Abstract

Bright green emission is obtained from the Mn2+-doped zinc gallogermanate phosphors. The X-ray diffraction (XRD) and photoelectron spectroscopy (XPS) confirm that zinc gallogermanate so obtained is a solid solution of ZnGa2O4 and Zn2GeO4. The slight change of structure for different sintered hours is reflected in the emission intensity of the Mn2+-doped samples. The low temperature electron paramagnetic resonance (EPR) spectra and PL decay curves are employed to probe into the different luminescence centers in the non-doped and Mn2+-doped zinc gallogermanate phosphors.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S.  Kim, H. I.  Kang, W. N.  Kim, J. C.  Chol, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
    [CrossRef]
  2. Z.  Yang, G.  Yang, S.  Wang, J.  Tian, X.  Li, Q.  Guo, G.  Fu, “A novel green-emitting phosphor NaCaPO4:Eu2+ for white LEDs,” Mater. Lett. 62(12-13), 1884–1886 (2008).
    [CrossRef]
  3. G.  Gao, L.  Wondraczek, “Near-infrared down-conversion in Mn2+–Yb3+ co-doped Zn2GeO4,” J. Mater. Chem. C. 1(10), 1952–1958 (2013).
    [CrossRef]
  4. Z.  Pan, Y. Y.  Lu, F.  Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
    [CrossRef] [PubMed]
  5. M.  Allix, S.  Chenu, E.  Veron, T.  Poumeyrol, E. A. K.  Boudjelthia, S.  Alahrache, F.  Porcher, D.  Massiot, F.  Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
    [CrossRef]
  6. S.  Yan, J.  Wang, H.  Gao, N.  Wang, H.  Yu, Z.  Li, Y.  Zhou, Z.  Zou, “Zinc gallogermanate solid solution: A novel photocatalyst for efficiently converting CO2 into solar fuels,” Adv. Funct. Mater. 23(14), 1839–1845 (2013).
    [CrossRef]
  7. J. S.  Kim, H. L.  Park, C. M.  Chon, H. S.  Moon, T. W.  Kim, Y. H.  Hwang, H. K.  Kim, S. I.  Mho, S. D.  Han, “Luminescence enhancement of ZnGa2O4:Mn2+ by Ge4+ and Li+ doping,” Solid State Commun. 126(9), 515–518 (2003).
    [CrossRef]
  8. L. R.  Bradshaw, A.  Hauser, E. J.  McLaurin, D. R.  Gamelin, “luminescence saturation via Mn2+−exciton cross relaxation in colloidal doped semiconductor nanocrystals,” J. Phys. Chem. C 116(16), 9300–9310 (2012).
    [CrossRef]
  9. R.  Pang, C.  Li, L.  Shi, Q.  Su, “A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7:Eu2+, Y3+,” J. Phys. Chem. Solids 70(2), 303–306 (2009).
    [CrossRef]
  10. Q.  Yan, J.  Ren, G.  Chen, “CsCl modified Ge–Ga–S glasses co doped with Eu2+ and Mn2+: a potential yellow phosphor for solid-state lighting,” J. Am. Ceram. Soc. 95(12), 3719–3721 (2012).
    [CrossRef]
  11. Y.  Xu, X.  Zhang, S.  Dai, B.  Fan, H.  Ma, J.  Adam, J.  Ren, G.  Chen, “Efficient Near-Infrared Down-Conversion In Pr3+-Yb3+ Codoped Glasses and Glass Ceramics Containing Laf3 Nanocrystals,” J. Phys. Chem. C 115(26), 13056–13062 (2011).
    [CrossRef]
  12. Z.  Liu, X.  Jing, L.  Wang, “Luminescence of native defects in Zn2GeO4,” J. Electrochem. Soc. 154(6), H500–H506 (2007).
    [CrossRef]

2013 (3)

G.  Gao, L.  Wondraczek, “Near-infrared down-conversion in Mn2+–Yb3+ co-doped Zn2GeO4,” J. Mater. Chem. C. 1(10), 1952–1958 (2013).
[CrossRef]

M.  Allix, S.  Chenu, E.  Veron, T.  Poumeyrol, E. A. K.  Boudjelthia, S.  Alahrache, F.  Porcher, D.  Massiot, F.  Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[CrossRef]

S.  Yan, J.  Wang, H.  Gao, N.  Wang, H.  Yu, Z.  Li, Y.  Zhou, Z.  Zou, “Zinc gallogermanate solid solution: A novel photocatalyst for efficiently converting CO2 into solar fuels,” Adv. Funct. Mater. 23(14), 1839–1845 (2013).
[CrossRef]

2012 (2)

L. R.  Bradshaw, A.  Hauser, E. J.  McLaurin, D. R.  Gamelin, “luminescence saturation via Mn2+−exciton cross relaxation in colloidal doped semiconductor nanocrystals,” J. Phys. Chem. C 116(16), 9300–9310 (2012).
[CrossRef]

Q.  Yan, J.  Ren, G.  Chen, “CsCl modified Ge–Ga–S glasses co doped with Eu2+ and Mn2+: a potential yellow phosphor for solid-state lighting,” J. Am. Ceram. Soc. 95(12), 3719–3721 (2012).
[CrossRef]

2011 (2)

Y.  Xu, X.  Zhang, S.  Dai, B.  Fan, H.  Ma, J.  Adam, J.  Ren, G.  Chen, “Efficient Near-Infrared Down-Conversion In Pr3+-Yb3+ Codoped Glasses and Glass Ceramics Containing Laf3 Nanocrystals,” J. Phys. Chem. C 115(26), 13056–13062 (2011).
[CrossRef]

Z.  Pan, Y. Y.  Lu, F.  Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[CrossRef] [PubMed]

2009 (1)

R.  Pang, C.  Li, L.  Shi, Q.  Su, “A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7:Eu2+, Y3+,” J. Phys. Chem. Solids 70(2), 303–306 (2009).
[CrossRef]

2008 (1)

Z.  Yang, G.  Yang, S.  Wang, J.  Tian, X.  Li, Q.  Guo, G.  Fu, “A novel green-emitting phosphor NaCaPO4:Eu2+ for white LEDs,” Mater. Lett. 62(12-13), 1884–1886 (2008).
[CrossRef]

2007 (1)

Z.  Liu, X.  Jing, L.  Wang, “Luminescence of native defects in Zn2GeO4,” J. Electrochem. Soc. 154(6), H500–H506 (2007).
[CrossRef]

2003 (2)

J. S.  Kim, H. I.  Kang, W. N.  Kim, J. C.  Chol, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[CrossRef]

J. S.  Kim, H. L.  Park, C. M.  Chon, H. S.  Moon, T. W.  Kim, Y. H.  Hwang, H. K.  Kim, S. I.  Mho, S. D.  Han, “Luminescence enhancement of ZnGa2O4:Mn2+ by Ge4+ and Li+ doping,” Solid State Commun. 126(9), 515–518 (2003).
[CrossRef]

Adam, J.

Y.  Xu, X.  Zhang, S.  Dai, B.  Fan, H.  Ma, J.  Adam, J.  Ren, G.  Chen, “Efficient Near-Infrared Down-Conversion In Pr3+-Yb3+ Codoped Glasses and Glass Ceramics Containing Laf3 Nanocrystals,” J. Phys. Chem. C 115(26), 13056–13062 (2011).
[CrossRef]

Alahrache, S.

M.  Allix, S.  Chenu, E.  Veron, T.  Poumeyrol, E. A. K.  Boudjelthia, S.  Alahrache, F.  Porcher, D.  Massiot, F.  Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[CrossRef]

Allix, M.

M.  Allix, S.  Chenu, E.  Veron, T.  Poumeyrol, E. A. K.  Boudjelthia, S.  Alahrache, F.  Porcher, D.  Massiot, F.  Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[CrossRef]

Boudjelthia, E. A. K.

M.  Allix, S.  Chenu, E.  Veron, T.  Poumeyrol, E. A. K.  Boudjelthia, S.  Alahrache, F.  Porcher, D.  Massiot, F.  Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[CrossRef]

Bradshaw, L. R.

L. R.  Bradshaw, A.  Hauser, E. J.  McLaurin, D. R.  Gamelin, “luminescence saturation via Mn2+−exciton cross relaxation in colloidal doped semiconductor nanocrystals,” J. Phys. Chem. C 116(16), 9300–9310 (2012).
[CrossRef]

Chen, G.

Q.  Yan, J.  Ren, G.  Chen, “CsCl modified Ge–Ga–S glasses co doped with Eu2+ and Mn2+: a potential yellow phosphor for solid-state lighting,” J. Am. Ceram. Soc. 95(12), 3719–3721 (2012).
[CrossRef]

Y.  Xu, X.  Zhang, S.  Dai, B.  Fan, H.  Ma, J.  Adam, J.  Ren, G.  Chen, “Efficient Near-Infrared Down-Conversion In Pr3+-Yb3+ Codoped Glasses and Glass Ceramics Containing Laf3 Nanocrystals,” J. Phys. Chem. C 115(26), 13056–13062 (2011).
[CrossRef]

Chenu, S.

M.  Allix, S.  Chenu, E.  Veron, T.  Poumeyrol, E. A. K.  Boudjelthia, S.  Alahrache, F.  Porcher, D.  Massiot, F.  Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[CrossRef]

Chol, J. C.

J. S.  Kim, H. I.  Kang, W. N.  Kim, J. C.  Chol, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[CrossRef]

Chon, C. M.

J. S.  Kim, H. L.  Park, C. M.  Chon, H. S.  Moon, T. W.  Kim, Y. H.  Hwang, H. K.  Kim, S. I.  Mho, S. D.  Han, “Luminescence enhancement of ZnGa2O4:Mn2+ by Ge4+ and Li+ doping,” Solid State Commun. 126(9), 515–518 (2003).
[CrossRef]

Dai, S.

Y.  Xu, X.  Zhang, S.  Dai, B.  Fan, H.  Ma, J.  Adam, J.  Ren, G.  Chen, “Efficient Near-Infrared Down-Conversion In Pr3+-Yb3+ Codoped Glasses and Glass Ceramics Containing Laf3 Nanocrystals,” J. Phys. Chem. C 115(26), 13056–13062 (2011).
[CrossRef]

Fan, B.

Y.  Xu, X.  Zhang, S.  Dai, B.  Fan, H.  Ma, J.  Adam, J.  Ren, G.  Chen, “Efficient Near-Infrared Down-Conversion In Pr3+-Yb3+ Codoped Glasses and Glass Ceramics Containing Laf3 Nanocrystals,” J. Phys. Chem. C 115(26), 13056–13062 (2011).
[CrossRef]

Fayon, F.

M.  Allix, S.  Chenu, E.  Veron, T.  Poumeyrol, E. A. K.  Boudjelthia, S.  Alahrache, F.  Porcher, D.  Massiot, F.  Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[CrossRef]

Fu, G.

Z.  Yang, G.  Yang, S.  Wang, J.  Tian, X.  Li, Q.  Guo, G.  Fu, “A novel green-emitting phosphor NaCaPO4:Eu2+ for white LEDs,” Mater. Lett. 62(12-13), 1884–1886 (2008).
[CrossRef]

Gamelin, D. R.

L. R.  Bradshaw, A.  Hauser, E. J.  McLaurin, D. R.  Gamelin, “luminescence saturation via Mn2+−exciton cross relaxation in colloidal doped semiconductor nanocrystals,” J. Phys. Chem. C 116(16), 9300–9310 (2012).
[CrossRef]

Gao, G.

G.  Gao, L.  Wondraczek, “Near-infrared down-conversion in Mn2+–Yb3+ co-doped Zn2GeO4,” J. Mater. Chem. C. 1(10), 1952–1958 (2013).
[CrossRef]

Gao, H.

S.  Yan, J.  Wang, H.  Gao, N.  Wang, H.  Yu, Z.  Li, Y.  Zhou, Z.  Zou, “Zinc gallogermanate solid solution: A novel photocatalyst for efficiently converting CO2 into solar fuels,” Adv. Funct. Mater. 23(14), 1839–1845 (2013).
[CrossRef]

Guo, Q.

Z.  Yang, G.  Yang, S.  Wang, J.  Tian, X.  Li, Q.  Guo, G.  Fu, “A novel green-emitting phosphor NaCaPO4:Eu2+ for white LEDs,” Mater. Lett. 62(12-13), 1884–1886 (2008).
[CrossRef]

Han, S. D.

J. S.  Kim, H. L.  Park, C. M.  Chon, H. S.  Moon, T. W.  Kim, Y. H.  Hwang, H. K.  Kim, S. I.  Mho, S. D.  Han, “Luminescence enhancement of ZnGa2O4:Mn2+ by Ge4+ and Li+ doping,” Solid State Commun. 126(9), 515–518 (2003).
[CrossRef]

Hauser, A.

L. R.  Bradshaw, A.  Hauser, E. J.  McLaurin, D. R.  Gamelin, “luminescence saturation via Mn2+−exciton cross relaxation in colloidal doped semiconductor nanocrystals,” J. Phys. Chem. C 116(16), 9300–9310 (2012).
[CrossRef]

Hwang, Y. H.

J. S.  Kim, H. L.  Park, C. M.  Chon, H. S.  Moon, T. W.  Kim, Y. H.  Hwang, H. K.  Kim, S. I.  Mho, S. D.  Han, “Luminescence enhancement of ZnGa2O4:Mn2+ by Ge4+ and Li+ doping,” Solid State Commun. 126(9), 515–518 (2003).
[CrossRef]

Jing, X.

Z.  Liu, X.  Jing, L.  Wang, “Luminescence of native defects in Zn2GeO4,” J. Electrochem. Soc. 154(6), H500–H506 (2007).
[CrossRef]

Kang, H. I.

J. S.  Kim, H. I.  Kang, W. N.  Kim, J. C.  Chol, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[CrossRef]

Kim, H. K.

J. S.  Kim, H. L.  Park, C. M.  Chon, H. S.  Moon, T. W.  Kim, Y. H.  Hwang, H. K.  Kim, S. I.  Mho, S. D.  Han, “Luminescence enhancement of ZnGa2O4:Mn2+ by Ge4+ and Li+ doping,” Solid State Commun. 126(9), 515–518 (2003).
[CrossRef]

Kim, J. S.

J. S.  Kim, H. L.  Park, C. M.  Chon, H. S.  Moon, T. W.  Kim, Y. H.  Hwang, H. K.  Kim, S. I.  Mho, S. D.  Han, “Luminescence enhancement of ZnGa2O4:Mn2+ by Ge4+ and Li+ doping,” Solid State Commun. 126(9), 515–518 (2003).
[CrossRef]

J. S.  Kim, H. I.  Kang, W. N.  Kim, J. C.  Chol, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[CrossRef]

Kim, T. W.

J. S.  Kim, H. L.  Park, C. M.  Chon, H. S.  Moon, T. W.  Kim, Y. H.  Hwang, H. K.  Kim, S. I.  Mho, S. D.  Han, “Luminescence enhancement of ZnGa2O4:Mn2+ by Ge4+ and Li+ doping,” Solid State Commun. 126(9), 515–518 (2003).
[CrossRef]

Kim, W. N.

J. S.  Kim, H. I.  Kang, W. N.  Kim, J. C.  Chol, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[CrossRef]

Li, C.

R.  Pang, C.  Li, L.  Shi, Q.  Su, “A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7:Eu2+, Y3+,” J. Phys. Chem. Solids 70(2), 303–306 (2009).
[CrossRef]

Li, X.

Z.  Yang, G.  Yang, S.  Wang, J.  Tian, X.  Li, Q.  Guo, G.  Fu, “A novel green-emitting phosphor NaCaPO4:Eu2+ for white LEDs,” Mater. Lett. 62(12-13), 1884–1886 (2008).
[CrossRef]

Li, Z.

S.  Yan, J.  Wang, H.  Gao, N.  Wang, H.  Yu, Z.  Li, Y.  Zhou, Z.  Zou, “Zinc gallogermanate solid solution: A novel photocatalyst for efficiently converting CO2 into solar fuels,” Adv. Funct. Mater. 23(14), 1839–1845 (2013).
[CrossRef]

Liu, F.

Z.  Pan, Y. Y.  Lu, F.  Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[CrossRef] [PubMed]

Liu, Z.

Z.  Liu, X.  Jing, L.  Wang, “Luminescence of native defects in Zn2GeO4,” J. Electrochem. Soc. 154(6), H500–H506 (2007).
[CrossRef]

Lu, Y. Y.

Z.  Pan, Y. Y.  Lu, F.  Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[CrossRef] [PubMed]

Ma, H.

Y.  Xu, X.  Zhang, S.  Dai, B.  Fan, H.  Ma, J.  Adam, J.  Ren, G.  Chen, “Efficient Near-Infrared Down-Conversion In Pr3+-Yb3+ Codoped Glasses and Glass Ceramics Containing Laf3 Nanocrystals,” J. Phys. Chem. C 115(26), 13056–13062 (2011).
[CrossRef]

Massiot, D.

M.  Allix, S.  Chenu, E.  Veron, T.  Poumeyrol, E. A. K.  Boudjelthia, S.  Alahrache, F.  Porcher, D.  Massiot, F.  Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[CrossRef]

McLaurin, E. J.

L. R.  Bradshaw, A.  Hauser, E. J.  McLaurin, D. R.  Gamelin, “luminescence saturation via Mn2+−exciton cross relaxation in colloidal doped semiconductor nanocrystals,” J. Phys. Chem. C 116(16), 9300–9310 (2012).
[CrossRef]

Mho, S. I.

J. S.  Kim, H. L.  Park, C. M.  Chon, H. S.  Moon, T. W.  Kim, Y. H.  Hwang, H. K.  Kim, S. I.  Mho, S. D.  Han, “Luminescence enhancement of ZnGa2O4:Mn2+ by Ge4+ and Li+ doping,” Solid State Commun. 126(9), 515–518 (2003).
[CrossRef]

Moon, H. S.

J. S.  Kim, H. L.  Park, C. M.  Chon, H. S.  Moon, T. W.  Kim, Y. H.  Hwang, H. K.  Kim, S. I.  Mho, S. D.  Han, “Luminescence enhancement of ZnGa2O4:Mn2+ by Ge4+ and Li+ doping,” Solid State Commun. 126(9), 515–518 (2003).
[CrossRef]

Pan, Z.

Z.  Pan, Y. Y.  Lu, F.  Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[CrossRef] [PubMed]

Pang, R.

R.  Pang, C.  Li, L.  Shi, Q.  Su, “A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7:Eu2+, Y3+,” J. Phys. Chem. Solids 70(2), 303–306 (2009).
[CrossRef]

Park, H. L.

J. S.  Kim, H. L.  Park, C. M.  Chon, H. S.  Moon, T. W.  Kim, Y. H.  Hwang, H. K.  Kim, S. I.  Mho, S. D.  Han, “Luminescence enhancement of ZnGa2O4:Mn2+ by Ge4+ and Li+ doping,” Solid State Commun. 126(9), 515–518 (2003).
[CrossRef]

Porcher, F.

M.  Allix, S.  Chenu, E.  Veron, T.  Poumeyrol, E. A. K.  Boudjelthia, S.  Alahrache, F.  Porcher, D.  Massiot, F.  Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[CrossRef]

Poumeyrol, T.

M.  Allix, S.  Chenu, E.  Veron, T.  Poumeyrol, E. A. K.  Boudjelthia, S.  Alahrache, F.  Porcher, D.  Massiot, F.  Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[CrossRef]

Ren, J.

Q.  Yan, J.  Ren, G.  Chen, “CsCl modified Ge–Ga–S glasses co doped with Eu2+ and Mn2+: a potential yellow phosphor for solid-state lighting,” J. Am. Ceram. Soc. 95(12), 3719–3721 (2012).
[CrossRef]

Y.  Xu, X.  Zhang, S.  Dai, B.  Fan, H.  Ma, J.  Adam, J.  Ren, G.  Chen, “Efficient Near-Infrared Down-Conversion In Pr3+-Yb3+ Codoped Glasses and Glass Ceramics Containing Laf3 Nanocrystals,” J. Phys. Chem. C 115(26), 13056–13062 (2011).
[CrossRef]

Shi, L.

R.  Pang, C.  Li, L.  Shi, Q.  Su, “A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7:Eu2+, Y3+,” J. Phys. Chem. Solids 70(2), 303–306 (2009).
[CrossRef]

Su, Q.

R.  Pang, C.  Li, L.  Shi, Q.  Su, “A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7:Eu2+, Y3+,” J. Phys. Chem. Solids 70(2), 303–306 (2009).
[CrossRef]

Tian, J.

Z.  Yang, G.  Yang, S.  Wang, J.  Tian, X.  Li, Q.  Guo, G.  Fu, “A novel green-emitting phosphor NaCaPO4:Eu2+ for white LEDs,” Mater. Lett. 62(12-13), 1884–1886 (2008).
[CrossRef]

Veron, E.

M.  Allix, S.  Chenu, E.  Veron, T.  Poumeyrol, E. A. K.  Boudjelthia, S.  Alahrache, F.  Porcher, D.  Massiot, F.  Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[CrossRef]

Wang, J.

S.  Yan, J.  Wang, H.  Gao, N.  Wang, H.  Yu, Z.  Li, Y.  Zhou, Z.  Zou, “Zinc gallogermanate solid solution: A novel photocatalyst for efficiently converting CO2 into solar fuels,” Adv. Funct. Mater. 23(14), 1839–1845 (2013).
[CrossRef]

Wang, L.

Z.  Liu, X.  Jing, L.  Wang, “Luminescence of native defects in Zn2GeO4,” J. Electrochem. Soc. 154(6), H500–H506 (2007).
[CrossRef]

Wang, N.

S.  Yan, J.  Wang, H.  Gao, N.  Wang, H.  Yu, Z.  Li, Y.  Zhou, Z.  Zou, “Zinc gallogermanate solid solution: A novel photocatalyst for efficiently converting CO2 into solar fuels,” Adv. Funct. Mater. 23(14), 1839–1845 (2013).
[CrossRef]

Wang, S.

Z.  Yang, G.  Yang, S.  Wang, J.  Tian, X.  Li, Q.  Guo, G.  Fu, “A novel green-emitting phosphor NaCaPO4:Eu2+ for white LEDs,” Mater. Lett. 62(12-13), 1884–1886 (2008).
[CrossRef]

Wondraczek, L.

G.  Gao, L.  Wondraczek, “Near-infrared down-conversion in Mn2+–Yb3+ co-doped Zn2GeO4,” J. Mater. Chem. C. 1(10), 1952–1958 (2013).
[CrossRef]

Xu, Y.

Y.  Xu, X.  Zhang, S.  Dai, B.  Fan, H.  Ma, J.  Adam, J.  Ren, G.  Chen, “Efficient Near-Infrared Down-Conversion In Pr3+-Yb3+ Codoped Glasses and Glass Ceramics Containing Laf3 Nanocrystals,” J. Phys. Chem. C 115(26), 13056–13062 (2011).
[CrossRef]

Yan, Q.

Q.  Yan, J.  Ren, G.  Chen, “CsCl modified Ge–Ga–S glasses co doped with Eu2+ and Mn2+: a potential yellow phosphor for solid-state lighting,” J. Am. Ceram. Soc. 95(12), 3719–3721 (2012).
[CrossRef]

Yan, S.

S.  Yan, J.  Wang, H.  Gao, N.  Wang, H.  Yu, Z.  Li, Y.  Zhou, Z.  Zou, “Zinc gallogermanate solid solution: A novel photocatalyst for efficiently converting CO2 into solar fuels,” Adv. Funct. Mater. 23(14), 1839–1845 (2013).
[CrossRef]

Yang, G.

Z.  Yang, G.  Yang, S.  Wang, J.  Tian, X.  Li, Q.  Guo, G.  Fu, “A novel green-emitting phosphor NaCaPO4:Eu2+ for white LEDs,” Mater. Lett. 62(12-13), 1884–1886 (2008).
[CrossRef]

Yang, Z.

Z.  Yang, G.  Yang, S.  Wang, J.  Tian, X.  Li, Q.  Guo, G.  Fu, “A novel green-emitting phosphor NaCaPO4:Eu2+ for white LEDs,” Mater. Lett. 62(12-13), 1884–1886 (2008).
[CrossRef]

Yu, H.

S.  Yan, J.  Wang, H.  Gao, N.  Wang, H.  Yu, Z.  Li, Y.  Zhou, Z.  Zou, “Zinc gallogermanate solid solution: A novel photocatalyst for efficiently converting CO2 into solar fuels,” Adv. Funct. Mater. 23(14), 1839–1845 (2013).
[CrossRef]

Zhang, X.

Y.  Xu, X.  Zhang, S.  Dai, B.  Fan, H.  Ma, J.  Adam, J.  Ren, G.  Chen, “Efficient Near-Infrared Down-Conversion In Pr3+-Yb3+ Codoped Glasses and Glass Ceramics Containing Laf3 Nanocrystals,” J. Phys. Chem. C 115(26), 13056–13062 (2011).
[CrossRef]

Zhou, Y.

S.  Yan, J.  Wang, H.  Gao, N.  Wang, H.  Yu, Z.  Li, Y.  Zhou, Z.  Zou, “Zinc gallogermanate solid solution: A novel photocatalyst for efficiently converting CO2 into solar fuels,” Adv. Funct. Mater. 23(14), 1839–1845 (2013).
[CrossRef]

Zou, Z.

S.  Yan, J.  Wang, H.  Gao, N.  Wang, H.  Yu, Z.  Li, Y.  Zhou, Z.  Zou, “Zinc gallogermanate solid solution: A novel photocatalyst for efficiently converting CO2 into solar fuels,” Adv. Funct. Mater. 23(14), 1839–1845 (2013).
[CrossRef]

Adv. Funct. Mater. (1)

S.  Yan, J.  Wang, H.  Gao, N.  Wang, H.  Yu, Z.  Li, Y.  Zhou, Z.  Zou, “Zinc gallogermanate solid solution: A novel photocatalyst for efficiently converting CO2 into solar fuels,” Adv. Funct. Mater. 23(14), 1839–1845 (2013).
[CrossRef]

Appl. Phys. Lett. (1)

J. S.  Kim, H. I.  Kang, W. N.  Kim, J. C.  Chol, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[CrossRef]

Chem. Mater. (1)

M.  Allix, S.  Chenu, E.  Veron, T.  Poumeyrol, E. A. K.  Boudjelthia, S.  Alahrache, F.  Porcher, D.  Massiot, F.  Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[CrossRef]

J. Am. Ceram. Soc. (1)

Q.  Yan, J.  Ren, G.  Chen, “CsCl modified Ge–Ga–S glasses co doped with Eu2+ and Mn2+: a potential yellow phosphor for solid-state lighting,” J. Am. Ceram. Soc. 95(12), 3719–3721 (2012).
[CrossRef]

J. Electrochem. Soc. (1)

Z.  Liu, X.  Jing, L.  Wang, “Luminescence of native defects in Zn2GeO4,” J. Electrochem. Soc. 154(6), H500–H506 (2007).
[CrossRef]

J. Mater. Chem. C. (1)

G.  Gao, L.  Wondraczek, “Near-infrared down-conversion in Mn2+–Yb3+ co-doped Zn2GeO4,” J. Mater. Chem. C. 1(10), 1952–1958 (2013).
[CrossRef]

J. Phys. Chem. C (2)

L. R.  Bradshaw, A.  Hauser, E. J.  McLaurin, D. R.  Gamelin, “luminescence saturation via Mn2+−exciton cross relaxation in colloidal doped semiconductor nanocrystals,” J. Phys. Chem. C 116(16), 9300–9310 (2012).
[CrossRef]

Y.  Xu, X.  Zhang, S.  Dai, B.  Fan, H.  Ma, J.  Adam, J.  Ren, G.  Chen, “Efficient Near-Infrared Down-Conversion In Pr3+-Yb3+ Codoped Glasses and Glass Ceramics Containing Laf3 Nanocrystals,” J. Phys. Chem. C 115(26), 13056–13062 (2011).
[CrossRef]

J. Phys. Chem. Solids (1)

R.  Pang, C.  Li, L.  Shi, Q.  Su, “A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7:Eu2+, Y3+,” J. Phys. Chem. Solids 70(2), 303–306 (2009).
[CrossRef]

Mater. Lett. (1)

Z.  Yang, G.  Yang, S.  Wang, J.  Tian, X.  Li, Q.  Guo, G.  Fu, “A novel green-emitting phosphor NaCaPO4:Eu2+ for white LEDs,” Mater. Lett. 62(12-13), 1884–1886 (2008).
[CrossRef]

Nat. Mater. (1)

Z.  Pan, Y. Y.  Lu, F.  Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[CrossRef] [PubMed]

Solid State Commun. (1)

J. S.  Kim, H. L.  Park, C. M.  Chon, H. S.  Moon, T. W.  Kim, Y. H.  Hwang, H. K.  Kim, S. I.  Mho, S. D.  Han, “Luminescence enhancement of ZnGa2O4:Mn2+ by Ge4+ and Li+ doping,” Solid State Commun. 126(9), 515–518 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

a) XRD patterns of the non-doped (non) and Mn2+-doped samples sintered for different times. The non-doped zinc gallogermanate is sintered for 6 hours. The ZnGa2O4 and Zn2GeO4 indexation are indicated below; b) the (311) peak for the Mn2+-doped samples sintered for different times.

Fig. 2
Fig. 2

X-ray photoelectron spectroscopy (XPS) of zinc gallogermanate. a) Ge 2p; b) Zn 2p; c) Ga 2p; d) O1s

Fig. 3
Fig. 3

Excitation (left) and emission (right) spectra of the non-doped (non) and Mn2+-doped samples sintered for different times (Indicating by the numbers). The top inset shows the Gaussian fits (dashed lines) to the excitation spectra of the Mn2+-doped sample. The right inset is the photograph image of the Mn2+-doped sample being excited by the 290 nm lights.

Fig. 4
Fig. 4

The decay curve of Zn3Ga2Ge2O10:0.5%Mn2+ monitored at 520 nm. The top inset show the non-doped sample monitored at 480 nm. The excitation wavelength is 290 nm. The red line is the fitted one.

Fig. 5
Fig. 5

EPR (low temperature) spectra of the non-doped (a) and Mn2+-doped Zn3Ga2Ge2O10 (b) at 100K.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I= A 1 exp ( t/ τ 1 ) + A 2 exp ( t / τ 2 )
τ= ( A 1 τ 1 2 + A 2 τ 2 2 )/ ( A 1 τ 1 + A 2 τ 2 )
τ= t 0 I(t)dt I 0

Metrics