Abstract

III-V compound semiconductor nanowires (NWs), with their direct bandgaps and high mobilities, have been shown to be promising materials for many applications including solar cells, light emitting diodes, transistors, and lasers. Self-aligned, twin-plane-defect free, planar GaAs NWs can be grown by metalorganic chemical vapor deposition (MOCVD) through the Au-assisted vapor-liquid-solid mechanism. In this report, <110> planar GaAs NW growth on GaAs (100) substrates is perturbed by introducing common p-type dopant impurities, zinc (Zn) or carbon (C), and characterized structurally and electrically. The implications of the results on planar NW growth and doping mechanism are discussed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett.4(5), 89–90 (1964).
    [CrossRef]
  2. Y. Y. Wu and P. D. Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Am. Chem. Soc.123(13), 3165–3166 (2001).
    [CrossRef]
  3. C. P. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology19(30), 305201 (2008).
    [CrossRef] [PubMed]
  4. M. Li, R. B. Bhiladvala, T. J. Morrow, J. A. Sioss, K. K. Lew, J. M. Redwing, C. D. Keating, and T. S. Mayer, “Bottom-up assembly of large-area nanowire resonator arrays,” Nat. Nanotechnol.3(2), 88–92 (2008).
    [CrossRef] [PubMed]
  5. S. A. Fortuna and X. Li, “GaAs MESFET with a high-mobility self-assembled planar nanowire channel,” IEEE Electron Device Lett.30(6), 593–595 (2009).
    [CrossRef]
  6. R. Dowdy, D. A. Walko, S. A. Fortuna, and X. Li, “Realization of unidirectional planar GaAs nanowires on GaAs (110) substrates,” IEEE Electron Device Lett.33(4), 522–524 (2012).
    [CrossRef]
  7. S. A. Fortuna, J. Wen, I. S. Chun, and X. Li, “Planar GaAs nanowires on GaAs (100) substrates: Self-aligned, nearly twin-defect free, and transfer-printable,” Nano Lett.8(12), 4421–4427 (2008).
    [CrossRef] [PubMed]
  8. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
    [CrossRef] [PubMed]
  9. A. Maaßdorf and M. Weyers, “In-situ etching of GaAs/AlxGaAs by CBr4,” J. Cryst. Growth310(23), 4754–4756 (2008).
    [CrossRef]
  10. D. E. Perea, E. R. Hemesath, E. J. Schwalbach, J. L. Lensch-Falk, P. W. Voorhees, and L. J. Lauhon, “Direct measurement of dopant distribution in an individual vapour-liquid-solid nanowire,” Nat. Nanotechnol.4(5), 315–319 (2009).
    [CrossRef] [PubMed]
  11. D. Stichtenoth, K. Wegener, C. Gutsche, I. Regolin, F. J. Tegude, W. Prost, M. Seibt, and C. Ronning, “p-type doping of GaAs nanowires,” Appl. Phys. Lett.92(16), 163107 (2008).
    [CrossRef]
  12. C. Gutsche, I. Regolin, K. Blekker, A. Lysov, W. Prost, and F. J. Tegude, “Controllable p-type doping of GaAs nanowires during vapor-liquid-solid growth,” J. Appl. Phys.105(2), 024305 (2009).
    [CrossRef]
  13. C. Gutsche, A. Lysov, I. Regolin, K. Blekker, W. Prost, and F.-J. Tegude, “n-type doping of vapor–liquid–solid grown GaAs nanowires,” Nanoscale Res. Lett.6, 65 (2011).
  14. M. T. Borgström, E. Norberg, P. Wickert, H. A. Nilsson, J. Trägårdh, K. A. Dick, G. Statkute, P. Ramvall, K. Deppert, and L. Samuelson, “Precursor evaluation for in situ InP nanowire doping,” Nanotechnology19(44), 445602 (2008).
    [CrossRef] [PubMed]
  15. A. C. Ford, S. Chuang, J. C. Ho, Y. L. Chueh, Z. Fan, and A. Javey, “Patterned p-doping of InAs nanowires by gas-phase surface diffusion of Zn,” Nano Lett.10(2), 509–513 (2010).
    [CrossRef] [PubMed]
  16. Z. Ikonic, G. P. Srivastava, and J. C. Inkson, “Optical properties of twinning superlattices in diamond-type and zinc-blende-type semiconductors,” Phys. Rev. B Condens. Matter52(19), 14078–14085 (1995).
    [CrossRef] [PubMed]
  17. Z. Ikonić, G. P. Srivastava, and J. C. Inkson, “Electronic properties of twin boundaries and twinning superlattices in diamond-type and zinc-blende-type semiconductors,” Phys. Rev. B Condens. Matter48(23), 17181–17193 (1993).
    [CrossRef] [PubMed]
  18. R. E. Algra, M. Hocevar, M. A. Verheijen, I. Zardo, G. G. Immink, W. J. van Enckevort, G. Abstreiter, L. P. Kouwenhoven, E. Vlieg, and E. P. Bakkers, “Crystal structure transfer in core/shell nanowires,” Nano Lett.11(4), 1690–1694 (2011).
    [CrossRef] [PubMed]
  19. M. H. M. van Weert, A. Helman, W. van den Einden, R. E. Algra, M. A. Verheijen, M. T. Borgström, G. Immink, J. J. Kelly, L. P. Kouwenhoven, and E. P. A. M. Bakkers, “Zinc incorporation via the Vapor-Liquid-Solid mechanism into InP Nanowires,” J. Am. Chem. Soc.131(13), 4578–4579 (2009).
    [CrossRef] [PubMed]
  20. R. E. Algra, M. A. Verheijen, M. T. Borgström, L. F. Feiner, G. Immink, W. J. van Enckevort, E. Vlieg, and E. P. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature456(7220), 369–372 (2008).
    [CrossRef] [PubMed]
  21. R. E. Algra, M. A. Verheijen, L. F. Feiner, G. G. Immink, W. J. Enckevort, E. Vlieg, and E. P. Bakkers, “The role of surface energies and chemical potential during nanowire growth,” Nano Lett.11(3), 1259–1264 (2011).
    [CrossRef] [PubMed]
  22. X. Miao, C. Zhang, and X. Li, “Monolithic barrier-all-around high electron mobility transistor with planar GaAs nanowire channel,” Nano Lett.13(6), 2548–2552 (2013).
    [CrossRef] [PubMed]
  23. R. S. Dowdy, D. A. Walko, and X. Li, “Relationship between planar GaAs nanowire growth direction and substrate orientation,” Nanotechnology24(3), 035304 (2013).
    [CrossRef] [PubMed]
  24. S. M. Sze, Physics of Semiconductor Devices (Wiley-Interscience, 1969).
  25. H. Okamoto and T. Massalski, “The Au-C (gold-carbon) system,” J. Phase Equilibria5, 378–379 (1984).
  26. S. Vinaji, A. Lochthofen, W. Mertin, I. Regolin, C. Gutsche, W. Prost, F. J. Tegude, and G. Bacher, “Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy,” Nanotechnology20(38), 385702 (2009).
    [CrossRef] [PubMed]
  27. P. Caroff, K. A. Dick, J. Johansson, M. E. Messing, K. Deppert, and L. Samuelson, “Controlled polytypic and twin-plane superlattices in III-V nanowires,” Nat. Nanotechnol.4(1), 50–55 (2009).
    [CrossRef] [PubMed]
  28. Q. Xiong, J. Wang, and P. C. Eklund, “Coherent twinning phenomena: towards twinning superlattices in III-V semiconducting nanowires,” Nano Lett.6(12), 2736–2742 (2006).
    [CrossRef] [PubMed]
  29. H. J. Joyce, J. Wong-Leung, Q. Gao, H. H. Tan, and C. Jagadish, “Phase perfection in zinc Blende and Wurtzite III-V nanowires using basic growth parameters,” Nano Lett.10(3), 908–915 (2010).
    [CrossRef] [PubMed]
  30. S. A. Fortuna and X. Li, “Metal-catalyzed semiconductor nanowires: a review on the control of growth directions,” Semicond. Sci. Technol.25(2), 024005 (2010).
    [CrossRef]

2013

X. Miao, C. Zhang, and X. Li, “Monolithic barrier-all-around high electron mobility transistor with planar GaAs nanowire channel,” Nano Lett.13(6), 2548–2552 (2013).
[CrossRef] [PubMed]

R. S. Dowdy, D. A. Walko, and X. Li, “Relationship between planar GaAs nanowire growth direction and substrate orientation,” Nanotechnology24(3), 035304 (2013).
[CrossRef] [PubMed]

2012

R. Dowdy, D. A. Walko, S. A. Fortuna, and X. Li, “Realization of unidirectional planar GaAs nanowires on GaAs (110) substrates,” IEEE Electron Device Lett.33(4), 522–524 (2012).
[CrossRef]

2011

C. Gutsche, A. Lysov, I. Regolin, K. Blekker, W. Prost, and F.-J. Tegude, “n-type doping of vapor–liquid–solid grown GaAs nanowires,” Nanoscale Res. Lett.6, 65 (2011).

R. E. Algra, M. Hocevar, M. A. Verheijen, I. Zardo, G. G. Immink, W. J. van Enckevort, G. Abstreiter, L. P. Kouwenhoven, E. Vlieg, and E. P. Bakkers, “Crystal structure transfer in core/shell nanowires,” Nano Lett.11(4), 1690–1694 (2011).
[CrossRef] [PubMed]

R. E. Algra, M. A. Verheijen, L. F. Feiner, G. G. Immink, W. J. Enckevort, E. Vlieg, and E. P. Bakkers, “The role of surface energies and chemical potential during nanowire growth,” Nano Lett.11(3), 1259–1264 (2011).
[CrossRef] [PubMed]

2010

H. J. Joyce, J. Wong-Leung, Q. Gao, H. H. Tan, and C. Jagadish, “Phase perfection in zinc Blende and Wurtzite III-V nanowires using basic growth parameters,” Nano Lett.10(3), 908–915 (2010).
[CrossRef] [PubMed]

S. A. Fortuna and X. Li, “Metal-catalyzed semiconductor nanowires: a review on the control of growth directions,” Semicond. Sci. Technol.25(2), 024005 (2010).
[CrossRef]

A. C. Ford, S. Chuang, J. C. Ho, Y. L. Chueh, Z. Fan, and A. Javey, “Patterned p-doping of InAs nanowires by gas-phase surface diffusion of Zn,” Nano Lett.10(2), 509–513 (2010).
[CrossRef] [PubMed]

2009

M. H. M. van Weert, A. Helman, W. van den Einden, R. E. Algra, M. A. Verheijen, M. T. Borgström, G. Immink, J. J. Kelly, L. P. Kouwenhoven, and E. P. A. M. Bakkers, “Zinc incorporation via the Vapor-Liquid-Solid mechanism into InP Nanowires,” J. Am. Chem. Soc.131(13), 4578–4579 (2009).
[CrossRef] [PubMed]

D. E. Perea, E. R. Hemesath, E. J. Schwalbach, J. L. Lensch-Falk, P. W. Voorhees, and L. J. Lauhon, “Direct measurement of dopant distribution in an individual vapour-liquid-solid nanowire,” Nat. Nanotechnol.4(5), 315–319 (2009).
[CrossRef] [PubMed]

S. A. Fortuna and X. Li, “GaAs MESFET with a high-mobility self-assembled planar nanowire channel,” IEEE Electron Device Lett.30(6), 593–595 (2009).
[CrossRef]

S. Vinaji, A. Lochthofen, W. Mertin, I. Regolin, C. Gutsche, W. Prost, F. J. Tegude, and G. Bacher, “Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy,” Nanotechnology20(38), 385702 (2009).
[CrossRef] [PubMed]

P. Caroff, K. A. Dick, J. Johansson, M. E. Messing, K. Deppert, and L. Samuelson, “Controlled polytypic and twin-plane superlattices in III-V nanowires,” Nat. Nanotechnol.4(1), 50–55 (2009).
[CrossRef] [PubMed]

C. Gutsche, I. Regolin, K. Blekker, A. Lysov, W. Prost, and F. J. Tegude, “Controllable p-type doping of GaAs nanowires during vapor-liquid-solid growth,” J. Appl. Phys.105(2), 024305 (2009).
[CrossRef]

2008

A. Maaßdorf and M. Weyers, “In-situ etching of GaAs/AlxGaAs by CBr4,” J. Cryst. Growth310(23), 4754–4756 (2008).
[CrossRef]

S. A. Fortuna, J. Wen, I. S. Chun, and X. Li, “Planar GaAs nanowires on GaAs (100) substrates: Self-aligned, nearly twin-defect free, and transfer-printable,” Nano Lett.8(12), 4421–4427 (2008).
[CrossRef] [PubMed]

C. P. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology19(30), 305201 (2008).
[CrossRef] [PubMed]

M. Li, R. B. Bhiladvala, T. J. Morrow, J. A. Sioss, K. K. Lew, J. M. Redwing, C. D. Keating, and T. S. Mayer, “Bottom-up assembly of large-area nanowire resonator arrays,” Nat. Nanotechnol.3(2), 88–92 (2008).
[CrossRef] [PubMed]

D. Stichtenoth, K. Wegener, C. Gutsche, I. Regolin, F. J. Tegude, W. Prost, M. Seibt, and C. Ronning, “p-type doping of GaAs nanowires,” Appl. Phys. Lett.92(16), 163107 (2008).
[CrossRef]

M. T. Borgström, E. Norberg, P. Wickert, H. A. Nilsson, J. Trägårdh, K. A. Dick, G. Statkute, P. Ramvall, K. Deppert, and L. Samuelson, “Precursor evaluation for in situ InP nanowire doping,” Nanotechnology19(44), 445602 (2008).
[CrossRef] [PubMed]

R. E. Algra, M. A. Verheijen, M. T. Borgström, L. F. Feiner, G. Immink, W. J. van Enckevort, E. Vlieg, and E. P. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature456(7220), 369–372 (2008).
[CrossRef] [PubMed]

2006

Q. Xiong, J. Wang, and P. C. Eklund, “Coherent twinning phenomena: towards twinning superlattices in III-V semiconducting nanowires,” Nano Lett.6(12), 2736–2742 (2006).
[CrossRef] [PubMed]

2002

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

2001

Y. Y. Wu and P. D. Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Am. Chem. Soc.123(13), 3165–3166 (2001).
[CrossRef]

1995

Z. Ikonic, G. P. Srivastava, and J. C. Inkson, “Optical properties of twinning superlattices in diamond-type and zinc-blende-type semiconductors,” Phys. Rev. B Condens. Matter52(19), 14078–14085 (1995).
[CrossRef] [PubMed]

1993

Z. Ikonić, G. P. Srivastava, and J. C. Inkson, “Electronic properties of twin boundaries and twinning superlattices in diamond-type and zinc-blende-type semiconductors,” Phys. Rev. B Condens. Matter48(23), 17181–17193 (1993).
[CrossRef] [PubMed]

1984

H. Okamoto and T. Massalski, “The Au-C (gold-carbon) system,” J. Phase Equilibria5, 378–379 (1984).

1964

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett.4(5), 89–90 (1964).
[CrossRef]

Abstreiter, G.

R. E. Algra, M. Hocevar, M. A. Verheijen, I. Zardo, G. G. Immink, W. J. van Enckevort, G. Abstreiter, L. P. Kouwenhoven, E. Vlieg, and E. P. Bakkers, “Crystal structure transfer in core/shell nanowires,” Nano Lett.11(4), 1690–1694 (2011).
[CrossRef] [PubMed]

Algra, R. E.

R. E. Algra, M. Hocevar, M. A. Verheijen, I. Zardo, G. G. Immink, W. J. van Enckevort, G. Abstreiter, L. P. Kouwenhoven, E. Vlieg, and E. P. Bakkers, “Crystal structure transfer in core/shell nanowires,” Nano Lett.11(4), 1690–1694 (2011).
[CrossRef] [PubMed]

R. E. Algra, M. A. Verheijen, L. F. Feiner, G. G. Immink, W. J. Enckevort, E. Vlieg, and E. P. Bakkers, “The role of surface energies and chemical potential during nanowire growth,” Nano Lett.11(3), 1259–1264 (2011).
[CrossRef] [PubMed]

M. H. M. van Weert, A. Helman, W. van den Einden, R. E. Algra, M. A. Verheijen, M. T. Borgström, G. Immink, J. J. Kelly, L. P. Kouwenhoven, and E. P. A. M. Bakkers, “Zinc incorporation via the Vapor-Liquid-Solid mechanism into InP Nanowires,” J. Am. Chem. Soc.131(13), 4578–4579 (2009).
[CrossRef] [PubMed]

R. E. Algra, M. A. Verheijen, M. T. Borgström, L. F. Feiner, G. Immink, W. J. van Enckevort, E. Vlieg, and E. P. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature456(7220), 369–372 (2008).
[CrossRef] [PubMed]

Bacher, G.

S. Vinaji, A. Lochthofen, W. Mertin, I. Regolin, C. Gutsche, W. Prost, F. J. Tegude, and G. Bacher, “Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy,” Nanotechnology20(38), 385702 (2009).
[CrossRef] [PubMed]

Bakkers, E. P.

R. E. Algra, M. Hocevar, M. A. Verheijen, I. Zardo, G. G. Immink, W. J. van Enckevort, G. Abstreiter, L. P. Kouwenhoven, E. Vlieg, and E. P. Bakkers, “Crystal structure transfer in core/shell nanowires,” Nano Lett.11(4), 1690–1694 (2011).
[CrossRef] [PubMed]

R. E. Algra, M. A. Verheijen, L. F. Feiner, G. G. Immink, W. J. Enckevort, E. Vlieg, and E. P. Bakkers, “The role of surface energies and chemical potential during nanowire growth,” Nano Lett.11(3), 1259–1264 (2011).
[CrossRef] [PubMed]

R. E. Algra, M. A. Verheijen, M. T. Borgström, L. F. Feiner, G. Immink, W. J. van Enckevort, E. Vlieg, and E. P. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature456(7220), 369–372 (2008).
[CrossRef] [PubMed]

Bakkers, E. P. A. M.

M. H. M. van Weert, A. Helman, W. van den Einden, R. E. Algra, M. A. Verheijen, M. T. Borgström, G. Immink, J. J. Kelly, L. P. Kouwenhoven, and E. P. A. M. Bakkers, “Zinc incorporation via the Vapor-Liquid-Solid mechanism into InP Nanowires,” J. Am. Chem. Soc.131(13), 4578–4579 (2009).
[CrossRef] [PubMed]

Bhiladvala, R. B.

M. Li, R. B. Bhiladvala, T. J. Morrow, J. A. Sioss, K. K. Lew, J. M. Redwing, C. D. Keating, and T. S. Mayer, “Bottom-up assembly of large-area nanowire resonator arrays,” Nat. Nanotechnol.3(2), 88–92 (2008).
[CrossRef] [PubMed]

Blekker, K.

C. Gutsche, A. Lysov, I. Regolin, K. Blekker, W. Prost, and F.-J. Tegude, “n-type doping of vapor–liquid–solid grown GaAs nanowires,” Nanoscale Res. Lett.6, 65 (2011).

C. Gutsche, I. Regolin, K. Blekker, A. Lysov, W. Prost, and F. J. Tegude, “Controllable p-type doping of GaAs nanowires during vapor-liquid-solid growth,” J. Appl. Phys.105(2), 024305 (2009).
[CrossRef]

Borgström, M. T.

M. H. M. van Weert, A. Helman, W. van den Einden, R. E. Algra, M. A. Verheijen, M. T. Borgström, G. Immink, J. J. Kelly, L. P. Kouwenhoven, and E. P. A. M. Bakkers, “Zinc incorporation via the Vapor-Liquid-Solid mechanism into InP Nanowires,” J. Am. Chem. Soc.131(13), 4578–4579 (2009).
[CrossRef] [PubMed]

M. T. Borgström, E. Norberg, P. Wickert, H. A. Nilsson, J. Trägårdh, K. A. Dick, G. Statkute, P. Ramvall, K. Deppert, and L. Samuelson, “Precursor evaluation for in situ InP nanowire doping,” Nanotechnology19(44), 445602 (2008).
[CrossRef] [PubMed]

R. E. Algra, M. A. Verheijen, M. T. Borgström, L. F. Feiner, G. Immink, W. J. van Enckevort, E. Vlieg, and E. P. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature456(7220), 369–372 (2008).
[CrossRef] [PubMed]

Caroff, P.

P. Caroff, K. A. Dick, J. Johansson, M. E. Messing, K. Deppert, and L. Samuelson, “Controlled polytypic and twin-plane superlattices in III-V nanowires,” Nat. Nanotechnol.4(1), 50–55 (2009).
[CrossRef] [PubMed]

Chuang, S.

A. C. Ford, S. Chuang, J. C. Ho, Y. L. Chueh, Z. Fan, and A. Javey, “Patterned p-doping of InAs nanowires by gas-phase surface diffusion of Zn,” Nano Lett.10(2), 509–513 (2010).
[CrossRef] [PubMed]

Chueh, Y. L.

A. C. Ford, S. Chuang, J. C. Ho, Y. L. Chueh, Z. Fan, and A. Javey, “Patterned p-doping of InAs nanowires by gas-phase surface diffusion of Zn,” Nano Lett.10(2), 509–513 (2010).
[CrossRef] [PubMed]

Chun, I. S.

S. A. Fortuna, J. Wen, I. S. Chun, and X. Li, “Planar GaAs nanowires on GaAs (100) substrates: Self-aligned, nearly twin-defect free, and transfer-printable,” Nano Lett.8(12), 4421–4427 (2008).
[CrossRef] [PubMed]

Deppert, K.

P. Caroff, K. A. Dick, J. Johansson, M. E. Messing, K. Deppert, and L. Samuelson, “Controlled polytypic and twin-plane superlattices in III-V nanowires,” Nat. Nanotechnol.4(1), 50–55 (2009).
[CrossRef] [PubMed]

M. T. Borgström, E. Norberg, P. Wickert, H. A. Nilsson, J. Trägårdh, K. A. Dick, G. Statkute, P. Ramvall, K. Deppert, and L. Samuelson, “Precursor evaluation for in situ InP nanowire doping,” Nanotechnology19(44), 445602 (2008).
[CrossRef] [PubMed]

Dick, K. A.

P. Caroff, K. A. Dick, J. Johansson, M. E. Messing, K. Deppert, and L. Samuelson, “Controlled polytypic and twin-plane superlattices in III-V nanowires,” Nat. Nanotechnol.4(1), 50–55 (2009).
[CrossRef] [PubMed]

M. T. Borgström, E. Norberg, P. Wickert, H. A. Nilsson, J. Trägårdh, K. A. Dick, G. Statkute, P. Ramvall, K. Deppert, and L. Samuelson, “Precursor evaluation for in situ InP nanowire doping,” Nanotechnology19(44), 445602 (2008).
[CrossRef] [PubMed]

Dowdy, R.

R. Dowdy, D. A. Walko, S. A. Fortuna, and X. Li, “Realization of unidirectional planar GaAs nanowires on GaAs (110) substrates,” IEEE Electron Device Lett.33(4), 522–524 (2012).
[CrossRef]

Dowdy, R. S.

R. S. Dowdy, D. A. Walko, and X. Li, “Relationship between planar GaAs nanowire growth direction and substrate orientation,” Nanotechnology24(3), 035304 (2013).
[CrossRef] [PubMed]

Eklund, P. C.

Q. Xiong, J. Wang, and P. C. Eklund, “Coherent twinning phenomena: towards twinning superlattices in III-V semiconducting nanowires,” Nano Lett.6(12), 2736–2742 (2006).
[CrossRef] [PubMed]

Ellis, W. C.

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett.4(5), 89–90 (1964).
[CrossRef]

Enckevort, W. J.

R. E. Algra, M. A. Verheijen, L. F. Feiner, G. G. Immink, W. J. Enckevort, E. Vlieg, and E. P. Bakkers, “The role of surface energies and chemical potential during nanowire growth,” Nano Lett.11(3), 1259–1264 (2011).
[CrossRef] [PubMed]

Fan, Z.

A. C. Ford, S. Chuang, J. C. Ho, Y. L. Chueh, Z. Fan, and A. Javey, “Patterned p-doping of InAs nanowires by gas-phase surface diffusion of Zn,” Nano Lett.10(2), 509–513 (2010).
[CrossRef] [PubMed]

Feiner, L. F.

R. E. Algra, M. A. Verheijen, L. F. Feiner, G. G. Immink, W. J. Enckevort, E. Vlieg, and E. P. Bakkers, “The role of surface energies and chemical potential during nanowire growth,” Nano Lett.11(3), 1259–1264 (2011).
[CrossRef] [PubMed]

R. E. Algra, M. A. Verheijen, M. T. Borgström, L. F. Feiner, G. Immink, W. J. van Enckevort, E. Vlieg, and E. P. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature456(7220), 369–372 (2008).
[CrossRef] [PubMed]

Ford, A. C.

A. C. Ford, S. Chuang, J. C. Ho, Y. L. Chueh, Z. Fan, and A. Javey, “Patterned p-doping of InAs nanowires by gas-phase surface diffusion of Zn,” Nano Lett.10(2), 509–513 (2010).
[CrossRef] [PubMed]

Fortuna, S. A.

R. Dowdy, D. A. Walko, S. A. Fortuna, and X. Li, “Realization of unidirectional planar GaAs nanowires on GaAs (110) substrates,” IEEE Electron Device Lett.33(4), 522–524 (2012).
[CrossRef]

S. A. Fortuna and X. Li, “Metal-catalyzed semiconductor nanowires: a review on the control of growth directions,” Semicond. Sci. Technol.25(2), 024005 (2010).
[CrossRef]

S. A. Fortuna and X. Li, “GaAs MESFET with a high-mobility self-assembled planar nanowire channel,” IEEE Electron Device Lett.30(6), 593–595 (2009).
[CrossRef]

S. A. Fortuna, J. Wen, I. S. Chun, and X. Li, “Planar GaAs nanowires on GaAs (100) substrates: Self-aligned, nearly twin-defect free, and transfer-printable,” Nano Lett.8(12), 4421–4427 (2008).
[CrossRef] [PubMed]

Gao, Q.

H. J. Joyce, J. Wong-Leung, Q. Gao, H. H. Tan, and C. Jagadish, “Phase perfection in zinc Blende and Wurtzite III-V nanowires using basic growth parameters,” Nano Lett.10(3), 908–915 (2010).
[CrossRef] [PubMed]

Gudiksen, M. S.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Gutsche, C.

C. Gutsche, A. Lysov, I. Regolin, K. Blekker, W. Prost, and F.-J. Tegude, “n-type doping of vapor–liquid–solid grown GaAs nanowires,” Nanoscale Res. Lett.6, 65 (2011).

S. Vinaji, A. Lochthofen, W. Mertin, I. Regolin, C. Gutsche, W. Prost, F. J. Tegude, and G. Bacher, “Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy,” Nanotechnology20(38), 385702 (2009).
[CrossRef] [PubMed]

C. Gutsche, I. Regolin, K. Blekker, A. Lysov, W. Prost, and F. J. Tegude, “Controllable p-type doping of GaAs nanowires during vapor-liquid-solid growth,” J. Appl. Phys.105(2), 024305 (2009).
[CrossRef]

D. Stichtenoth, K. Wegener, C. Gutsche, I. Regolin, F. J. Tegude, W. Prost, M. Seibt, and C. Ronning, “p-type doping of GaAs nanowires,” Appl. Phys. Lett.92(16), 163107 (2008).
[CrossRef]

Helman, A.

M. H. M. van Weert, A. Helman, W. van den Einden, R. E. Algra, M. A. Verheijen, M. T. Borgström, G. Immink, J. J. Kelly, L. P. Kouwenhoven, and E. P. A. M. Bakkers, “Zinc incorporation via the Vapor-Liquid-Solid mechanism into InP Nanowires,” J. Am. Chem. Soc.131(13), 4578–4579 (2009).
[CrossRef] [PubMed]

Hemesath, E. R.

D. E. Perea, E. R. Hemesath, E. J. Schwalbach, J. L. Lensch-Falk, P. W. Voorhees, and L. J. Lauhon, “Direct measurement of dopant distribution in an individual vapour-liquid-solid nanowire,” Nat. Nanotechnol.4(5), 315–319 (2009).
[CrossRef] [PubMed]

Hessman, D.

C. P. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology19(30), 305201 (2008).
[CrossRef] [PubMed]

Ho, J. C.

A. C. Ford, S. Chuang, J. C. Ho, Y. L. Chueh, Z. Fan, and A. Javey, “Patterned p-doping of InAs nanowires by gas-phase surface diffusion of Zn,” Nano Lett.10(2), 509–513 (2010).
[CrossRef] [PubMed]

Hocevar, M.

R. E. Algra, M. Hocevar, M. A. Verheijen, I. Zardo, G. G. Immink, W. J. van Enckevort, G. Abstreiter, L. P. Kouwenhoven, E. Vlieg, and E. P. Bakkers, “Crystal structure transfer in core/shell nanowires,” Nano Lett.11(4), 1690–1694 (2011).
[CrossRef] [PubMed]

Ikonic, Z.

Z. Ikonic, G. P. Srivastava, and J. C. Inkson, “Optical properties of twinning superlattices in diamond-type and zinc-blende-type semiconductors,” Phys. Rev. B Condens. Matter52(19), 14078–14085 (1995).
[CrossRef] [PubMed]

Z. Ikonić, G. P. Srivastava, and J. C. Inkson, “Electronic properties of twin boundaries and twinning superlattices in diamond-type and zinc-blende-type semiconductors,” Phys. Rev. B Condens. Matter48(23), 17181–17193 (1993).
[CrossRef] [PubMed]

Immink, G.

M. H. M. van Weert, A. Helman, W. van den Einden, R. E. Algra, M. A. Verheijen, M. T. Borgström, G. Immink, J. J. Kelly, L. P. Kouwenhoven, and E. P. A. M. Bakkers, “Zinc incorporation via the Vapor-Liquid-Solid mechanism into InP Nanowires,” J. Am. Chem. Soc.131(13), 4578–4579 (2009).
[CrossRef] [PubMed]

R. E. Algra, M. A. Verheijen, M. T. Borgström, L. F. Feiner, G. Immink, W. J. van Enckevort, E. Vlieg, and E. P. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature456(7220), 369–372 (2008).
[CrossRef] [PubMed]

Immink, G. G.

R. E. Algra, M. Hocevar, M. A. Verheijen, I. Zardo, G. G. Immink, W. J. van Enckevort, G. Abstreiter, L. P. Kouwenhoven, E. Vlieg, and E. P. Bakkers, “Crystal structure transfer in core/shell nanowires,” Nano Lett.11(4), 1690–1694 (2011).
[CrossRef] [PubMed]

R. E. Algra, M. A. Verheijen, L. F. Feiner, G. G. Immink, W. J. Enckevort, E. Vlieg, and E. P. Bakkers, “The role of surface energies and chemical potential during nanowire growth,” Nano Lett.11(3), 1259–1264 (2011).
[CrossRef] [PubMed]

Inkson, J. C.

Z. Ikonic, G. P. Srivastava, and J. C. Inkson, “Optical properties of twinning superlattices in diamond-type and zinc-blende-type semiconductors,” Phys. Rev. B Condens. Matter52(19), 14078–14085 (1995).
[CrossRef] [PubMed]

Z. Ikonić, G. P. Srivastava, and J. C. Inkson, “Electronic properties of twin boundaries and twinning superlattices in diamond-type and zinc-blende-type semiconductors,” Phys. Rev. B Condens. Matter48(23), 17181–17193 (1993).
[CrossRef] [PubMed]

Jagadish, C.

H. J. Joyce, J. Wong-Leung, Q. Gao, H. H. Tan, and C. Jagadish, “Phase perfection in zinc Blende and Wurtzite III-V nanowires using basic growth parameters,” Nano Lett.10(3), 908–915 (2010).
[CrossRef] [PubMed]

Javey, A.

A. C. Ford, S. Chuang, J. C. Ho, Y. L. Chueh, Z. Fan, and A. Javey, “Patterned p-doping of InAs nanowires by gas-phase surface diffusion of Zn,” Nano Lett.10(2), 509–513 (2010).
[CrossRef] [PubMed]

Johansson, J.

P. Caroff, K. A. Dick, J. Johansson, M. E. Messing, K. Deppert, and L. Samuelson, “Controlled polytypic and twin-plane superlattices in III-V nanowires,” Nat. Nanotechnol.4(1), 50–55 (2009).
[CrossRef] [PubMed]

Joyce, H. J.

H. J. Joyce, J. Wong-Leung, Q. Gao, H. H. Tan, and C. Jagadish, “Phase perfection in zinc Blende and Wurtzite III-V nanowires using basic growth parameters,” Nano Lett.10(3), 908–915 (2010).
[CrossRef] [PubMed]

Keating, C. D.

M. Li, R. B. Bhiladvala, T. J. Morrow, J. A. Sioss, K. K. Lew, J. M. Redwing, C. D. Keating, and T. S. Mayer, “Bottom-up assembly of large-area nanowire resonator arrays,” Nat. Nanotechnol.3(2), 88–92 (2008).
[CrossRef] [PubMed]

Kelly, J. J.

M. H. M. van Weert, A. Helman, W. van den Einden, R. E. Algra, M. A. Verheijen, M. T. Borgström, G. Immink, J. J. Kelly, L. P. Kouwenhoven, and E. P. A. M. Bakkers, “Zinc incorporation via the Vapor-Liquid-Solid mechanism into InP Nanowires,” J. Am. Chem. Soc.131(13), 4578–4579 (2009).
[CrossRef] [PubMed]

Kouwenhoven, L. P.

R. E. Algra, M. Hocevar, M. A. Verheijen, I. Zardo, G. G. Immink, W. J. van Enckevort, G. Abstreiter, L. P. Kouwenhoven, E. Vlieg, and E. P. Bakkers, “Crystal structure transfer in core/shell nanowires,” Nano Lett.11(4), 1690–1694 (2011).
[CrossRef] [PubMed]

M. H. M. van Weert, A. Helman, W. van den Einden, R. E. Algra, M. A. Verheijen, M. T. Borgström, G. Immink, J. J. Kelly, L. P. Kouwenhoven, and E. P. A. M. Bakkers, “Zinc incorporation via the Vapor-Liquid-Solid mechanism into InP Nanowires,” J. Am. Chem. Soc.131(13), 4578–4579 (2009).
[CrossRef] [PubMed]

Larsson, C.

C. P. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology19(30), 305201 (2008).
[CrossRef] [PubMed]

Lauhon, L. J.

D. E. Perea, E. R. Hemesath, E. J. Schwalbach, J. L. Lensch-Falk, P. W. Voorhees, and L. J. Lauhon, “Direct measurement of dopant distribution in an individual vapour-liquid-solid nanowire,” Nat. Nanotechnol.4(5), 315–319 (2009).
[CrossRef] [PubMed]

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Lensch-Falk, J. L.

D. E. Perea, E. R. Hemesath, E. J. Schwalbach, J. L. Lensch-Falk, P. W. Voorhees, and L. J. Lauhon, “Direct measurement of dopant distribution in an individual vapour-liquid-solid nanowire,” Nat. Nanotechnol.4(5), 315–319 (2009).
[CrossRef] [PubMed]

Lew, K. K.

M. Li, R. B. Bhiladvala, T. J. Morrow, J. A. Sioss, K. K. Lew, J. M. Redwing, C. D. Keating, and T. S. Mayer, “Bottom-up assembly of large-area nanowire resonator arrays,” Nat. Nanotechnol.3(2), 88–92 (2008).
[CrossRef] [PubMed]

Li, M.

M. Li, R. B. Bhiladvala, T. J. Morrow, J. A. Sioss, K. K. Lew, J. M. Redwing, C. D. Keating, and T. S. Mayer, “Bottom-up assembly of large-area nanowire resonator arrays,” Nat. Nanotechnol.3(2), 88–92 (2008).
[CrossRef] [PubMed]

Li, X.

R. S. Dowdy, D. A. Walko, and X. Li, “Relationship between planar GaAs nanowire growth direction and substrate orientation,” Nanotechnology24(3), 035304 (2013).
[CrossRef] [PubMed]

X. Miao, C. Zhang, and X. Li, “Monolithic barrier-all-around high electron mobility transistor with planar GaAs nanowire channel,” Nano Lett.13(6), 2548–2552 (2013).
[CrossRef] [PubMed]

R. Dowdy, D. A. Walko, S. A. Fortuna, and X. Li, “Realization of unidirectional planar GaAs nanowires on GaAs (110) substrates,” IEEE Electron Device Lett.33(4), 522–524 (2012).
[CrossRef]

S. A. Fortuna and X. Li, “Metal-catalyzed semiconductor nanowires: a review on the control of growth directions,” Semicond. Sci. Technol.25(2), 024005 (2010).
[CrossRef]

S. A. Fortuna and X. Li, “GaAs MESFET with a high-mobility self-assembled planar nanowire channel,” IEEE Electron Device Lett.30(6), 593–595 (2009).
[CrossRef]

S. A. Fortuna, J. Wen, I. S. Chun, and X. Li, “Planar GaAs nanowires on GaAs (100) substrates: Self-aligned, nearly twin-defect free, and transfer-printable,” Nano Lett.8(12), 4421–4427 (2008).
[CrossRef] [PubMed]

Lieber, C. M.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Lochthofen, A.

S. Vinaji, A. Lochthofen, W. Mertin, I. Regolin, C. Gutsche, W. Prost, F. J. Tegude, and G. Bacher, “Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy,” Nanotechnology20(38), 385702 (2009).
[CrossRef] [PubMed]

Lysov, A.

C. Gutsche, A. Lysov, I. Regolin, K. Blekker, W. Prost, and F.-J. Tegude, “n-type doping of vapor–liquid–solid grown GaAs nanowires,” Nanoscale Res. Lett.6, 65 (2011).

C. Gutsche, I. Regolin, K. Blekker, A. Lysov, W. Prost, and F. J. Tegude, “Controllable p-type doping of GaAs nanowires during vapor-liquid-solid growth,” J. Appl. Phys.105(2), 024305 (2009).
[CrossRef]

Maaßdorf, A.

A. Maaßdorf and M. Weyers, “In-situ etching of GaAs/AlxGaAs by CBr4,” J. Cryst. Growth310(23), 4754–4756 (2008).
[CrossRef]

Mårtensson, T.

C. P. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology19(30), 305201 (2008).
[CrossRef] [PubMed]

Massalski, T.

H. Okamoto and T. Massalski, “The Au-C (gold-carbon) system,” J. Phase Equilibria5, 378–379 (1984).

Mayer, T. S.

M. Li, R. B. Bhiladvala, T. J. Morrow, J. A. Sioss, K. K. Lew, J. M. Redwing, C. D. Keating, and T. S. Mayer, “Bottom-up assembly of large-area nanowire resonator arrays,” Nat. Nanotechnol.3(2), 88–92 (2008).
[CrossRef] [PubMed]

Mertin, W.

S. Vinaji, A. Lochthofen, W. Mertin, I. Regolin, C. Gutsche, W. Prost, F. J. Tegude, and G. Bacher, “Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy,” Nanotechnology20(38), 385702 (2009).
[CrossRef] [PubMed]

Messing, M. E.

P. Caroff, K. A. Dick, J. Johansson, M. E. Messing, K. Deppert, and L. Samuelson, “Controlled polytypic and twin-plane superlattices in III-V nanowires,” Nat. Nanotechnol.4(1), 50–55 (2009).
[CrossRef] [PubMed]

Miao, X.

X. Miao, C. Zhang, and X. Li, “Monolithic barrier-all-around high electron mobility transistor with planar GaAs nanowire channel,” Nano Lett.13(6), 2548–2552 (2013).
[CrossRef] [PubMed]

Morrow, T. J.

M. Li, R. B. Bhiladvala, T. J. Morrow, J. A. Sioss, K. K. Lew, J. M. Redwing, C. D. Keating, and T. S. Mayer, “Bottom-up assembly of large-area nanowire resonator arrays,” Nat. Nanotechnol.3(2), 88–92 (2008).
[CrossRef] [PubMed]

Nilsson, H. A.

M. T. Borgström, E. Norberg, P. Wickert, H. A. Nilsson, J. Trägårdh, K. A. Dick, G. Statkute, P. Ramvall, K. Deppert, and L. Samuelson, “Precursor evaluation for in situ InP nanowire doping,” Nanotechnology19(44), 445602 (2008).
[CrossRef] [PubMed]

Norberg, E.

M. T. Borgström, E. Norberg, P. Wickert, H. A. Nilsson, J. Trägårdh, K. A. Dick, G. Statkute, P. Ramvall, K. Deppert, and L. Samuelson, “Precursor evaluation for in situ InP nanowire doping,” Nanotechnology19(44), 445602 (2008).
[CrossRef] [PubMed]

Ohlsson, J.

C. P. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology19(30), 305201 (2008).
[CrossRef] [PubMed]

Okamoto, H.

H. Okamoto and T. Massalski, “The Au-C (gold-carbon) system,” J. Phase Equilibria5, 378–379 (1984).

Perea, D. E.

D. E. Perea, E. R. Hemesath, E. J. Schwalbach, J. L. Lensch-Falk, P. W. Voorhees, and L. J. Lauhon, “Direct measurement of dopant distribution in an individual vapour-liquid-solid nanowire,” Nat. Nanotechnol.4(5), 315–319 (2009).
[CrossRef] [PubMed]

Prost, W.

C. Gutsche, A. Lysov, I. Regolin, K. Blekker, W. Prost, and F.-J. Tegude, “n-type doping of vapor–liquid–solid grown GaAs nanowires,” Nanoscale Res. Lett.6, 65 (2011).

S. Vinaji, A. Lochthofen, W. Mertin, I. Regolin, C. Gutsche, W. Prost, F. J. Tegude, and G. Bacher, “Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy,” Nanotechnology20(38), 385702 (2009).
[CrossRef] [PubMed]

C. Gutsche, I. Regolin, K. Blekker, A. Lysov, W. Prost, and F. J. Tegude, “Controllable p-type doping of GaAs nanowires during vapor-liquid-solid growth,” J. Appl. Phys.105(2), 024305 (2009).
[CrossRef]

D. Stichtenoth, K. Wegener, C. Gutsche, I. Regolin, F. J. Tegude, W. Prost, M. Seibt, and C. Ronning, “p-type doping of GaAs nanowires,” Appl. Phys. Lett.92(16), 163107 (2008).
[CrossRef]

Ramvall, P.

M. T. Borgström, E. Norberg, P. Wickert, H. A. Nilsson, J. Trägårdh, K. A. Dick, G. Statkute, P. Ramvall, K. Deppert, and L. Samuelson, “Precursor evaluation for in situ InP nanowire doping,” Nanotechnology19(44), 445602 (2008).
[CrossRef] [PubMed]

Rask, M.

C. P. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology19(30), 305201 (2008).
[CrossRef] [PubMed]

Redwing, J. M.

M. Li, R. B. Bhiladvala, T. J. Morrow, J. A. Sioss, K. K. Lew, J. M. Redwing, C. D. Keating, and T. S. Mayer, “Bottom-up assembly of large-area nanowire resonator arrays,” Nat. Nanotechnol.3(2), 88–92 (2008).
[CrossRef] [PubMed]

Regolin, I.

C. Gutsche, A. Lysov, I. Regolin, K. Blekker, W. Prost, and F.-J. Tegude, “n-type doping of vapor–liquid–solid grown GaAs nanowires,” Nanoscale Res. Lett.6, 65 (2011).

C. Gutsche, I. Regolin, K. Blekker, A. Lysov, W. Prost, and F. J. Tegude, “Controllable p-type doping of GaAs nanowires during vapor-liquid-solid growth,” J. Appl. Phys.105(2), 024305 (2009).
[CrossRef]

S. Vinaji, A. Lochthofen, W. Mertin, I. Regolin, C. Gutsche, W. Prost, F. J. Tegude, and G. Bacher, “Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy,” Nanotechnology20(38), 385702 (2009).
[CrossRef] [PubMed]

D. Stichtenoth, K. Wegener, C. Gutsche, I. Regolin, F. J. Tegude, W. Prost, M. Seibt, and C. Ronning, “p-type doping of GaAs nanowires,” Appl. Phys. Lett.92(16), 163107 (2008).
[CrossRef]

Ronning, C.

D. Stichtenoth, K. Wegener, C. Gutsche, I. Regolin, F. J. Tegude, W. Prost, M. Seibt, and C. Ronning, “p-type doping of GaAs nanowires,” Appl. Phys. Lett.92(16), 163107 (2008).
[CrossRef]

Samuelson, L.

P. Caroff, K. A. Dick, J. Johansson, M. E. Messing, K. Deppert, and L. Samuelson, “Controlled polytypic and twin-plane superlattices in III-V nanowires,” Nat. Nanotechnol.4(1), 50–55 (2009).
[CrossRef] [PubMed]

M. T. Borgström, E. Norberg, P. Wickert, H. A. Nilsson, J. Trägårdh, K. A. Dick, G. Statkute, P. Ramvall, K. Deppert, and L. Samuelson, “Precursor evaluation for in situ InP nanowire doping,” Nanotechnology19(44), 445602 (2008).
[CrossRef] [PubMed]

C. P. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology19(30), 305201 (2008).
[CrossRef] [PubMed]

Schwalbach, E. J.

D. E. Perea, E. R. Hemesath, E. J. Schwalbach, J. L. Lensch-Falk, P. W. Voorhees, and L. J. Lauhon, “Direct measurement of dopant distribution in an individual vapour-liquid-solid nanowire,” Nat. Nanotechnol.4(5), 315–319 (2009).
[CrossRef] [PubMed]

Seibt, M.

D. Stichtenoth, K. Wegener, C. Gutsche, I. Regolin, F. J. Tegude, W. Prost, M. Seibt, and C. Ronning, “p-type doping of GaAs nanowires,” Appl. Phys. Lett.92(16), 163107 (2008).
[CrossRef]

Sioss, J. A.

M. Li, R. B. Bhiladvala, T. J. Morrow, J. A. Sioss, K. K. Lew, J. M. Redwing, C. D. Keating, and T. S. Mayer, “Bottom-up assembly of large-area nanowire resonator arrays,” Nat. Nanotechnol.3(2), 88–92 (2008).
[CrossRef] [PubMed]

Smith, D. C.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Srivastava, G. P.

Z. Ikonic, G. P. Srivastava, and J. C. Inkson, “Optical properties of twinning superlattices in diamond-type and zinc-blende-type semiconductors,” Phys. Rev. B Condens. Matter52(19), 14078–14085 (1995).
[CrossRef] [PubMed]

Z. Ikonić, G. P. Srivastava, and J. C. Inkson, “Electronic properties of twin boundaries and twinning superlattices in diamond-type and zinc-blende-type semiconductors,” Phys. Rev. B Condens. Matter48(23), 17181–17193 (1993).
[CrossRef] [PubMed]

Statkute, G.

M. T. Borgström, E. Norberg, P. Wickert, H. A. Nilsson, J. Trägårdh, K. A. Dick, G. Statkute, P. Ramvall, K. Deppert, and L. Samuelson, “Precursor evaluation for in situ InP nanowire doping,” Nanotechnology19(44), 445602 (2008).
[CrossRef] [PubMed]

Stichtenoth, D.

D. Stichtenoth, K. Wegener, C. Gutsche, I. Regolin, F. J. Tegude, W. Prost, M. Seibt, and C. Ronning, “p-type doping of GaAs nanowires,” Appl. Phys. Lett.92(16), 163107 (2008).
[CrossRef]

Svensson, C. P.

C. P. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology19(30), 305201 (2008).
[CrossRef] [PubMed]

Tan, H. H.

H. J. Joyce, J. Wong-Leung, Q. Gao, H. H. Tan, and C. Jagadish, “Phase perfection in zinc Blende and Wurtzite III-V nanowires using basic growth parameters,” Nano Lett.10(3), 908–915 (2010).
[CrossRef] [PubMed]

Tegude, F. J.

C. Gutsche, I. Regolin, K. Blekker, A. Lysov, W. Prost, and F. J. Tegude, “Controllable p-type doping of GaAs nanowires during vapor-liquid-solid growth,” J. Appl. Phys.105(2), 024305 (2009).
[CrossRef]

S. Vinaji, A. Lochthofen, W. Mertin, I. Regolin, C. Gutsche, W. Prost, F. J. Tegude, and G. Bacher, “Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy,” Nanotechnology20(38), 385702 (2009).
[CrossRef] [PubMed]

D. Stichtenoth, K. Wegener, C. Gutsche, I. Regolin, F. J. Tegude, W. Prost, M. Seibt, and C. Ronning, “p-type doping of GaAs nanowires,” Appl. Phys. Lett.92(16), 163107 (2008).
[CrossRef]

Tegude, F.-J.

C. Gutsche, A. Lysov, I. Regolin, K. Blekker, W. Prost, and F.-J. Tegude, “n-type doping of vapor–liquid–solid grown GaAs nanowires,” Nanoscale Res. Lett.6, 65 (2011).

Trägårdh, J.

M. T. Borgström, E. Norberg, P. Wickert, H. A. Nilsson, J. Trägårdh, K. A. Dick, G. Statkute, P. Ramvall, K. Deppert, and L. Samuelson, “Precursor evaluation for in situ InP nanowire doping,” Nanotechnology19(44), 445602 (2008).
[CrossRef] [PubMed]

C. P. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology19(30), 305201 (2008).
[CrossRef] [PubMed]

van den Einden, W.

M. H. M. van Weert, A. Helman, W. van den Einden, R. E. Algra, M. A. Verheijen, M. T. Borgström, G. Immink, J. J. Kelly, L. P. Kouwenhoven, and E. P. A. M. Bakkers, “Zinc incorporation via the Vapor-Liquid-Solid mechanism into InP Nanowires,” J. Am. Chem. Soc.131(13), 4578–4579 (2009).
[CrossRef] [PubMed]

van Enckevort, W. J.

R. E. Algra, M. Hocevar, M. A. Verheijen, I. Zardo, G. G. Immink, W. J. van Enckevort, G. Abstreiter, L. P. Kouwenhoven, E. Vlieg, and E. P. Bakkers, “Crystal structure transfer in core/shell nanowires,” Nano Lett.11(4), 1690–1694 (2011).
[CrossRef] [PubMed]

R. E. Algra, M. A. Verheijen, M. T. Borgström, L. F. Feiner, G. Immink, W. J. van Enckevort, E. Vlieg, and E. P. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature456(7220), 369–372 (2008).
[CrossRef] [PubMed]

van Weert, M. H. M.

M. H. M. van Weert, A. Helman, W. van den Einden, R. E. Algra, M. A. Verheijen, M. T. Borgström, G. Immink, J. J. Kelly, L. P. Kouwenhoven, and E. P. A. M. Bakkers, “Zinc incorporation via the Vapor-Liquid-Solid mechanism into InP Nanowires,” J. Am. Chem. Soc.131(13), 4578–4579 (2009).
[CrossRef] [PubMed]

Verheijen, M. A.

R. E. Algra, M. A. Verheijen, L. F. Feiner, G. G. Immink, W. J. Enckevort, E. Vlieg, and E. P. Bakkers, “The role of surface energies and chemical potential during nanowire growth,” Nano Lett.11(3), 1259–1264 (2011).
[CrossRef] [PubMed]

R. E. Algra, M. Hocevar, M. A. Verheijen, I. Zardo, G. G. Immink, W. J. van Enckevort, G. Abstreiter, L. P. Kouwenhoven, E. Vlieg, and E. P. Bakkers, “Crystal structure transfer in core/shell nanowires,” Nano Lett.11(4), 1690–1694 (2011).
[CrossRef] [PubMed]

M. H. M. van Weert, A. Helman, W. van den Einden, R. E. Algra, M. A. Verheijen, M. T. Borgström, G. Immink, J. J. Kelly, L. P. Kouwenhoven, and E. P. A. M. Bakkers, “Zinc incorporation via the Vapor-Liquid-Solid mechanism into InP Nanowires,” J. Am. Chem. Soc.131(13), 4578–4579 (2009).
[CrossRef] [PubMed]

R. E. Algra, M. A. Verheijen, M. T. Borgström, L. F. Feiner, G. Immink, W. J. van Enckevort, E. Vlieg, and E. P. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature456(7220), 369–372 (2008).
[CrossRef] [PubMed]

Vinaji, S.

S. Vinaji, A. Lochthofen, W. Mertin, I. Regolin, C. Gutsche, W. Prost, F. J. Tegude, and G. Bacher, “Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy,” Nanotechnology20(38), 385702 (2009).
[CrossRef] [PubMed]

Vlieg, E.

R. E. Algra, M. Hocevar, M. A. Verheijen, I. Zardo, G. G. Immink, W. J. van Enckevort, G. Abstreiter, L. P. Kouwenhoven, E. Vlieg, and E. P. Bakkers, “Crystal structure transfer in core/shell nanowires,” Nano Lett.11(4), 1690–1694 (2011).
[CrossRef] [PubMed]

R. E. Algra, M. A. Verheijen, L. F. Feiner, G. G. Immink, W. J. Enckevort, E. Vlieg, and E. P. Bakkers, “The role of surface energies and chemical potential during nanowire growth,” Nano Lett.11(3), 1259–1264 (2011).
[CrossRef] [PubMed]

R. E. Algra, M. A. Verheijen, M. T. Borgström, L. F. Feiner, G. Immink, W. J. van Enckevort, E. Vlieg, and E. P. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature456(7220), 369–372 (2008).
[CrossRef] [PubMed]

Voorhees, P. W.

D. E. Perea, E. R. Hemesath, E. J. Schwalbach, J. L. Lensch-Falk, P. W. Voorhees, and L. J. Lauhon, “Direct measurement of dopant distribution in an individual vapour-liquid-solid nanowire,” Nat. Nanotechnol.4(5), 315–319 (2009).
[CrossRef] [PubMed]

Wagner, R. S.

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett.4(5), 89–90 (1964).
[CrossRef]

Walko, D. A.

R. S. Dowdy, D. A. Walko, and X. Li, “Relationship between planar GaAs nanowire growth direction and substrate orientation,” Nanotechnology24(3), 035304 (2013).
[CrossRef] [PubMed]

R. Dowdy, D. A. Walko, S. A. Fortuna, and X. Li, “Realization of unidirectional planar GaAs nanowires on GaAs (110) substrates,” IEEE Electron Device Lett.33(4), 522–524 (2012).
[CrossRef]

Wang, J.

Q. Xiong, J. Wang, and P. C. Eklund, “Coherent twinning phenomena: towards twinning superlattices in III-V semiconducting nanowires,” Nano Lett.6(12), 2736–2742 (2006).
[CrossRef] [PubMed]

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Wegener, K.

D. Stichtenoth, K. Wegener, C. Gutsche, I. Regolin, F. J. Tegude, W. Prost, M. Seibt, and C. Ronning, “p-type doping of GaAs nanowires,” Appl. Phys. Lett.92(16), 163107 (2008).
[CrossRef]

Wen, J.

S. A. Fortuna, J. Wen, I. S. Chun, and X. Li, “Planar GaAs nanowires on GaAs (100) substrates: Self-aligned, nearly twin-defect free, and transfer-printable,” Nano Lett.8(12), 4421–4427 (2008).
[CrossRef] [PubMed]

Weyers, M.

A. Maaßdorf and M. Weyers, “In-situ etching of GaAs/AlxGaAs by CBr4,” J. Cryst. Growth310(23), 4754–4756 (2008).
[CrossRef]

Wickert, P.

M. T. Borgström, E. Norberg, P. Wickert, H. A. Nilsson, J. Trägårdh, K. A. Dick, G. Statkute, P. Ramvall, K. Deppert, and L. Samuelson, “Precursor evaluation for in situ InP nanowire doping,” Nanotechnology19(44), 445602 (2008).
[CrossRef] [PubMed]

Wong-Leung, J.

H. J. Joyce, J. Wong-Leung, Q. Gao, H. H. Tan, and C. Jagadish, “Phase perfection in zinc Blende and Wurtzite III-V nanowires using basic growth parameters,” Nano Lett.10(3), 908–915 (2010).
[CrossRef] [PubMed]

Wu, Y. Y.

Y. Y. Wu and P. D. Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Am. Chem. Soc.123(13), 3165–3166 (2001).
[CrossRef]

Xiong, Q.

Q. Xiong, J. Wang, and P. C. Eklund, “Coherent twinning phenomena: towards twinning superlattices in III-V semiconducting nanowires,” Nano Lett.6(12), 2736–2742 (2006).
[CrossRef] [PubMed]

Yang, P. D.

Y. Y. Wu and P. D. Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Am. Chem. Soc.123(13), 3165–3166 (2001).
[CrossRef]

Zardo, I.

R. E. Algra, M. Hocevar, M. A. Verheijen, I. Zardo, G. G. Immink, W. J. van Enckevort, G. Abstreiter, L. P. Kouwenhoven, E. Vlieg, and E. P. Bakkers, “Crystal structure transfer in core/shell nanowires,” Nano Lett.11(4), 1690–1694 (2011).
[CrossRef] [PubMed]

Zhang, C.

X. Miao, C. Zhang, and X. Li, “Monolithic barrier-all-around high electron mobility transistor with planar GaAs nanowire channel,” Nano Lett.13(6), 2548–2552 (2013).
[CrossRef] [PubMed]

Appl. Phys. Lett.

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett.4(5), 89–90 (1964).
[CrossRef]

D. Stichtenoth, K. Wegener, C. Gutsche, I. Regolin, F. J. Tegude, W. Prost, M. Seibt, and C. Ronning, “p-type doping of GaAs nanowires,” Appl. Phys. Lett.92(16), 163107 (2008).
[CrossRef]

IEEE Electron Device Lett.

S. A. Fortuna and X. Li, “GaAs MESFET with a high-mobility self-assembled planar nanowire channel,” IEEE Electron Device Lett.30(6), 593–595 (2009).
[CrossRef]

R. Dowdy, D. A. Walko, S. A. Fortuna, and X. Li, “Realization of unidirectional planar GaAs nanowires on GaAs (110) substrates,” IEEE Electron Device Lett.33(4), 522–524 (2012).
[CrossRef]

J. Am. Chem. Soc.

Y. Y. Wu and P. D. Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Am. Chem. Soc.123(13), 3165–3166 (2001).
[CrossRef]

M. H. M. van Weert, A. Helman, W. van den Einden, R. E. Algra, M. A. Verheijen, M. T. Borgström, G. Immink, J. J. Kelly, L. P. Kouwenhoven, and E. P. A. M. Bakkers, “Zinc incorporation via the Vapor-Liquid-Solid mechanism into InP Nanowires,” J. Am. Chem. Soc.131(13), 4578–4579 (2009).
[CrossRef] [PubMed]

J. Appl. Phys.

C. Gutsche, I. Regolin, K. Blekker, A. Lysov, W. Prost, and F. J. Tegude, “Controllable p-type doping of GaAs nanowires during vapor-liquid-solid growth,” J. Appl. Phys.105(2), 024305 (2009).
[CrossRef]

J. Cryst. Growth

A. Maaßdorf and M. Weyers, “In-situ etching of GaAs/AlxGaAs by CBr4,” J. Cryst. Growth310(23), 4754–4756 (2008).
[CrossRef]

J. Phase Equilibria

H. Okamoto and T. Massalski, “The Au-C (gold-carbon) system,” J. Phase Equilibria5, 378–379 (1984).

Nano Lett.

R. E. Algra, M. A. Verheijen, L. F. Feiner, G. G. Immink, W. J. Enckevort, E. Vlieg, and E. P. Bakkers, “The role of surface energies and chemical potential during nanowire growth,” Nano Lett.11(3), 1259–1264 (2011).
[CrossRef] [PubMed]

X. Miao, C. Zhang, and X. Li, “Monolithic barrier-all-around high electron mobility transistor with planar GaAs nanowire channel,” Nano Lett.13(6), 2548–2552 (2013).
[CrossRef] [PubMed]

Q. Xiong, J. Wang, and P. C. Eklund, “Coherent twinning phenomena: towards twinning superlattices in III-V semiconducting nanowires,” Nano Lett.6(12), 2736–2742 (2006).
[CrossRef] [PubMed]

H. J. Joyce, J. Wong-Leung, Q. Gao, H. H. Tan, and C. Jagadish, “Phase perfection in zinc Blende and Wurtzite III-V nanowires using basic growth parameters,” Nano Lett.10(3), 908–915 (2010).
[CrossRef] [PubMed]

R. E. Algra, M. Hocevar, M. A. Verheijen, I. Zardo, G. G. Immink, W. J. van Enckevort, G. Abstreiter, L. P. Kouwenhoven, E. Vlieg, and E. P. Bakkers, “Crystal structure transfer in core/shell nanowires,” Nano Lett.11(4), 1690–1694 (2011).
[CrossRef] [PubMed]

A. C. Ford, S. Chuang, J. C. Ho, Y. L. Chueh, Z. Fan, and A. Javey, “Patterned p-doping of InAs nanowires by gas-phase surface diffusion of Zn,” Nano Lett.10(2), 509–513 (2010).
[CrossRef] [PubMed]

S. A. Fortuna, J. Wen, I. S. Chun, and X. Li, “Planar GaAs nanowires on GaAs (100) substrates: Self-aligned, nearly twin-defect free, and transfer-printable,” Nano Lett.8(12), 4421–4427 (2008).
[CrossRef] [PubMed]

Nanoscale Res. Lett.

C. Gutsche, A. Lysov, I. Regolin, K. Blekker, W. Prost, and F.-J. Tegude, “n-type doping of vapor–liquid–solid grown GaAs nanowires,” Nanoscale Res. Lett.6, 65 (2011).

Nanotechnology

M. T. Borgström, E. Norberg, P. Wickert, H. A. Nilsson, J. Trägårdh, K. A. Dick, G. Statkute, P. Ramvall, K. Deppert, and L. Samuelson, “Precursor evaluation for in situ InP nanowire doping,” Nanotechnology19(44), 445602 (2008).
[CrossRef] [PubMed]

C. P. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology19(30), 305201 (2008).
[CrossRef] [PubMed]

R. S. Dowdy, D. A. Walko, and X. Li, “Relationship between planar GaAs nanowire growth direction and substrate orientation,” Nanotechnology24(3), 035304 (2013).
[CrossRef] [PubMed]

S. Vinaji, A. Lochthofen, W. Mertin, I. Regolin, C. Gutsche, W. Prost, F. J. Tegude, and G. Bacher, “Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy,” Nanotechnology20(38), 385702 (2009).
[CrossRef] [PubMed]

Nat. Nanotechnol.

P. Caroff, K. A. Dick, J. Johansson, M. E. Messing, K. Deppert, and L. Samuelson, “Controlled polytypic and twin-plane superlattices in III-V nanowires,” Nat. Nanotechnol.4(1), 50–55 (2009).
[CrossRef] [PubMed]

M. Li, R. B. Bhiladvala, T. J. Morrow, J. A. Sioss, K. K. Lew, J. M. Redwing, C. D. Keating, and T. S. Mayer, “Bottom-up assembly of large-area nanowire resonator arrays,” Nat. Nanotechnol.3(2), 88–92 (2008).
[CrossRef] [PubMed]

D. E. Perea, E. R. Hemesath, E. J. Schwalbach, J. L. Lensch-Falk, P. W. Voorhees, and L. J. Lauhon, “Direct measurement of dopant distribution in an individual vapour-liquid-solid nanowire,” Nat. Nanotechnol.4(5), 315–319 (2009).
[CrossRef] [PubMed]

Nature

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

R. E. Algra, M. A. Verheijen, M. T. Borgström, L. F. Feiner, G. Immink, W. J. van Enckevort, E. Vlieg, and E. P. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature456(7220), 369–372 (2008).
[CrossRef] [PubMed]

Phys. Rev. B Condens. Matter

Z. Ikonic, G. P. Srivastava, and J. C. Inkson, “Optical properties of twinning superlattices in diamond-type and zinc-blende-type semiconductors,” Phys. Rev. B Condens. Matter52(19), 14078–14085 (1995).
[CrossRef] [PubMed]

Z. Ikonić, G. P. Srivastava, and J. C. Inkson, “Electronic properties of twin boundaries and twinning superlattices in diamond-type and zinc-blende-type semiconductors,” Phys. Rev. B Condens. Matter48(23), 17181–17193 (1993).
[CrossRef] [PubMed]

Semicond. Sci. Technol.

S. A. Fortuna and X. Li, “Metal-catalyzed semiconductor nanowires: a review on the control of growth directions,” Semicond. Sci. Technol.25(2), 024005 (2010).
[CrossRef]

Other

S. M. Sze, Physics of Semiconductor Devices (Wiley-Interscience, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

SEM images of <110> planar GaAs NWs grown on a (100) GaAs substrate using a two-step growth scheme with Zn off and on during growth as labeled by the dashed lines. (a) At low Zn/Ga gas phase molar ratio of 5.9 x 10−4, periodic corrugation appears along the axis of the planar NW. (b) At high Zn/Ga gas phase ratio of 5.9 x 10−2, NW no longer shows defined crystalline direction or morphology. The scale bars are 500 nm.

Fig. 2
Fig. 2

(a) High magnification SEM image of a Zn-doped planar GaAs NW showing periodic corrugation on the NW top and side facets. The scale bar is 500 nm. (b) A bright-field TEM image showing twin boundaries in the NW, indicated by the red arrows. The growth direction of the NW is along <110>, while the twin boundary is in (111) plane. The scale bar is 20 nm. (c) Selected-area electron diffraction pattern along [110] zone axis of the NW showing the existence of twin boundary.

Fig. 3
Fig. 3

SEM images of planar GaAs NWs grown at three C doping levels: 1.6 x 10−3 (a and b), 2.4 x 10−3 (c and d), and 3.2 x 10−3 (e and f), in CBr4/TMGa gas phase molar ratio. CBr4 is kept on at a constant level from the beginning of their growth. Two images are shown for each doping level with different magnification and angle, and the scale bar is 500 nm for all images. At low doping level (a,b), the NWs exhibit a long latency period before exhibiting TSL formation. As the doping increases (c,d), the latency period shortens and TSL emerges earlier given identical growth times. When the doping level exceeds 3.2 x 10−3 (e,f), controlled NW growth ceases after the latency and the NWs ‘crawl’ along the surface with a concave surface.

Fig. 4
Fig. 4

Relationship between corrugation period (distance between adjacent notches as shown in the inset SEM image) and Au nanoparticle size for (a) Zn-doped and (b) C-doped planar GaAs nanowires. Linear fits with slopes of 0.91 for DEZn and 0.76 for CBr4 doped NWs are found over a wide range of Au seed particle sizes for several doping levels.

Fig. 5
Fig. 5

Tilted SEM image showing the appearance of periodic corrugations (indicated by arrows) after a short latency period (smooth morphology) in planar GaAs NWs, grown on a heavily Zn-doped (5x1019 cm−3) GaAs epilayer from randomly dispersed Au seed particles. The scale bar is 1 μm.

Fig. 6
Fig. 6

Top view SEM images of a planar GaAs NW grown (a) with carbon contaminated Au seed particles. Periodic notches were induced with no apparent latency. The Au dots were formed through electron-beam evaporation from an Au source onto an electron-beam lithography patterned GaAs substrate. The carbon contamination was introduced in evaporation by using graphite crucible. (b) A planar GaAs NW grown with Au seed particles that are contamination free by using a tungsten crucible. No notches are observed. (c) Plot of notch period versus Au particle size for the type of growth in (a).

Fig. 7
Fig. 7

(a) Schematic showing the precursor flow pattern during planar NW growths with modulated Zn-doping. TMGa and AsH3 flows are kept constant throughout NW growth while DEZn is modulated at a 50% duty cycle every 30 s. (b) SEM image showing two planar NWs with Zn-doping switched on and off as indicated. See text for details. The scale bar is 1 µm.

Fig. 8
Fig. 8

Two terminal IV characteristics of Zn-doped planar GaAs NW (black solid trace) grown on a GaAs (100) substrate with a Zn/Ga ratio of 4.14 x 10−3. Substrate leakage (red dashed line) is negligible after removing the parasitic VPE film.

Metrics