Abstract

We study the roles of thermal ionization and electronic damage in the internal modification of bulk borosilicate glass by high repetition rate picosecond laser pulses. Laser-induced plasma generation, nonlinear energy deposition and steady temperature distribution are numerically analyzed. The simulated modified regions show good agreement with the experimental results, thereby revealing the roles of thermal damage and electronic damage in the internal modification. While the elliptical outer structure is recognized as the molten region, we found that the teardrop-shaped inner structure is the damaged zone caused by high-density free-electrons. In the formation of the inner structure, cascade ionization is seeded by thermal ionization instead of multi-photon ionization and dramatically increases the free-electron density to the damage threshold. The contour of the inner structure is found to be corresponding to a characteristic isotherm of around 3000 ~4000 °C.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
    [CrossRef]
  2. C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett.26(2), 93–95 (2001).
    [CrossRef] [PubMed]
  3. R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator,” Opt. Express13(2), 612–620 (2005).
    [CrossRef] [PubMed]
  4. R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express14(12), 5279–5284 (2006).
    [CrossRef] [PubMed]
  5. C. Miese, M. J. Withford, and A. Fuerbach, “Femtosecond laser direct-writing of waveguide Bragg gratings in a quasi cumulative heating regime,” Opt. Express19(20), 19542–19550 (2011).
    [CrossRef] [PubMed]
  6. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16(13), 9443–9458 (2008).
    [CrossRef] [PubMed]
  7. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express13(12), 4708–4716 (2005).
    [CrossRef] [PubMed]
  8. I. Miyamoto, K. Cvecek, and M. Schmidt, “Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses,” Opt. Express19(11), 10714–10727 (2011).
    [CrossRef] [PubMed]
  9. I. Miyamoto, K. Cvecek, Y. Okamoto, M. Schmidt, and H. Helvajian, “Characteristics of laser absorption and welding in FOTURAN glass by ultrashort laser pulses,” Opt. Express19(23), 22961–22973 (2011).
    [CrossRef] [PubMed]
  10. T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express14(22), 10460–10468 (2006).
    [CrossRef] [PubMed]
  11. K. Sugioka, M. Iida, H. Takai, and K. Micorikawa, “Efficient microwelding of glass substrates by ultrafast laser irradiation using a double-pulse train,” Opt. Lett.36(14), 2734–2736 (2011).
    [CrossRef] [PubMed]
  12. S. Wu, D. Wu, J. Xu, Y. Hanada, R. Suganuma, H. Wang, T. Makimura, K. Sugioka, and K. Midorikawa, “Characterization and mechanism of glass microwelding by double-pulse ultrafast laser irradiation,” Opt. Express20(27), 28893–28905 (2012).
    [CrossRef] [PubMed]
  13. M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett.93(23), 231112 (2008).
    [CrossRef]
  14. T. Yoshino, M. Matsumoto, Y. Ozeki, and K. Itoh, “Energy-dependent temperature dynamics in femtosecond laser microprocessing clarified by Raman temperature measurement,” Proc. SPIE8249, 82491D, 82491D-7 (2012).
    [CrossRef]
  15. M. Hermans, J. Gottmann, and A. Schiffer, “In-situ diagnostics on fs-laser induced modification of glasses for selective etching,” Proc. SPIE8244, 82440E, 82440E-10 (2012).
    [CrossRef]
  16. Schott D263 Material Information Sheet, http://www.schott.com/advanced_optics/english/download/ .
  17. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441(2-4), 47–189 (2007).
    [CrossRef]
  18. J. K. Ranka, R. W. Schirmer, and A. L. Gaeta, “Observation of pulse splitting in nonlinear dispersive media,” Phys. Rev. Lett.77(18), 3783–3786 (1996).
    [CrossRef] [PubMed]
  19. A. Vogel, J. Novak, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
    [CrossRef]
  20. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B53(4), 1749–1761 (1996).
    [CrossRef]
  21. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
    [CrossRef]
  22. M. Sun, U. Eppelt, S. Russ, C. Hartmann, C. Siebert, J. Zhu, and W. Schulz, “Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses,” Opt. Express21(7), 7858–7867 (2013).
    [CrossRef] [PubMed]
  23. Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett.23(1), 189–192 (2006).
    [CrossRef]
  24. R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B87(1), 21–27 (2007).
    [CrossRef]
  25. Y. Bellouard and M.-O. Hongler, “Femtosecond-laser generation of self-organized bubble patterns in fused silica,” Opt. Express19(7), 6807–6821 (2011).
    [CrossRef] [PubMed]
  26. J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, C. Santhosh, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun.304, 29–38 (2013).
    [CrossRef]
  27. F. Yoshino, L. Shah, M. Fermann, A. Arai, and Y. Uehara, “Micromachining with a high repetition rate femtosecond laser,” J. Laser Micro Nanoeng.3(3), 157–162 (2008).
    [CrossRef]
  28. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002).
    [CrossRef] [PubMed]
  29. M. Shimizu, M. Sakakura, M. Ohnishi, M. Yamaji, Y. Shimotsuma, K. Hirao, and K. Miura, “Three-dimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates,” Opt. Express20(2), 934–940 (2012).
    [CrossRef] [PubMed]
  30. S. Hoehm, A. Rosenfeld, J. Krueger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys.112(1), 014901 (2012).
    [CrossRef]
  31. A. Vogel, “Roles of tunneling, multiphoton ionization, and cascade ionization for femtosecond optical breakdown in aqueous media,” 2009. http://www.dtic.mil/dtic/tr/fulltext/u2/a521817.pdf
  32. I. Miyamoto, K. Cvecek, and M. Schmidt, “Crack-free conditions in welding of glass by ultrashort laser pulse,” Opt. Express21(12), 14291–14302 (2013).
    [CrossRef] [PubMed]

2013

2012

M. Shimizu, M. Sakakura, M. Ohnishi, M. Yamaji, Y. Shimotsuma, K. Hirao, and K. Miura, “Three-dimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates,” Opt. Express20(2), 934–940 (2012).
[CrossRef] [PubMed]

S. Wu, D. Wu, J. Xu, Y. Hanada, R. Suganuma, H. Wang, T. Makimura, K. Sugioka, and K. Midorikawa, “Characterization and mechanism of glass microwelding by double-pulse ultrafast laser irradiation,” Opt. Express20(27), 28893–28905 (2012).
[CrossRef] [PubMed]

S. Hoehm, A. Rosenfeld, J. Krueger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys.112(1), 014901 (2012).
[CrossRef]

T. Yoshino, M. Matsumoto, Y. Ozeki, and K. Itoh, “Energy-dependent temperature dynamics in femtosecond laser microprocessing clarified by Raman temperature measurement,” Proc. SPIE8249, 82491D, 82491D-7 (2012).
[CrossRef]

M. Hermans, J. Gottmann, and A. Schiffer, “In-situ diagnostics on fs-laser induced modification of glasses for selective etching,” Proc. SPIE8244, 82440E, 82440E-10 (2012).
[CrossRef]

2011

2008

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16(13), 9443–9458 (2008).
[CrossRef] [PubMed]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett.93(23), 231112 (2008).
[CrossRef]

F. Yoshino, L. Shah, M. Fermann, A. Arai, and Y. Uehara, “Micromachining with a high repetition rate femtosecond laser,” J. Laser Micro Nanoeng.3(3), 157–162 (2008).
[CrossRef]

2007

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
[CrossRef]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441(2-4), 47–189 (2007).
[CrossRef]

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B87(1), 21–27 (2007).
[CrossRef]

2006

2005

2002

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002).
[CrossRef] [PubMed]

2001

1996

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B53(4), 1749–1761 (1996).
[CrossRef]

J. K. Ranka, R. W. Schirmer, and A. L. Gaeta, “Observation of pulse splitting in nonlinear dispersive media,” Phys. Rev. Lett.77(18), 3783–3786 (1996).
[CrossRef] [PubMed]

Aiello, L.

Alti, K.

J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, C. Santhosh, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun.304, 29–38 (2013).
[CrossRef]

Apolonski, A.

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B87(1), 21–27 (2007).
[CrossRef]

Arai, A.

F. Yoshino, L. Shah, M. Fermann, A. Arai, and Y. Uehara, “Micromachining with a high repetition rate femtosecond laser,” J. Laser Micro Nanoeng.3(3), 157–162 (2008).
[CrossRef]

Arai, A. Y.

Audouard, E.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
[CrossRef]

Bellouard, Y.

Bernard, R.

J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, C. Santhosh, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun.304, 29–38 (2013).
[CrossRef]

Bhatnagar, A.

J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, C. Santhosh, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun.304, 29–38 (2013).
[CrossRef]

Bonse, J.

S. Hoehm, A. Rosenfeld, J. Krueger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys.112(1), 014901 (2012).
[CrossRef]

Bovatsek, J.

Brodeur, A.

Brueckner, H. J.

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B87(1), 21–27 (2007).
[CrossRef]

Bulgakova, N. M.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
[CrossRef]

Burakov, I. M.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
[CrossRef]

Cerami, L. R.

Cerullo, G.

Chen, W. J.

Chichkov, B. N.

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B87(1), 21–27 (2007).
[CrossRef]

Chiodo, N.

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441(2-4), 47–189 (2007).
[CrossRef]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002).
[CrossRef] [PubMed]

Cvecek, K.

De Nicola, S.

Dharmadhikari, A. K.

J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, C. Santhosh, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun.304, 29–38 (2013).
[CrossRef]

Dharmadhikari, J. A.

J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, C. Santhosh, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun.304, 29–38 (2013).
[CrossRef]

Dubov, M.

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B87(1), 21–27 (2007).
[CrossRef]

Eaton, S. M.

Eppelt, U.

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B53(4), 1749–1761 (1996).
[CrossRef]

Fermann, M.

F. Yoshino, L. Shah, M. Fermann, A. Arai, and Y. Uehara, “Micromachining with a high repetition rate femtosecond laser,” J. Laser Micro Nanoeng.3(3), 157–162 (2008).
[CrossRef]

Fernandez, A.

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B87(1), 21–27 (2007).
[CrossRef]

Ferraro, P.

Finizio, A.

Franco, M.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002).
[CrossRef] [PubMed]

Fuerbach, A.

Gaeta, A. L.

J. K. Ranka, R. W. Schirmer, and A. L. Gaeta, “Observation of pulse splitting in nonlinear dispersive media,” Phys. Rev. Lett.77(18), 3783–3786 (1996).
[CrossRef] [PubMed]

García, J. F.

Gattass, R. R.

Gong, Q.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett.23(1), 189–192 (2006).
[CrossRef]

Gottmann, J.

M. Hermans, J. Gottmann, and A. Schiffer, “In-situ diagnostics on fs-laser induced modification of glasses for selective etching,” Proc. SPIE8244, 82440E, 82440E-10 (2012).
[CrossRef]

Graf, R.

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B87(1), 21–27 (2007).
[CrossRef]

Hanada, Y.

Hartmann, C.

Helvajian, H.

Herman, P. R.

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B53(4), 1749–1761 (1996).
[CrossRef]

Hermans, M.

M. Hermans, J. Gottmann, and A. Schiffer, “In-situ diagnostics on fs-laser induced modification of glasses for selective etching,” Proc. SPIE8244, 82440E, 82440E-10 (2012).
[CrossRef]

Hertel, I. V.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
[CrossRef]

Hirao, K.

M. Shimizu, M. Sakakura, M. Ohnishi, M. Yamaji, Y. Shimotsuma, K. Hirao, and K. Miura, “Three-dimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates,” Opt. Express20(2), 934–940 (2012).
[CrossRef] [PubMed]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett.93(23), 231112 (2008).
[CrossRef]

Ho, S.

Hoehm, S.

S. Hoehm, A. Rosenfeld, J. Krueger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys.112(1), 014901 (2012).
[CrossRef]

Hongler, M.-O.

Husakou, A.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
[CrossRef]

Hüttman, G.

A. Vogel, J. Novak, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

Iida, M.

Itoh, K.

T. Yoshino, M. Matsumoto, Y. Ozeki, and K. Itoh, “Energy-dependent temperature dynamics in femtosecond laser microprocessing clarified by Raman temperature measurement,” Proc. SPIE8249, 82491D, 82491D-7 (2012).
[CrossRef]

T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express14(22), 10460–10468 (2006).
[CrossRef] [PubMed]

Jiang, H.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett.23(1), 189–192 (2006).
[CrossRef]

Krueger, J.

S. Hoehm, A. Rosenfeld, J. Krueger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys.112(1), 014901 (2012).
[CrossRef]

Lamouroux, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002).
[CrossRef] [PubMed]

Laporta, P.

Li, J.

Liu, Y.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett.23(1), 189–192 (2006).
[CrossRef]

Makimura, T.

Maselli, V.

Mathur, D.

J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, C. Santhosh, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun.304, 29–38 (2013).
[CrossRef]

Matsumoto, M.

T. Yoshino, M. Matsumoto, Y. Ozeki, and K. Itoh, “Energy-dependent temperature dynamics in femtosecond laser microprocessing clarified by Raman temperature measurement,” Proc. SPIE8249, 82491D, 82491D-7 (2012).
[CrossRef]

Mazur, E.

Mermillod-Blondin, A.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
[CrossRef]

Micorikawa, K.

Midorikawa, K.

Miese, C.

Miura, K.

M. Shimizu, M. Sakakura, M. Ohnishi, M. Yamaji, Y. Shimotsuma, K. Hirao, and K. Miura, “Three-dimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates,” Opt. Express20(2), 934–940 (2012).
[CrossRef] [PubMed]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett.93(23), 231112 (2008).
[CrossRef]

Miyamoto, I.

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441(2-4), 47–189 (2007).
[CrossRef]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002).
[CrossRef] [PubMed]

Ng, M. L.

Novak, J.

A. Vogel, J. Novak, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

Ohnishi, M.

Okamoto, Y.

Osellame, R.

Ozeki, Y.

T. Yoshino, M. Matsumoto, Y. Ozeki, and K. Itoh, “Energy-dependent temperature dynamics in femtosecond laser microprocessing clarified by Raman temperature measurement,” Proc. SPIE8249, 82491D, 82491D-7 (2012).
[CrossRef]

Paltauf, G.

A. Vogel, J. Novak, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B53(4), 1749–1761 (1996).
[CrossRef]

Pierattini, G.

Prade, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002).
[CrossRef] [PubMed]

Ranka, J. K.

J. K. Ranka, R. W. Schirmer, and A. L. Gaeta, “Observation of pulse splitting in nonlinear dispersive media,” Phys. Rev. Lett.77(18), 3783–3786 (1996).
[CrossRef] [PubMed]

Rosenfeld, A.

S. Hoehm, A. Rosenfeld, J. Krueger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys.112(1), 014901 (2012).
[CrossRef]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
[CrossRef]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B53(4), 1749–1761 (1996).
[CrossRef]

Russ, S.

Sakakura, M.

M. Shimizu, M. Sakakura, M. Ohnishi, M. Yamaji, Y. Shimotsuma, K. Hirao, and K. Miura, “Three-dimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates,” Opt. Express20(2), 934–940 (2012).
[CrossRef] [PubMed]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett.93(23), 231112 (2008).
[CrossRef]

Santhosh, C.

J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, C. Santhosh, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun.304, 29–38 (2013).
[CrossRef]

Schaffer, C. B.

Schiffer, A.

M. Hermans, J. Gottmann, and A. Schiffer, “In-situ diagnostics on fs-laser induced modification of glasses for selective etching,” Proc. SPIE8244, 82440E, 82440E-10 (2012).
[CrossRef]

Schirmer, R. W.

J. K. Ranka, R. W. Schirmer, and A. L. Gaeta, “Observation of pulse splitting in nonlinear dispersive media,” Phys. Rev. Lett.77(18), 3783–3786 (1996).
[CrossRef] [PubMed]

Schmidt, M.

Schulz, W.

Shah, L.

F. Yoshino, L. Shah, M. Fermann, A. Arai, and Y. Uehara, “Micromachining with a high repetition rate femtosecond laser,” J. Laser Micro Nanoeng.3(3), 157–162 (2008).
[CrossRef]

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express13(12), 4708–4716 (2005).
[CrossRef] [PubMed]

Shimizu, M.

M. Shimizu, M. Sakakura, M. Ohnishi, M. Yamaji, Y. Shimotsuma, K. Hirao, and K. Miura, “Three-dimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates,” Opt. Express20(2), 934–940 (2012).
[CrossRef] [PubMed]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett.93(23), 231112 (2008).
[CrossRef]

Shimotsuma, Y.

M. Shimizu, M. Sakakura, M. Ohnishi, M. Yamaji, Y. Shimotsuma, K. Hirao, and K. Miura, “Three-dimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates,” Opt. Express20(2), 934–940 (2012).
[CrossRef] [PubMed]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett.93(23), 231112 (2008).
[CrossRef]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B53(4), 1749–1761 (1996).
[CrossRef]

Siebert, C.

Stoian, R.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
[CrossRef]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B53(4), 1749–1761 (1996).
[CrossRef]

Sudrie, L.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002).
[CrossRef] [PubMed]

Suganuma, R.

Sugioka, K.

Sun, M.

Sun, Q.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett.23(1), 189–192 (2006).
[CrossRef]

Takai, H.

Tamaki, T.

Thomas, J.

J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, C. Santhosh, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun.304, 29–38 (2013).
[CrossRef]

Tzortzakis, S.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002).
[CrossRef] [PubMed]

Uehara, Y.

F. Yoshino, L. Shah, M. Fermann, A. Arai, and Y. Uehara, “Micromachining with a high repetition rate femtosecond laser,” J. Laser Micro Nanoeng.3(3), 157–162 (2008).
[CrossRef]

Vogel, A.

A. Vogel, J. Novak, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

Wang, H.

Watanabe, W.

Withford, M. J.

Wu, D.

Wu, S.

Xu, J.

Yamaji, M.

Yang, H.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett.23(1), 189–192 (2006).
[CrossRef]

Yin, A.

Yoshino, F.

F. Yoshino, L. Shah, M. Fermann, A. Arai, and Y. Uehara, “Micromachining with a high repetition rate femtosecond laser,” J. Laser Micro Nanoeng.3(3), 157–162 (2008).
[CrossRef]

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express13(12), 4708–4716 (2005).
[CrossRef] [PubMed]

Yoshino, T.

T. Yoshino, M. Matsumoto, Y. Ozeki, and K. Itoh, “Energy-dependent temperature dynamics in femtosecond laser microprocessing clarified by Raman temperature measurement,” Proc. SPIE8249, 82491D, 82491D-7 (2012).
[CrossRef]

Zavelani-Rossi, M.

Zhang, H.

Zhou, Y.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett.23(1), 189–192 (2006).
[CrossRef]

Zhu, J.

Appl. Phys. B

A. Vogel, J. Novak, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B87(1), 21–27 (2007).
[CrossRef]

Appl. Phys. Lett.

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett.93(23), 231112 (2008).
[CrossRef]

Chin. Phys. Lett.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett.23(1), 189–192 (2006).
[CrossRef]

J. Appl. Phys.

S. Hoehm, A. Rosenfeld, J. Krueger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys.112(1), 014901 (2012).
[CrossRef]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
[CrossRef]

J. Laser Micro Nanoeng.

F. Yoshino, L. Shah, M. Fermann, A. Arai, and Y. Uehara, “Micromachining with a high repetition rate femtosecond laser,” J. Laser Micro Nanoeng.3(3), 157–162 (2008).
[CrossRef]

Nat. Photonics

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

Opt. Commun.

J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, C. Santhosh, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun.304, 29–38 (2013).
[CrossRef]

Opt. Express

R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator,” Opt. Express13(2), 612–620 (2005).
[CrossRef] [PubMed]

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express13(12), 4708–4716 (2005).
[CrossRef] [PubMed]

R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express14(12), 5279–5284 (2006).
[CrossRef] [PubMed]

T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express14(22), 10460–10468 (2006).
[CrossRef] [PubMed]

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16(13), 9443–9458 (2008).
[CrossRef] [PubMed]

Y. Bellouard and M.-O. Hongler, “Femtosecond-laser generation of self-organized bubble patterns in fused silica,” Opt. Express19(7), 6807–6821 (2011).
[CrossRef] [PubMed]

I. Miyamoto, K. Cvecek, and M. Schmidt, “Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses,” Opt. Express19(11), 10714–10727 (2011).
[CrossRef] [PubMed]

C. Miese, M. J. Withford, and A. Fuerbach, “Femtosecond laser direct-writing of waveguide Bragg gratings in a quasi cumulative heating regime,” Opt. Express19(20), 19542–19550 (2011).
[CrossRef] [PubMed]

I. Miyamoto, K. Cvecek, Y. Okamoto, M. Schmidt, and H. Helvajian, “Characteristics of laser absorption and welding in FOTURAN glass by ultrashort laser pulses,” Opt. Express19(23), 22961–22973 (2011).
[CrossRef] [PubMed]

M. Shimizu, M. Sakakura, M. Ohnishi, M. Yamaji, Y. Shimotsuma, K. Hirao, and K. Miura, “Three-dimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates,” Opt. Express20(2), 934–940 (2012).
[CrossRef] [PubMed]

S. Wu, D. Wu, J. Xu, Y. Hanada, R. Suganuma, H. Wang, T. Makimura, K. Sugioka, and K. Midorikawa, “Characterization and mechanism of glass microwelding by double-pulse ultrafast laser irradiation,” Opt. Express20(27), 28893–28905 (2012).
[CrossRef] [PubMed]

M. Sun, U. Eppelt, S. Russ, C. Hartmann, C. Siebert, J. Zhu, and W. Schulz, “Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses,” Opt. Express21(7), 7858–7867 (2013).
[CrossRef] [PubMed]

I. Miyamoto, K. Cvecek, and M. Schmidt, “Crack-free conditions in welding of glass by ultrashort laser pulse,” Opt. Express21(12), 14291–14302 (2013).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rep.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441(2-4), 47–189 (2007).
[CrossRef]

Phys. Rev. B

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B53(4), 1749–1761 (1996).
[CrossRef]

Phys. Rev. Lett.

J. K. Ranka, R. W. Schirmer, and A. L. Gaeta, “Observation of pulse splitting in nonlinear dispersive media,” Phys. Rev. Lett.77(18), 3783–3786 (1996).
[CrossRef] [PubMed]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002).
[CrossRef] [PubMed]

Proc. SPIE

T. Yoshino, M. Matsumoto, Y. Ozeki, and K. Itoh, “Energy-dependent temperature dynamics in femtosecond laser microprocessing clarified by Raman temperature measurement,” Proc. SPIE8249, 82491D, 82491D-7 (2012).
[CrossRef]

M. Hermans, J. Gottmann, and A. Schiffer, “In-situ diagnostics on fs-laser induced modification of glasses for selective etching,” Proc. SPIE8244, 82440E, 82440E-10 (2012).
[CrossRef]

Other

Schott D263 Material Information Sheet, http://www.schott.com/advanced_optics/english/download/ .

A. Vogel, “Roles of tunneling, multiphoton ionization, and cascade ionization for femtosecond optical breakdown in aqueous media,” 2009. http://www.dtic.mil/dtic/tr/fulltext/u2/a521817.pdf

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics