Abstract

We report studies of multiphoton mechanisms of plasmon excitation and their influence on the femtosecond-laser induced sub-wavelength ripple generation in large-bandgap dielectric and semiconducting transparent materials. An extended Drude-Sipe formalism is applied to quantitatively estimate the real part of the dielectric function which is dependent on the carrier density. The theory is able to predict the ripple periods for selected materials in good agreement with the experimental observations. Possible limitations at very small spatial periods are also discussed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Birnbaum, “Semiconductor Surface Damage Produced by Ruby Lasers,” J. Appl. Phys.36(11), 3688–3689 (1965).
    [CrossRef]
  2. A. Y. Vorobyev and C. Guo, “Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals,” Appl. Phys., A Mater. Sci. Process.86(3), 321–324 (2007).
    [CrossRef]
  3. M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett.8(7), 2087–2091 (2008).
    [CrossRef] [PubMed]
  4. B. Kumar and R. K. Soni, “Submicrometre periodic surface structures in InP induced by nanosecond UV laser pulses,” J. Phys. D Appl. Phys.41(15), 155303 (2008).
    [CrossRef]
  5. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser & Photon. Rev.2(1-2), 26–46 (2008).
    [CrossRef]
  6. J. Bonse, H. Sturm, D. Schmidt, and W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys., A Mater. Sci. Process.71(6), 657–667 (2000).
    [CrossRef]
  7. H. Hiraoka, W. Y. Y. Wong, T. M. Wong, C. T. Hung, W. C. Loh, and F. M. Lee, “Pulsed laser processing of polymer and ceramic surfaces,” J. Photopolym. Sci. Technol.10(2), 205–210 (1997).
    [CrossRef]
  8. S. Baudach, J. Bonse, and W. Kautek, “Ablation experiments on polyimide with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.69(7), S395–S398 (1999).
    [CrossRef]
  9. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
    [CrossRef]
  10. K. W. Kolasinski, “Solid structure formation during the liquid/solid phase transition,” Curr. Opin. Solid State Mater. Sci.11(5-6), 76–85 (2007).
    [CrossRef]
  11. C. H. Lin, L. Jiang, H. Xiao, S. J. Chen, and H. L. Tsai, “Surface-enhanced Raman scattering microchip fabricated by femtosecond laser,” Opt. Lett.35(17), 2937–2939 (2010).
    [CrossRef] [PubMed]
  12. E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir25(3), 1790–1794 (2009).
    [CrossRef] [PubMed]
  13. C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “One-step fabrication of nanostructures by femtosecond laser for surface-enhanced Raman scattering,” Opt. Express17(24), 21581–21589 (2009).
    [CrossRef] [PubMed]
  14. A. Y. Vorobyev and C. Guoa, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett.92(4), 041914 (2008).
    [CrossRef]
  15. B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express18(3), 2913–2924 (2010).
    [CrossRef] [PubMed]
  16. A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett.102(23), 234301 (2009).
    [CrossRef] [PubMed]
  17. J. Eichstädt, G. R. B. E. Römer, and A. J. H. Veld, “Towards friction control using laser-induced periodic surface structures,” Physics Procedia12, 7–15 (2011).
    [CrossRef]
  18. T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photoelectron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B79(8), 085425 (2009).
    [CrossRef]
  19. R. Torres, T. E. Itina, V. Vervisch, M. Halbwax, T. Derrien, T. Sarnet, M. Sentis, J. Ferreira, F. Torregrosa, L. Roux, and C. Phipps, “Study on laser induced periodic structures and photovoltaic application,” AIP Conf. Proc.1278, 576–581 (2010).
    [CrossRef]
  20. Y. Shimotsuma, M. Sakakura, K. Miura, J. R. Qiu, P. G. Kazansky, K. Fujita, and K. Hirao, “Application of femtosecond-laser induced nanostructures in optical memory,” J. Nanosci. Nanotechnol.7(1), 94–104 (2007).
    [PubMed]
  21. T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, “Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser,” Langmuir22(11), 4917–4919 (2006).
    [CrossRef] [PubMed]
  22. J. T. Chen, W. C. Lai, Y. J. Kao, Y. Y. Yang, and J. K. Sheu, “Laser-induced periodic structures for light extraction efficiency enhancement of GaN-based light emitting diodes,” Opt. Express20(5), 5689–5695 (2012).
    [CrossRef] [PubMed]
  23. W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt.8(4), S87–S93 (2006).
    [CrossRef]
  24. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
    [CrossRef]
  25. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
    [CrossRef] [PubMed]
  26. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
    [CrossRef] [PubMed]
  27. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys.106(10), 104910 (2009).
    [CrossRef]
  28. F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express19(10), 9035–9043 (2011).
    [CrossRef] [PubMed]
  29. K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B82(16), 165417 (2010).
    [CrossRef]
  30. S. K. Das, F. Guell, H. Messaoudi, M. Bock, and R. Grunwald, “Evidence for non-mass-transfer mechanism in fs-laser formation of sub-200 nm structures on sapphire,” CLEO/QELS, May 6–11 San Jose, CA, USA, Paper CM4E.2, (2012).
  31. K. Sokolowski-Tinten and D. Von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B61(4), 2643–2650 (2000).
    [CrossRef]
  32. R. Le Harzic, D. Dörr, D. Sauer, F. Stracke, and H. Zimmermann, “Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation,” Appl. Phys. Lett.98(21), 211905 (2011).
    [CrossRef]
  33. M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys.85(9), 6803–6810 (1999).
  34. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to- femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B53(4), 1749–1761 (1996).
    [CrossRef]
  35. C. Li, D. Feng, T. Jia, H. Sun, X. Li, S. Xu, X. Wang, and Z. Xu, “Ultrafast dynamics inZnO thin films irradiated by femtosecond lasers,” Solid State Commun.136(7), 389–394 (2005).
    [CrossRef]
  36. J. He, Y. Qu, H. Li, J. Mi, and W. Ji, “Three-photon absorption in ZnO and ZnS crystals,” Opt. Express13(23), 9235–9247 (2005).
    [CrossRef] [PubMed]
  37. D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
    [CrossRef]
  38. U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett.84(2), 170–172 (2004).
    [CrossRef]
  39. X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, H. L. Ma, and X. W. Sun, “Raman spectroscopy and luminescent properties of ZnO nanostructures fabricated by femtosecond laser pulses,” Mater. Lett.61(23-24), 4583–4586 (2007).
    [CrossRef]
  40. T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
    [CrossRef]
  41. http://www.luxpop.com/
  42. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82(25), 4462–4464 (2003).
    [CrossRef]
  43. R. Grunwald, S. K. Das, A. Debroy, E. McGlynn, and H. Messaoudi, “Nonlinear optical mechanism of forming periodical nanostructures in large bandgap dielectrics,” in: IESC Proceedings Series (Institut d'Études Scientifiques de Cargèse, Corsica, France).

2012 (2)

J. T. Chen, W. C. Lai, Y. J. Kao, Y. Y. Yang, and J. K. Sheu, “Laser-induced periodic structures for light extraction efficiency enhancement of GaN-based light emitting diodes,” Opt. Express20(5), 5689–5695 (2012).
[CrossRef] [PubMed]

S. K. Das, F. Guell, H. Messaoudi, M. Bock, and R. Grunwald, “Evidence for non-mass-transfer mechanism in fs-laser formation of sub-200 nm structures on sapphire,” CLEO/QELS, May 6–11 San Jose, CA, USA, Paper CM4E.2, (2012).

2011 (3)

F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express19(10), 9035–9043 (2011).
[CrossRef] [PubMed]

R. Le Harzic, D. Dörr, D. Sauer, F. Stracke, and H. Zimmermann, “Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation,” Appl. Phys. Lett.98(21), 211905 (2011).
[CrossRef]

J. Eichstädt, G. R. B. E. Römer, and A. J. H. Veld, “Towards friction control using laser-induced periodic surface structures,” Physics Procedia12, 7–15 (2011).
[CrossRef]

2010 (4)

B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express18(3), 2913–2924 (2010).
[CrossRef] [PubMed]

C. H. Lin, L. Jiang, H. Xiao, S. J. Chen, and H. L. Tsai, “Surface-enhanced Raman scattering microchip fabricated by femtosecond laser,” Opt. Lett.35(17), 2937–2939 (2010).
[CrossRef] [PubMed]

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B82(16), 165417 (2010).
[CrossRef]

R. Torres, T. E. Itina, V. Vervisch, M. Halbwax, T. Derrien, T. Sarnet, M. Sentis, J. Ferreira, F. Torregrosa, L. Roux, and C. Phipps, “Study on laser induced periodic structures and photovoltaic application,” AIP Conf. Proc.1278, 576–581 (2010).
[CrossRef]

2009 (8)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
[CrossRef]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys.106(10), 104910 (2009).
[CrossRef]

E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir25(3), 1790–1794 (2009).
[CrossRef] [PubMed]

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “One-step fabrication of nanostructures by femtosecond laser for surface-enhanced Raman scattering,” Opt. Express17(24), 21581–21589 (2009).
[CrossRef] [PubMed]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett.102(23), 234301 (2009).
[CrossRef] [PubMed]

T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photoelectron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B79(8), 085425 (2009).
[CrossRef]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
[CrossRef]

2008 (4)

A. Y. Vorobyev and C. Guoa, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett.92(4), 041914 (2008).
[CrossRef]

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett.8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

B. Kumar and R. K. Soni, “Submicrometre periodic surface structures in InP induced by nanosecond UV laser pulses,” J. Phys. D Appl. Phys.41(15), 155303 (2008).
[CrossRef]

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser & Photon. Rev.2(1-2), 26–46 (2008).
[CrossRef]

2007 (4)

A. Y. Vorobyev and C. Guo, “Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals,” Appl. Phys., A Mater. Sci. Process.86(3), 321–324 (2007).
[CrossRef]

Y. Shimotsuma, M. Sakakura, K. Miura, J. R. Qiu, P. G. Kazansky, K. Fujita, and K. Hirao, “Application of femtosecond-laser induced nanostructures in optical memory,” J. Nanosci. Nanotechnol.7(1), 94–104 (2007).
[PubMed]

X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, H. L. Ma, and X. W. Sun, “Raman spectroscopy and luminescent properties of ZnO nanostructures fabricated by femtosecond laser pulses,” Mater. Lett.61(23-24), 4583–4586 (2007).
[CrossRef]

K. W. Kolasinski, “Solid structure formation during the liquid/solid phase transition,” Curr. Opin. Solid State Mater. Sci.11(5-6), 76–85 (2007).
[CrossRef]

2006 (2)

T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, “Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser,” Langmuir22(11), 4917–4919 (2006).
[CrossRef] [PubMed]

W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt.8(4), S87–S93 (2006).
[CrossRef]

2005 (3)

C. Li, D. Feng, T. Jia, H. Sun, X. Li, S. Xu, X. Wang, and Z. Xu, “Ultrafast dynamics inZnO thin films irradiated by femtosecond lasers,” Solid State Commun.136(7), 389–394 (2005).
[CrossRef]

J. He, Y. Qu, H. Li, J. Mi, and W. Ji, “Three-photon absorption in ZnO and ZnS crystals,” Opt. Express13(23), 9235–9247 (2005).
[CrossRef] [PubMed]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

2004 (1)

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett.84(2), 170–172 (2004).
[CrossRef]

2003 (2)

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82(25), 4462–4464 (2003).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

2000 (2)

K. Sokolowski-Tinten and D. Von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B61(4), 2643–2650 (2000).
[CrossRef]

J. Bonse, H. Sturm, D. Schmidt, and W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys., A Mater. Sci. Process.71(6), 657–667 (2000).
[CrossRef]

1999 (2)

S. Baudach, J. Bonse, and W. Kautek, “Ablation experiments on polyimide with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.69(7), S395–S398 (1999).
[CrossRef]

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys.85(9), 6803–6810 (1999).

1997 (1)

H. Hiraoka, W. Y. Y. Wong, T. M. Wong, C. T. Hung, W. C. Loh, and F. M. Lee, “Pulsed laser processing of polymer and ceramic surfaces,” J. Photopolym. Sci. Technol.10(2), 205–210 (1997).
[CrossRef]

1996 (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to- femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B53(4), 1749–1761 (1996).
[CrossRef]

1983 (1)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

1965 (1)

M. Birnbaum, “Semiconductor Surface Damage Produced by Ruby Lasers,” J. Appl. Phys.36(11), 3688–3689 (1965).
[CrossRef]

Audouard, E.

Baldacchini, T.

T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, “Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser,” Langmuir22(11), 4917–4919 (2006).
[CrossRef] [PubMed]

Banks, P. S.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys.85(9), 6803–6810 (1999).

Barnes, W. L.

W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt.8(4), S87–S93 (2006).
[CrossRef]

Baudach, S.

S. Baudach, J. Bonse, and W. Kautek, “Ablation experiments on polyimide with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.69(7), S395–S398 (1999).
[CrossRef]

Birnbaum, M.

M. Birnbaum, “Semiconductor Surface Damage Produced by Ruby Lasers,” J. Appl. Phys.36(11), 3688–3689 (1965).
[CrossRef]

Bock, M.

S. K. Das, F. Guell, H. Messaoudi, M. Bock, and R. Grunwald, “Evidence for non-mass-transfer mechanism in fs-laser formation of sub-200 nm structures on sapphire,” CLEO/QELS, May 6–11 San Jose, CA, USA, Paper CM4E.2, (2012).

Bonse, J.

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys.106(10), 104910 (2009).
[CrossRef]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
[CrossRef]

J. Bonse, H. Sturm, D. Schmidt, and W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys., A Mater. Sci. Process.71(6), 657–667 (2000).
[CrossRef]

S. Baudach, J. Bonse, and W. Kautek, “Ablation experiments on polyimide with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.69(7), S395–S398 (1999).
[CrossRef]

Borowiec, A.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82(25), 4462–4464 (2003).
[CrossRef]

Bounhalli, M.

Carey, J. E.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett.8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, “Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser,” Langmuir22(11), 4917–4919 (2006).
[CrossRef] [PubMed]

Chai, Y. H.

Chen, H. X.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Chen, J. T.

Chen, S. J.

Cheng, Y.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
[CrossRef]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Colombier, J. P.

Crouch, C. H.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett.8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

Das, S. K.

S. K. Das, F. Guell, H. Messaoudi, M. Bock, and R. Grunwald, “Evidence for non-mass-transfer mechanism in fs-laser formation of sub-200 nm structures on sapphire,” CLEO/QELS, May 6–11 San Jose, CA, USA, Paper CM4E.2, (2012).

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
[CrossRef]

Derrien, T.

R. Torres, T. E. Itina, V. Vervisch, M. Halbwax, T. Derrien, T. Sarnet, M. Sentis, J. Ferreira, F. Torregrosa, L. Roux, and C. Phipps, “Study on laser induced periodic structures and photovoltaic application,” AIP Conf. Proc.1278, 576–581 (2010).
[CrossRef]

Diebold, E. D.

E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir25(3), 1790–1794 (2009).
[CrossRef] [PubMed]

Doorn, S. K.

E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir25(3), 1790–1794 (2009).
[CrossRef] [PubMed]

Dörr, D.

R. Le Harzic, D. Dörr, D. Sauer, F. Stracke, and H. Zimmermann, “Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation,” Appl. Phys. Lett.98(21), 211905 (2011).
[CrossRef]

Dufft, D.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
[CrossRef]

Dusser, B.

Eichstädt, J.

J. Eichstädt, G. R. B. E. Römer, and A. J. H. Veld, “Towards friction control using laser-induced periodic surface structures,” Physics Procedia12, 7–15 (2011).
[CrossRef]

Faure, N.

Feit, M. D.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys.85(9), 6803–6810 (1999).

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to- femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B53(4), 1749–1761 (1996).
[CrossRef]

Feng, D.

C. Li, D. Feng, T. Jia, H. Sun, X. Li, S. Xu, X. Wang, and Z. Xu, “Ultrafast dynamics inZnO thin films irradiated by femtosecond lasers,” Solid State Commun.136(7), 389–394 (2005).
[CrossRef]

Ferreira, J.

R. Torres, T. E. Itina, V. Vervisch, M. Halbwax, T. Derrien, T. Sarnet, M. Sentis, J. Ferreira, F. Torregrosa, L. Roux, and C. Phipps, “Study on laser induced periodic structures and photovoltaic application,” AIP Conf. Proc.1278, 576–581 (2010).
[CrossRef]

Fujita, K.

Y. Shimotsuma, M. Sakakura, K. Miura, J. R. Qiu, P. G. Kazansky, K. Fujita, and K. Hirao, “Application of femtosecond-laser induced nanostructures in optical memory,” J. Nanosci. Nanotechnol.7(1), 94–104 (2007).
[PubMed]

Garrelie, F.

Griebner, U.

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett.84(2), 170–172 (2004).
[CrossRef]

Grunwald, R.

S. K. Das, F. Guell, H. Messaoudi, M. Bock, and R. Grunwald, “Evidence for non-mass-transfer mechanism in fs-laser formation of sub-200 nm structures on sapphire,” CLEO/QELS, May 6–11 San Jose, CA, USA, Paper CM4E.2, (2012).

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
[CrossRef]

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett.84(2), 170–172 (2004).
[CrossRef]

Guell, F.

S. K. Das, F. Guell, H. Messaoudi, M. Bock, and R. Grunwald, “Evidence for non-mass-transfer mechanism in fs-laser formation of sub-200 nm structures on sapphire,” CLEO/QELS, May 6–11 San Jose, CA, USA, Paper CM4E.2, (2012).

Guo, C.

T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photoelectron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B79(8), 085425 (2009).
[CrossRef]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett.102(23), 234301 (2009).
[CrossRef] [PubMed]

A. Y. Vorobyev and C. Guo, “Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals,” Appl. Phys., A Mater. Sci. Process.86(3), 321–324 (2007).
[CrossRef]

Guo, X. D.

X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, H. L. Ma, and X. W. Sun, “Raman spectroscopy and luminescent properties of ZnO nanostructures fabricated by femtosecond laser pulses,” Mater. Lett.61(23-24), 4583–4586 (2007).
[CrossRef]

Guoa, C.

A. Y. Vorobyev and C. Guoa, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett.92(4), 041914 (2008).
[CrossRef]

Halbwax, M.

R. Torres, T. E. Itina, V. Vervisch, M. Halbwax, T. Derrien, T. Sarnet, M. Sentis, J. Ferreira, F. Torregrosa, L. Roux, and C. Phipps, “Study on laser induced periodic structures and photovoltaic application,” AIP Conf. Proc.1278, 576–581 (2010).
[CrossRef]

Hang, Y.

X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, H. L. Ma, and X. W. Sun, “Raman spectroscopy and luminescent properties of ZnO nanostructures fabricated by femtosecond laser pulses,” Mater. Lett.61(23-24), 4583–4586 (2007).
[CrossRef]

Hashida, M.

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B82(16), 165417 (2010).
[CrossRef]

Haugen, H. K.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82(25), 4462–4464 (2003).
[CrossRef]

He, J.

He, X. K.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to- femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B53(4), 1749–1761 (1996).
[CrossRef]

Hirao, K.

Y. Shimotsuma, M. Sakakura, K. Miura, J. R. Qiu, P. G. Kazansky, K. Fujita, and K. Hirao, “Application of femtosecond-laser induced nanostructures in optical memory,” J. Nanosci. Nanotechnol.7(1), 94–104 (2007).
[PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Hiraoka, H.

H. Hiraoka, W. Y. Y. Wong, T. M. Wong, C. T. Hung, W. C. Loh, and F. M. Lee, “Pulsed laser processing of polymer and ceramic surfaces,” J. Photopolym. Sci. Technol.10(2), 205–210 (1997).
[CrossRef]

Hnatovsky, C.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser & Photon. Rev.2(1-2), 26–46 (2008).
[CrossRef]

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
[CrossRef]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Hung, C. T.

H. Hiraoka, W. Y. Y. Wong, T. M. Wong, C. T. Hung, W. C. Loh, and F. M. Lee, “Pulsed laser processing of polymer and ceramic surfaces,” J. Photopolym. Sci. Technol.10(2), 205–210 (1997).
[CrossRef]

Hwang, T. Y.

T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photoelectron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B79(8), 085425 (2009).
[CrossRef]

Ikuta, Y.

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B82(16), 165417 (2010).
[CrossRef]

Itina, T. E.

R. Torres, T. E. Itina, V. Vervisch, M. Halbwax, T. Derrien, T. Sarnet, M. Sentis, J. Ferreira, F. Torregrosa, L. Roux, and C. Phipps, “Study on laser induced periodic structures and photovoltaic application,” AIP Conf. Proc.1278, 576–581 (2010).
[CrossRef]

Ji, W.

Jia, T.

C. Li, D. Feng, T. Jia, H. Sun, X. Li, S. Xu, X. Wang, and Z. Xu, “Ultrafast dynamics inZnO thin films irradiated by femtosecond lasers,” Solid State Commun.136(7), 389–394 (2005).
[CrossRef]

Jia, T. Q.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Jiang, L.

Jourlin, M.

Kandyla, M.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett.8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

Kao, Y. J.

Kautek, W.

J. Bonse, H. Sturm, D. Schmidt, and W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys., A Mater. Sci. Process.71(6), 657–667 (2000).
[CrossRef]

S. Baudach, J. Bonse, and W. Kautek, “Ablation experiments on polyimide with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.69(7), S395–S398 (1999).
[CrossRef]

Kazansky, P. G.

Y. Shimotsuma, M. Sakakura, K. Miura, J. R. Qiu, P. G. Kazansky, K. Fujita, and K. Hirao, “Application of femtosecond-laser induced nanostructures in optical memory,” J. Nanosci. Nanotechnol.7(1), 94–104 (2007).
[PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Kolasinski, K. W.

K. W. Kolasinski, “Solid structure formation during the liquid/solid phase transition,” Curr. Opin. Solid State Mater. Sci.11(5-6), 76–85 (2007).
[CrossRef]

Krüger, J.

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys.106(10), 104910 (2009).
[CrossRef]

Kumar, B.

B. Kumar and R. K. Soni, “Submicrometre periodic surface structures in InP induced by nanosecond UV laser pulses,” J. Phys. D Appl. Phys.41(15), 155303 (2008).
[CrossRef]

Kuroda, H.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Lai, W. C.

Le Harzic, R.

R. Le Harzic, D. Dörr, D. Sauer, F. Stracke, and H. Zimmermann, “Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation,” Appl. Phys. Lett.98(21), 211905 (2011).
[CrossRef]

Lee, F. M.

H. Hiraoka, W. Y. Y. Wong, T. M. Wong, C. T. Hung, W. C. Loh, and F. M. Lee, “Pulsed laser processing of polymer and ceramic surfaces,” J. Photopolym. Sci. Technol.10(2), 205–210 (1997).
[CrossRef]

Li, C.

C. Li, D. Feng, T. Jia, H. Sun, X. Li, S. Xu, X. Wang, and Z. Xu, “Ultrafast dynamics inZnO thin films irradiated by femtosecond lasers,” Solid State Commun.136(7), 389–394 (2005).
[CrossRef]

Li, H.

Li, R. X.

X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, H. L. Ma, and X. W. Sun, “Raman spectroscopy and luminescent properties of ZnO nanostructures fabricated by femtosecond laser pulses,” Mater. Lett.61(23-24), 4583–4586 (2007).
[CrossRef]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Li, X.

C. Li, D. Feng, T. Jia, H. Sun, X. Li, S. Xu, X. Wang, and Z. Xu, “Ultrafast dynamics inZnO thin films irradiated by femtosecond lasers,” Solid State Commun.136(7), 389–394 (2005).
[CrossRef]

Lin, C. H.

Loh, W. C.

H. Hiraoka, W. Y. Y. Wong, T. M. Wong, C. T. Hung, W. C. Loh, and F. M. Lee, “Pulsed laser processing of polymer and ceramic surfaces,” J. Photopolym. Sci. Technol.10(2), 205–210 (1997).
[CrossRef]

Ma, H. L.

X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, H. L. Ma, and X. W. Sun, “Raman spectroscopy and luminescent properties of ZnO nanostructures fabricated by femtosecond laser pulses,” Mater. Lett.61(23-24), 4583–4586 (2007).
[CrossRef]

Mack, N. H.

E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir25(3), 1790–1794 (2009).
[CrossRef] [PubMed]

Makin, V. S.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett.102(23), 234301 (2009).
[CrossRef] [PubMed]

Mazur, E.

E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir25(3), 1790–1794 (2009).
[CrossRef] [PubMed]

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett.8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, “Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser,” Langmuir22(11), 4917–4919 (2006).
[CrossRef] [PubMed]

Messaoudi, H.

S. K. Das, F. Guell, H. Messaoudi, M. Bock, and R. Grunwald, “Evidence for non-mass-transfer mechanism in fs-laser formation of sub-200 nm structures on sapphire,” CLEO/QELS, May 6–11 San Jose, CA, USA, Paper CM4E.2, (2012).

Mi, J.

Miura, K.

Y. Shimotsuma, M. Sakakura, K. Miura, J. R. Qiu, P. G. Kazansky, K. Fujita, and K. Hirao, “Application of femtosecond-laser induced nanostructures in optical memory,” J. Nanosci. Nanotechnol.7(1), 94–104 (2007).
[PubMed]

Miyasaka, Y.

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B82(16), 165417 (2010).
[CrossRef]

Neumann, U.

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett.84(2), 170–172 (2004).
[CrossRef]

Okamuro, K.

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B82(16), 165417 (2010).
[CrossRef]

Parriaux, O.

Perry, M. D.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys.85(9), 6803–6810 (1999).

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to- femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B53(4), 1749–1761 (1996).
[CrossRef]

Phipps, C.

R. Torres, T. E. Itina, V. Vervisch, M. Halbwax, T. Derrien, T. Sarnet, M. Sentis, J. Ferreira, F. Torregrosa, L. Roux, and C. Phipps, “Study on laser induced periodic structures and photovoltaic application,” AIP Conf. Proc.1278, 576–581 (2010).
[CrossRef]

Pigeon, F.

Preston, J. S.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Qiu, J. R.

Y. Shimotsuma, M. Sakakura, K. Miura, J. R. Qiu, P. G. Kazansky, K. Fujita, and K. Hirao, “Application of femtosecond-laser induced nanostructures in optical memory,” J. Nanosci. Nanotechnol.7(1), 94–104 (2007).
[PubMed]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Qu, Y.

Reynaud, S.

Römer, G. R. B. E.

J. Eichstädt, G. R. B. E. Römer, and A. J. H. Veld, “Towards friction control using laser-induced periodic surface structures,” Physics Procedia12, 7–15 (2011).
[CrossRef]

Rosenfeld, A.

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys.106(10), 104910 (2009).
[CrossRef]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
[CrossRef]

Roux, L.

R. Torres, T. E. Itina, V. Vervisch, M. Halbwax, T. Derrien, T. Sarnet, M. Sentis, J. Ferreira, F. Torregrosa, L. Roux, and C. Phipps, “Study on laser induced periodic structures and photovoltaic application,” AIP Conf. Proc.1278, 576–581 (2010).
[CrossRef]

Rubenchik, A. M.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys.85(9), 6803–6810 (1999).

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to- femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B53(4), 1749–1761 (1996).
[CrossRef]

Sagan, Z.

Sakabe, S.

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B82(16), 165417 (2010).
[CrossRef]

Sakakura, M.

Y. Shimotsuma, M. Sakakura, K. Miura, J. R. Qiu, P. G. Kazansky, K. Fujita, and K. Hirao, “Application of femtosecond-laser induced nanostructures in optical memory,” J. Nanosci. Nanotechnol.7(1), 94–104 (2007).
[PubMed]

Sarnet, T.

R. Torres, T. E. Itina, V. Vervisch, M. Halbwax, T. Derrien, T. Sarnet, M. Sentis, J. Ferreira, F. Torregrosa, L. Roux, and C. Phipps, “Study on laser induced periodic structures and photovoltaic application,” AIP Conf. Proc.1278, 576–581 (2010).
[CrossRef]

Sauer, D.

R. Le Harzic, D. Dörr, D. Sauer, F. Stracke, and H. Zimmermann, “Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation,” Appl. Phys. Lett.98(21), 211905 (2011).
[CrossRef]

Schmidt, D.

J. Bonse, H. Sturm, D. Schmidt, and W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys., A Mater. Sci. Process.71(6), 657–667 (2000).
[CrossRef]

Seeber, W.

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett.84(2), 170–172 (2004).
[CrossRef]

Sentis, M.

R. Torres, T. E. Itina, V. Vervisch, M. Halbwax, T. Derrien, T. Sarnet, M. Sentis, J. Ferreira, F. Torregrosa, L. Roux, and C. Phipps, “Study on laser induced periodic structures and photovoltaic application,” AIP Conf. Proc.1278, 576–581 (2010).
[CrossRef]

Shen, M.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett.8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

Sheu, J. K.

Shimotsuma, Y.

Y. Shimotsuma, M. Sakakura, K. Miura, J. R. Qiu, P. G. Kazansky, K. Fujita, and K. Hirao, “Application of femtosecond-laser induced nanostructures in optical memory,” J. Nanosci. Nanotechnol.7(1), 94–104 (2007).
[PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to- femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B53(4), 1749–1761 (1996).
[CrossRef]

Simova, E.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser & Photon. Rev.2(1-2), 26–46 (2008).
[CrossRef]

Sipe, J. E.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

Soder, H.

Sokolowski-Tinten, K.

K. Sokolowski-Tinten and D. Von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B61(4), 2643–2650 (2000).
[CrossRef]

Soni, R. K.

B. Kumar and R. K. Soni, “Submicrometre periodic surface structures in InP induced by nanosecond UV laser pulses,” J. Phys. D Appl. Phys.41(15), 155303 (2008).
[CrossRef]

Steinmeyer, G.

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett.84(2), 170–172 (2004).
[CrossRef]

Stone, H. A.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett.8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

Stracke, F.

R. Le Harzic, D. Dörr, D. Sauer, F. Stracke, and H. Zimmermann, “Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation,” Appl. Phys. Lett.98(21), 211905 (2011).
[CrossRef]

Stuart, B. C.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys.85(9), 6803–6810 (1999).

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to- femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B53(4), 1749–1761 (1996).
[CrossRef]

Sturm, H.

J. Bonse, H. Sturm, D. Schmidt, and W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys., A Mater. Sci. Process.71(6), 657–667 (2000).
[CrossRef]

Sun, H.

C. Li, D. Feng, T. Jia, H. Sun, X. Li, S. Xu, X. Wang, and Z. Xu, “Ultrafast dynamics inZnO thin films irradiated by femtosecond lasers,” Solid State Commun.136(7), 389–394 (2005).
[CrossRef]

Sun, X. W.

X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, H. L. Ma, and X. W. Sun, “Raman spectroscopy and luminescent properties of ZnO nanostructures fabricated by femtosecond laser pulses,” Mater. Lett.61(23-24), 4583–4586 (2007).
[CrossRef]

Taylor, R.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser & Photon. Rev.2(1-2), 26–46 (2008).
[CrossRef]

Tokita, S.

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B82(16), 165417 (2010).
[CrossRef]

Tonchev, S.

Torregrosa, F.

R. Torres, T. E. Itina, V. Vervisch, M. Halbwax, T. Derrien, T. Sarnet, M. Sentis, J. Ferreira, F. Torregrosa, L. Roux, and C. Phipps, “Study on laser induced periodic structures and photovoltaic application,” AIP Conf. Proc.1278, 576–581 (2010).
[CrossRef]

Torres, R.

R. Torres, T. E. Itina, V. Vervisch, M. Halbwax, T. Derrien, T. Sarnet, M. Sentis, J. Ferreira, F. Torregrosa, L. Roux, and C. Phipps, “Study on laser induced periodic structures and photovoltaic application,” AIP Conf. Proc.1278, 576–581 (2010).
[CrossRef]

Tsai, H. L.

van Driel, H. M.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

Veld, A. J. H.

J. Eichstädt, G. R. B. E. Römer, and A. J. H. Veld, “Towards friction control using laser-induced periodic surface structures,” Physics Procedia12, 7–15 (2011).
[CrossRef]

Vervisch, V.

R. Torres, T. E. Itina, V. Vervisch, M. Halbwax, T. Derrien, T. Sarnet, M. Sentis, J. Ferreira, F. Torregrosa, L. Roux, and C. Phipps, “Study on laser induced periodic structures and photovoltaic application,” AIP Conf. Proc.1278, 576–581 (2010).
[CrossRef]

Von der Linde, D.

K. Sokolowski-Tinten and D. Von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B61(4), 2643–2650 (2000).
[CrossRef]

Vorobyev, A. Y.

T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photoelectron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B79(8), 085425 (2009).
[CrossRef]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett.102(23), 234301 (2009).
[CrossRef] [PubMed]

A. Y. Vorobyev and C. Guoa, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett.92(4), 041914 (2008).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals,” Appl. Phys., A Mater. Sci. Process.86(3), 321–324 (2007).
[CrossRef]

Wang, X.

C. Li, D. Feng, T. Jia, H. Sun, X. Li, S. Xu, X. Wang, and Z. Xu, “Ultrafast dynamics inZnO thin films irradiated by femtosecond lasers,” Solid State Commun.136(7), 389–394 (2005).
[CrossRef]

Wong, T. M.

H. Hiraoka, W. Y. Y. Wong, T. M. Wong, C. T. Hung, W. C. Loh, and F. M. Lee, “Pulsed laser processing of polymer and ceramic surfaces,” J. Photopolym. Sci. Technol.10(2), 205–210 (1997).
[CrossRef]

Wong, W. Y. Y.

H. Hiraoka, W. Y. Y. Wong, T. M. Wong, C. T. Hung, W. C. Loh, and F. M. Lee, “Pulsed laser processing of polymer and ceramic surfaces,” J. Photopolym. Sci. Technol.10(2), 205–210 (1997).
[CrossRef]

Xiao, H.

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
[CrossRef]

Xu, S.

C. Li, D. Feng, T. Jia, H. Sun, X. Li, S. Xu, X. Wang, and Z. Xu, “Ultrafast dynamics inZnO thin films irradiated by femtosecond lasers,” Solid State Commun.136(7), 389–394 (2005).
[CrossRef]

Xu, Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
[CrossRef]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

C. Li, D. Feng, T. Jia, H. Sun, X. Li, S. Xu, X. Wang, and Z. Xu, “Ultrafast dynamics inZnO thin films irradiated by femtosecond lasers,” Solid State Commun.136(7), 389–394 (2005).
[CrossRef]

Xu, Z. Z.

X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, H. L. Ma, and X. W. Sun, “Raman spectroscopy and luminescent properties of ZnO nanostructures fabricated by femtosecond laser pulses,” Mater. Lett.61(23-24), 4583–4586 (2007).
[CrossRef]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Yang, Y. Y.

Yanovsky, V.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys.85(9), 6803–6810 (1999).

Young, J. F.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

Yu, B. K.

X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, H. L. Ma, and X. W. Sun, “Raman spectroscopy and luminescent properties of ZnO nanostructures fabricated by femtosecond laser pulses,” Mater. Lett.61(23-24), 4583–4586 (2007).
[CrossRef]

Zhang, J.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
[CrossRef]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Zhao, F. L.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Zhou, M.

T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, “Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser,” Langmuir22(11), 4917–4919 (2006).
[CrossRef] [PubMed]

Zimmermann, H.

R. Le Harzic, D. Dörr, D. Sauer, F. Stracke, and H. Zimmermann, “Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation,” Appl. Phys. Lett.98(21), 211905 (2011).
[CrossRef]

ACS Nano (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

AIP Conf. Proc. (1)

R. Torres, T. E. Itina, V. Vervisch, M. Halbwax, T. Derrien, T. Sarnet, M. Sentis, J. Ferreira, F. Torregrosa, L. Roux, and C. Phipps, “Study on laser induced periodic structures and photovoltaic application,” AIP Conf. Proc.1278, 576–581 (2010).
[CrossRef]

Appl. Phys. Lett. (4)

R. Le Harzic, D. Dörr, D. Sauer, F. Stracke, and H. Zimmermann, “Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation,” Appl. Phys. Lett.98(21), 211905 (2011).
[CrossRef]

A. Y. Vorobyev and C. Guoa, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett.92(4), 041914 (2008).
[CrossRef]

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett.84(2), 170–172 (2004).
[CrossRef]

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82(25), 4462–4464 (2003).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (3)

A. Y. Vorobyev and C. Guo, “Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals,” Appl. Phys., A Mater. Sci. Process.86(3), 321–324 (2007).
[CrossRef]

J. Bonse, H. Sturm, D. Schmidt, and W. Kautek, “Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air,” Appl. Phys., A Mater. Sci. Process.71(6), 657–667 (2000).
[CrossRef]

S. Baudach, J. Bonse, and W. Kautek, “Ablation experiments on polyimide with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.69(7), S395–S398 (1999).
[CrossRef]

Curr. Opin. Solid State Mater. Sci. (1)

K. W. Kolasinski, “Solid structure formation during the liquid/solid phase transition,” Curr. Opin. Solid State Mater. Sci.11(5-6), 76–85 (2007).
[CrossRef]

Evidence for non-mass-transfer mechanism in fs-laser formation of sub-200 nm structures on sapphire (1)

S. K. Das, F. Guell, H. Messaoudi, M. Bock, and R. Grunwald, “Evidence for non-mass-transfer mechanism in fs-laser formation of sub-200 nm structures on sapphire,” CLEO/QELS, May 6–11 San Jose, CA, USA, Paper CM4E.2, (2012).

J. Appl. Phys. (4)

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
[CrossRef]

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys.85(9), 6803–6810 (1999).

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys.106(10), 104910 (2009).
[CrossRef]

M. Birnbaum, “Semiconductor Surface Damage Produced by Ruby Lasers,” J. Appl. Phys.36(11), 3688–3689 (1965).
[CrossRef]

J. Nanosci. Nanotechnol. (1)

Y. Shimotsuma, M. Sakakura, K. Miura, J. R. Qiu, P. G. Kazansky, K. Fujita, and K. Hirao, “Application of femtosecond-laser induced nanostructures in optical memory,” J. Nanosci. Nanotechnol.7(1), 94–104 (2007).
[PubMed]

J. Opt. A, Pure Appl. Opt. (1)

W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt.8(4), S87–S93 (2006).
[CrossRef]

J. Photopolym. Sci. Technol. (1)

H. Hiraoka, W. Y. Y. Wong, T. M. Wong, C. T. Hung, W. C. Loh, and F. M. Lee, “Pulsed laser processing of polymer and ceramic surfaces,” J. Photopolym. Sci. Technol.10(2), 205–210 (1997).
[CrossRef]

J. Phys. D Appl. Phys. (1)

B. Kumar and R. K. Soni, “Submicrometre periodic surface structures in InP induced by nanosecond UV laser pulses,” J. Phys. D Appl. Phys.41(15), 155303 (2008).
[CrossRef]

Langmuir (2)

E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir25(3), 1790–1794 (2009).
[CrossRef] [PubMed]

T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, “Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser,” Langmuir22(11), 4917–4919 (2006).
[CrossRef] [PubMed]

Laser & Photon. Rev. (1)

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser & Photon. Rev.2(1-2), 26–46 (2008).
[CrossRef]

Mater. Lett. (1)

X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, H. L. Ma, and X. W. Sun, “Raman spectroscopy and luminescent properties of ZnO nanostructures fabricated by femtosecond laser pulses,” Mater. Lett.61(23-24), 4583–4586 (2007).
[CrossRef]

Nano Lett. (1)

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett.8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. B (7)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B82(16), 165417 (2010).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to- femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B53(4), 1749–1761 (1996).
[CrossRef]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
[CrossRef]

T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photoelectron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B79(8), 085425 (2009).
[CrossRef]

K. Sokolowski-Tinten and D. Von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B61(4), 2643–2650 (2000).
[CrossRef]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett.102(23), 234301 (2009).
[CrossRef] [PubMed]

Physics Procedia (1)

J. Eichstädt, G. R. B. E. Römer, and A. J. H. Veld, “Towards friction control using laser-induced periodic surface structures,” Physics Procedia12, 7–15 (2011).
[CrossRef]

Solid State Commun. (1)

C. Li, D. Feng, T. Jia, H. Sun, X. Li, S. Xu, X. Wang, and Z. Xu, “Ultrafast dynamics inZnO thin films irradiated by femtosecond lasers,” Solid State Commun.136(7), 389–394 (2005).
[CrossRef]

Other (2)

http://www.luxpop.com/

R. Grunwald, S. K. Das, A. Debroy, E. McGlynn, and H. Messaoudi, “Nonlinear optical mechanism of forming periodical nanostructures in large bandgap dielectrics,” in: IESC Proceedings Series (Institut d'Études Scientifiques de Cargèse, Corsica, France).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagrams showing the proposed model of the SPP-based process of LIPSS generation: (a) Below-bandgap excitation of a dielectric material via multiphoton absorption of femtosecond laser pulses and coupling of energy into counter-propagating surface plasmon-polaritons (self-organized k-vector matching via Fourier components of random scatterers and feedback according to the Sipe theory [9]), (b) interference of SPPs and light with periods depending on transient index changes, (c) spatially modulated photoelectron generation leads to spatially varying ablation and thus results in grating-like LIPSS structures.

Fig. 2
Fig. 2

Real part of the dielectric function of ZnO as a function of the carrier density. The calculation was performed using Eqs. (6) and (7).

Fig. 3
Fig. 3

Theoretically predicted SPP wavelength of ZnO as a function of the carrier density. The calculation was performed using Eqs. (5)-(7).

Fig. 4
Fig. 4

Variation of the carrier density with the fluence for ZnO using Eq. (10).

Fig. 5
Fig. 5

Theoretically predicted variation of the real part ε' of the dielectric function with increasing fluence for ZnO.

Fig. 6
Fig. 6

Variation of the SPP wavelength as a function of fluence for ZnO (blue solid curve). Two distinct regions can be identified which correspond to HSFL and LSFL. The transition between HSFL and LSFL regions is continuous. The red squares and error bars correspond to experimental data and are discussed in section 5.

Fig. 7
Fig. 7

Scanning electron microscope (SEM) images of LIPSS on ZnO obtained at different peak fluences of a Ti:sapphire laser, (a) 0.54 J/cm2, (b) 0.50 J/cm2, (c) 0.48 J/cm2, (d) 0.45 J/cm2 (pulse duration 130 fs, center wavelength 800 nm, LIPSS direction perpendicular to the polarization vector which is indicated by the white double arrow). The LSFL periods plotted as data points in Fig. 6 were determined from the regions at the centers of the green circles.

Fig. 8
Fig. 8

(a) and (b): SEM images showing the continuous transition from LSFL to HSFL for a spatially varying fluence profile (with a Gaussian beam focus), towards the edge of the laser spot region. The image in (a) contains a damaged area corresponding to the highest fluence (> 0.82 J/cm2, right), an extended area with slowly varying LSFL (center) at medium fluence and HSFL in the low-fluence outer part. The image in (b) below shows an enlarged section of (a) measured at higher SEM resolution. The fluence varies between 0.6 J/cm2 (right side) and about 0.37 J/cm2 (left side). Despite some randomness, the radial variation of the period can clearly be recognized (indicated by the yellow lines in the horizontal black bar). The largest periods were measured to be about 720 nm, whereas the smallest periods are around 100 nm (with some variation in this region). The change of period from the center towards the rim of the laser spot is shown in (c), with indications given of specific regions also shown in (a), and the theoretical prediction is given by the solid blue line.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

G = k i k S
Λ = 2 π | G | 1
λ = 2 π | k i | 1
λ s = 2 π | k S | 1  
Λ = λ λ λ S ± sin θ
L = λ S
λ s = λ ( ε ' + ε d ε ' ε d ) 1 / 2
ε ' = Re [ ε ω p 2 ω ( ω + i Γ ) ]
ω p 2 = e 2 N m e f f m e ε 0
N c = α m F m ( 1 R ) m m 3 2 π ( m 1 ) 2 h ν t 0 m 1

Metrics