rep.441(2-4), 47–189 (2007).
    [CrossRef]
  15. B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. G. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters,” Opt. Mater. Express1(4), 766–782 (2011).
    [CrossRef]
  16. D. Hélie, F. Lacroix, and R. Vallée, “Reinforcing a direct bond between optical materials by filamentation based femtosecond laser welding,” Journ. Las. Micr/Nano Eng. JLMN7(3), 284–292 (2012).
    [CrossRef]
  17. D. J. Huang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process.79(3), 605–612 (2004).
    [CrossRef]
  18. X. Zhao and Y. C. Shin, “Femtosecond laser drilling of high-aspect ratio microchannels in glass,” Appl. Phys., A Mater. Sci. Process.104(2), 713–719 (2011).
    [CrossRef]
  19. R. B. Abernethy, The New Weibull Handbook (R.B. Abernethy, Florida, 2000).
  20. K. Cvecek, I. Miyamoto, J. Strauss, M. Wolf, T. Frick, and M. Schmidt, “Sample preparation method for glass welding by ultrashort laser pulses yields higher seam strength,” Appl. Opt.50(13), 1941–1944 (2011).
    [CrossRef] [PubMed]
  21. S. Roth, K. Cvecek, I. Miyamoto, and M. Schmidt, “Glass welding technology using ultra short laser pulses,” Proc. SPIE7920, 7920006 (2011).
    [CrossRef]

2012 (3)

S. Böhme, S. Fabian, T. Schreiber, R. Eberhardt, and A. Tünnermann, “End cap splicing of photonic crystal fibers with outstanding quality for high power applications,” Proc. SPIE8244, 824406, 824406-9 (2012).
[CrossRef]

D. Hélie, F. Lacroix, and R. Vallée, “Reinforcing a direct bond between optical materials by filamentation based femtosecond laser welding,” Journ. Las. Micr/Nano Eng. JLMN7(3), 284–292 (2012).
[CrossRef]

D. Hélie, M. Bégin, F. Lacroix, and R. Vallée, “Reinforced direct bonding of optical materials by femtosecond laser welding,” Appl. Opt.51(12), 2098–2106 (2012).
[CrossRef] [PubMed]

2011 (5)

K. Cvecek, I. Miyamoto, J. Strauss, M. Wolf, T. Frick, and M. Schmidt, “Sample preparation method for glass welding by ultrashort laser pulses yields higher seam strength,” Appl. Opt.50(13), 1941–1944 (2011).
[CrossRef] [PubMed]

B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. G. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters,” Opt. Mater. Express1(4), 766–782 (2011).
[CrossRef]

X. Zhao and Y. C. Shin, “Femtosecond laser drilling of high-aspect ratio microchannels in glass,” Appl. Phys., A Mater. Sci. Process.104(2), 713–719 (2011).
[CrossRef]

S. Roth, K. Cvecek, I. Miyamoto, and M. Schmidt, “Glass welding technology using ultra short laser pulses,” Proc. SPIE7920, 7920006 (2011).
[CrossRef]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process.103(2), 257–261 (2011).
[CrossRef]

2009 (1)

S. Boehme, E. Beckert, R. Eberhardt, and A. Tuennermann, “Laser splicing of end caps – process requirements in high power laser applications,” Proc. SPIE7202, 720205, 720205-11 (2009).
[CrossRef]

2008 (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

2007 (2)

2006 (2)

P. Russell, “Photonic-crystal fibers,” J. Lightwave Technol.24(12), 4729–4749 (2006).
[CrossRef]

J. Nishii, W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett.89(2), 021106 (2006).
[CrossRef]

2005 (1)

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys.44(22), L687–L689 (2005).
[CrossRef]

2004 (1)

D. J. Huang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process.79(3), 605–612 (2004).
[CrossRef]

2002 (1)

J. Haisma and G. A. C. M. Spierings, “Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry,” Mater. Sci. Eng. Rep.37(1-2), 1–60 (2002).
[CrossRef]

2001 (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bluk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol.12(11), 1784–1794 (2001).
[CrossRef]

Beckert, E.

S. Boehme, E. Beckert, R. Eberhardt, and A. Tuennermann, “Laser splicing of end caps – process requirements in high power laser applications,” Proc. SPIE7202, 720205, 720205-11 (2009).
[CrossRef]

Bégin, M.

Boehme, S.

S. Boehme, E. Beckert, R. Eberhardt, and A. Tuennermann, “Laser splicing of end caps – process requirements in high power laser applications,” Proc. SPIE7202, 720205, 720205-11 (2009).
[CrossRef]

Böhme, S.

S. Böhme, S. Fabian, T. Schreiber, R. Eberhardt, and A. Tünnermann, “End cap splicing of photonic crystal fibers with outstanding quality for high power applications,” Proc. SPIE8244, 824406, 824406-9 (2012).
[CrossRef]

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bluk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol.12(11), 1784–1794 (2001).
[CrossRef]

Byer, R. L.

Chahid-Erraji, A.

Choi, T. Y.

D. J. Huang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process.79(3), 605–612 (2004).
[CrossRef]

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent solids,” Phys. Rep.441(2-4), 47–189 (2007).
[CrossRef]

Cvecek, K.

Döring, S.

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process.103(2), 257–261 (2011).
[CrossRef]

Eberhardt, R.

S. Böhme, S. Fabian, T. Schreiber, R. Eberhardt, and A. Tünnermann, “End cap splicing of photonic crystal fibers with outstanding quality for high power applications,” Proc. SPIE8244, 824406, 824406-9 (2012).
[CrossRef]

S. Boehme, E. Beckert, R. Eberhardt, and A. Tuennermann, “Laser splicing of end caps – process requirements in high power laser applications,” Proc. SPIE7202, 720205, 720205-11 (2009).
[CrossRef]

Fabian, S.

S. Böhme, S. Fabian, T. Schreiber, R. Eberhardt, and A. Tünnermann, “End cap splicing of photonic crystal fibers with outstanding quality for high power applications,” Proc. SPIE8244, 824406, 824406-9 (2012).
[CrossRef]

Frick, T.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

Grigoropoulos, C. P.

D. J. Huang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process.79(3), 605–612 (2004).
[CrossRef]

Haisma, J.

J. Haisma and G. A. C. M. Spierings, “Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry,” Mater. Sci. Eng. Rep.37(1-2), 1–60 (2002).
[CrossRef]

Hélie, D.

D. Hélie, F. Lacroix, and R. Vallée, “Reinforcing a direct bond between optical materials by filamentation based femtosecond laser welding,” Journ. Las. Micr/Nano Eng. JLMN7(3), 284–292 (2012).
[CrossRef]

D. Hélie, M. Bégin, F. Lacroix, and R. Vallée, “Reinforced direct bonding of optical materials by femtosecond laser welding,” Appl. Opt.51(12), 2098–2106 (2012).
[CrossRef] [PubMed]

Huang, D. J.

D. J. Huang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process.79(3), 605–612 (2004).
[CrossRef]

Itoh, K.

J. Nishii, W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett.89(2), 021106 (2006).
[CrossRef]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys.44(22), L687–L689 (2005).
[CrossRef]

Kazansky, P. G.

Krzywicki, A.

Lacroix, F.

D. Hélie, M. Bégin, F. Lacroix, and R. Vallée, “Reinforced direct bonding of optical materials by femtosecond laser welding,” Appl. Opt.51(12), 2098–2106 (2012).
[CrossRef] [PubMed]

D. Hélie, F. Lacroix, and R. Vallée, “Reinforcing a direct bond between optical materials by filamentation based femtosecond laser welding,” Journ. Las. Micr/Nano Eng. JLMN7(3), 284–292 (2012).
[CrossRef]

Lancry, M.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bluk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol.12(11), 1784–1794 (2001).
[CrossRef]

Miyamoto, I.

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent solids,” Phys. Rep.441(2-4), 47–189 (2007).
[CrossRef]

Nishii, J.

J. Nishii, W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett.89(2), 021106 (2006).
[CrossRef]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys.44(22), L687–L689 (2005).
[CrossRef]

Nolte, S.

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process.103(2), 257–261 (2011).
[CrossRef]

Onda, S.

J. Nishii, W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett.89(2), 021106 (2006).
[CrossRef]

Poumellec, B.

Richter, S.

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process.103(2), 257–261 (2011).
[CrossRef]

Roth, S.

S. Roth, K. Cvecek, I. Miyamoto, and M. Schmidt, “Glass welding technology using ultra short laser pulses,” Proc. SPIE7920, 7920006 (2011).
[CrossRef]

Russell, P.

Schaffer, C. B.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bluk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol.12(11), 1784–1794 (2001).
[CrossRef]

Schmidt, M.

Schreiber, T.

S. Böhme, S. Fabian, T. Schreiber, R. Eberhardt, and A. Tünnermann, “End cap splicing of photonic crystal fibers with outstanding quality for high power applications,” Proc. SPIE8244, 824406, 824406-9 (2012).
[CrossRef]

Shin, Y. C.

X. Zhao and Y. C. Shin, “Femtosecond laser drilling of high-aspect ratio microchannels in glass,” Appl. Phys., A Mater. Sci. Process.104(2), 713–719 (2011).
[CrossRef]

Sinha, S.

Spierings, G. A. C. M.

J. Haisma and G. A. C. M. Spierings, “Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry,” Mater. Sci. Eng. Rep.37(1-2), 1–60 (2002).
[CrossRef]

Strauss, J.

Tamaki, T.

J. Nishii, W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett.89(2), 021106 (2006).
[CrossRef]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys.44(22), L687–L689 (2005).
[CrossRef]

Tuennermann, A.

S. Boehme, E. Beckert, R. Eberhardt, and A. Tuennermann, “Laser splicing of end caps – process requirements in high power laser applications,” Proc. SPIE7202, 720205, 720205-11 (2009).
[CrossRef]

Tünnermann, A.

S. Böhme, S. Fabian, T. Schreiber, R. Eberhardt, and A. Tünnermann, “End cap splicing of photonic crystal fibers with outstanding quality for high power applications,” Proc. SPIE8244, 824406, 824406-9 (2012).
[CrossRef]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process.103(2), 257–261 (2011).
[CrossRef]

Urbanek, K. E.

Vallée, R.

D. Hélie, M. Bégin, F. Lacroix, and R. Vallée, “Reinforced direct bonding of optical materials by femtosecond laser welding,” Appl. Opt.51(12), 2098–2106 (2012).
[CrossRef] [PubMed]

D. Hélie, F. Lacroix, and R. Vallée, “Reinforcing a direct bond between optical materials by filamentation based femtosecond laser welding,” Journ. Las. Micr/Nano Eng. JLMN7(3), 284–292 (2012).
[CrossRef]

Watanabe, W.

J. Nishii, W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett.89(2), 021106 (2006).
[CrossRef]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys.44(22), L687–L689 (2005).
[CrossRef]

Wolf, M.

Zhao, X.

X. Zhao and Y. C. Shin, “Femtosecond laser drilling of high-aspect ratio microchannels in glass,” Appl. Phys., A Mater. Sci. Process.104(2), 713–719 (2011).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

J. Nishii, W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett.89(2), 021106 (2006).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (3)

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process.103(2), 257–261 (2011).
[CrossRef]

D. J. Huang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process.79(3), 605–612 (2004).
[CrossRef]

X. Zhao and Y. C. Shin, “Femtosecond laser drilling of high-aspect ratio microchannels in glass,” Appl. Phys., A Mater. Sci. Process.104(2), 713–719 (2011).
[CrossRef]

J. Lightwave Technol. (1)

Journ. Las. Micr/Nano Eng. JLMN (1)

D. Hélie, F. Lacroix, and R. Vallée, “Reinforcing a direct bond between optical materials by filamentation based femtosecond laser welding,” Journ. Las. Micr/Nano Eng. JLMN7(3), 284–292 (2012).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys.44(22), L687–L689 (2005).
[CrossRef]

Mater. Sci. Eng. Rep. (1)

J. Haisma and G. A. C. M. Spierings, “Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry,” Mater. Sci. Eng. Rep.37(1-2), 1–60 (2002).
[CrossRef]

Meas. Sci. Technol. (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bluk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol.12(11), 1784–1794 (2001).
[CrossRef]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

Opt. Express (1)

Opt. Mater. Express (1)

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent solids,” Phys. Rep.441(2-4), 47–189 (2007).
[CrossRef]

Proc. SPIE (3)

S. Böhme, S. Fabian, T. Schreiber, R. Eberhardt, and A. Tünnermann, “End cap splicing of photonic crystal fibers with outstanding quality for high power applications,” Proc. SPIE8244, 824406, 824406-9 (2012).
[CrossRef]

S. Boehme, E. Beckert, R. Eberhardt, and A. Tuennermann, “Laser splicing of end caps – process requirements in high power laser applications,” Proc. SPIE7202, 720205, 720205-11 (2009).
[CrossRef]

S. Roth, K. Cvecek, I. Miyamoto, and M. Schmidt, “Glass welding technology using ultra short laser pulses,” Proc. SPIE7920, 7920006 (2011).
[CrossRef]

Other (3)

R. B. Abernethy, The New Weibull Handbook (R.B. Abernethy, Florida, 2000).

Y. Ariel, E. Sherman, A. Patlakh, and R. Bronstein, “Termination of end-faces of air-clad and photonic-crystal fibers,” U.S. patent 2003/0068150 (10 April, 2003).

A. D. Yablon, Optical Fiber Fusion Splicing (Springer, Heidelberg, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(a) Optical microscope image of a polished fiber. (b) Surface profile measurements on a 240 µm diameter polished fiber.

Fig. 2
Fig. 2

Optical microscope images of the optical contact between the fiber tip and glass surface when (a) surface defects and/or improper alignment limit its establishment and (b) in the best of cases, optical contact will cover the whole surface of the fiber.

Fig. 3
Fig. 3

Illustration of fs laser welding of the tip of the fiber to a glass plate.

Fig. 4
Fig. 4

Illustrations of (a) positioning of the laser focus at the back surface in contact with water (or another liquid) and (b) the milling of the endcap by a trepanning movement with a diameter slightly larger than that of the fiber.

Fig. 5
Fig. 5

A 100 µm thick fused silica endcap welded to a microstructured optical fiber (Laser parameters: 10X focusing lens; pulse duration: 70 fs; rep rate: 250 kHz; wavelength: 787 nm; scan speed: 0.2 mm/s; pulse energy: 600nJ).

Fig. 6
Fig. 6

Microscope image of the tip of a BFL37 fiber welded to a fused silica plate (Laser parameters: 10X focusing lens; pulse duration: 70 fs; rep rate: 250 kHz; wavelength: 787 nm; scan speed: 0.2 mm/s; pulse energy: 600nJ).

Fig. 7
Fig. 7

The tensile stress measurements at breakage on two different types of fibers show that the typical strength of such assemblies varies between 5 and 15 MPa. (Laser parameters: 10X focusing lens, pulse duration: 70 fs; rep rate: 250 kHz; wavelength: 787 nm; scan speed: 0.2 mm/s; pulse energy specified in the graph).

Fig. 8
Fig. 8

Microscope images of the welded and peeled off surfaces of (a) the glass slide and (b) a UM22 fiber end face showing that glass typically breaks at the outer limit of the annular welded area, thereby leaving a chunk of material on the fiber tip and a pit on the slide’s surface.

Fig. 9
Fig. 9

Microscope images of a MOF welded to a 100 μm glass slide showing (a) welding region 1 intentionally written in the core area, (b) welding region 2 between the air-holes and the fiber circumference, and (c) the optical contact covering the fiber tip. (Laser parameters: 10X focusing lens, pulse duration: 70 fs; rep rate: 250 kHz; wavelength: 787 nm; scan speed: 0.2 mm/s; pulse energy: 600 nJ).

Fig. 10
Fig. 10

Close-up views of the edge of the endcap shown on Fig. 5 (Laser parameters: 10X focusing lens, pulse duration: 70 fs; rep rate: 250 kHz; wavelength: 787 nm; scan speed: 0.4 mm/s; pulse energy: 700 nJ).

Fig. 11
Fig. 11

Measurements of the gauge pressure inside the capillaries and the corresponding tensile strength on the weld at breakage of the endcap (Laser parameters: 10X focusing lens, pulse duration: 70 fs; rep rate: 250 kHz; wavelength: 787 nm; scan speed: 0.2-0.4 mm/s; pulse energy: 600-800 nJ).

Fig. 12
Fig. 12

(a) Top view and (b) side view of fs laser welding of glass blocks parallel to an interface.

Fig. 13
Fig. 13

Cross section view of the modified region induced by filamentation of focused fs laser pulses crossing the interface at an angle of approximately 6°. (Laser parameters: 5X focusing lens; tilt angle: 6°; pulse duration: 70 fs; rep. rate: 250 kHz; λ: 787 nm; scan speed: 0.2 mm/s; pulse energy: 800 nJ).

Fig. 14
Fig. 14

Weibull plot of shear strength measurements at breakage of direct bonds with and without laser reinforcement (Laser parameters used to seal a 3.7 x 3.7 mm2 region: 5X focusing lens; pulse duration: 70 fs; rep rate: 250 kHz; wavelength: 787 nm; scan speed: 0.2 mm/s; pulse energy: 800 nJ).

Metrics