Abstract

We report fabrication of sub-100 nm resolution structures by ablation on the surface of sapphire using femtosecond laser pulses. A single 50–70 nm wide groove was recorded by laser ablation via a controlled ripple formation on the surface. Ripples are created by breakdown due to a sphere-to-plane formation of an ionisation below surface in a similar way as the bulk ripples. Different thresholds for the ripples formed parallel and perpendicular to direction of the laser scan were observed. In a sol-gel photo-polymer SZ2080 and thermo-polymer polydimethylsiloxane, free-standing 3D structures were formed without use of two-photon absorbing photo-sensitizers. Both cases of the surface and bulk structuring were achieved via a controlled avalanche, which dominated ionisation of materials.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett.76, 2656–2658 (2000).
    [CrossRef]
  2. C.Y. Liao, M. Bouriauand, P. L. Baldeck, J.-C. Léon, C. Masclet, and T.-T. Chung, “Two-dimensional slicing method to speed up the fabrication of microobjects based on two-photon polymerization,” Appl. Phys. Lett.91, 033108 (2007).
    [CrossRef]
  3. M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97, 221102 (2010).
    [CrossRef]
  4. M. Malinauskas, P. Danilevicius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19, 5602–5610 (2011).
    [CrossRef] [PubMed]
  5. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.2, 132–134 (1997).
    [CrossRef]
  6. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412, 697–698 (2001).
    [CrossRef] [PubMed]
  7. P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Jarasiene, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, and M. Malinauskas, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Optics17, 081405 (2012).
    [CrossRef]
  8. M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18, 10209–10221 (2010).
    [CrossRef] [PubMed]
  9. K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett.89, 024106 (2006).
    [CrossRef]
  10. M. Farsari and B. Chichkov, “Materials processing: Two-photon fabrication,” Nature Photon.3, 450–452 (2009).
    [CrossRef]
  11. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for multi-photon polymerization microfabrication,” ACS Nano2, 2257–2262 (2008).
    [CrossRef]
  12. J.F. Xing, X.Z. Dong, W.Q. Chen, X.-M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90, 131106 (2007).
    [CrossRef]
  13. Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett.82, 1703 (2003).
    [CrossRef]
  14. N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC,” Appl. Phys. A76, 983–985 (2003).
    [CrossRef]
  15. A. Borowiec and H. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82, 4462 (2003).
    [CrossRef]
  16. S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on metal surface by femtosecond laser pulse,” Phys. Rev. B79, 033409 (2009).
    [CrossRef]
  17. M. Hashida, Y. Ikuta, Y. Miyasaka, S. Tokita, and S. Sakabe, “Simple formula for the interspaces of periodic grating structures selforganized on metal surfaces by femtosecond laser ablation,” Appl. Phys. Lett.102, 174106 (2013).
    [CrossRef]
  18. Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Review Lett.91, 247405 (2003).
    [CrossRef]
  19. P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. Taylor, V. Bhardwaj, D. Rayner, and P. Corkum, “Memory in nonlinear ionization of transparent solids,” Phys. Rev. Lett.97, 253001 (2006).
    [CrossRef]
  20. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys.36, 3688 (1965).
    [CrossRef]
  21. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2, 2257–2262 (2008).
    [CrossRef]
  22. A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater.7, 967–974 (2011).
    [CrossRef]
  23. 3DPoli@gmail.com.
  24. M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiutė, and R. Gadonas, “Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers,” Lith. J. Phys.50, 201–208 (2010).
    [CrossRef]
  25. E. G. Gamaly, Femtosecond Laser-Matter Interactions: Theory, Experiments and Applications(Pan Stanford Publishing, USA, 2011).
  26. S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B77, 361–368 (2003).
    [CrossRef]
  27. J. Sipe, J. Young, J. Preston, and H. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27, 1141–1154 (1983).
    [CrossRef]
  28. R. Buividas, T. Kudrius, R. Sliupas, L. Rosa, G. Slekys, S. Bagdonas, R. Rotomskis, and S. Juodkazis, “Ripple-patterned substrates for light enhancement applications,” Proc. SPIE7376, 737620 (2010).
  29. R. A. Ganeev, M. Baba, T. Ozaki, and H. Kuroda, “Long- and short-period nanostructure formation on semiconductor surfaces at different ambient conditions,” J. Opt. Soc. Am. B27, 1077–1082 (2010).
    [CrossRef]
  30. R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011).
    [CrossRef]
  31. L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100, 1–6 (2010).
    [CrossRef]
  32. F. Liang, R. Vallee, and S. L. Chin, “Mechanism of nanograting formation on the surface of fused silica,” Opt. Express20, 4389–4396 (2012).
    [CrossRef] [PubMed]
  33. L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO_2 and SiO_2 glasses: fictive temperature effect [Invited],” Opt. Mat. Express1, 605 (2011).
    [CrossRef]
  34. B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Science256, 61–66 (2009).
    [CrossRef]
  35. R. Buividas, P. R. Stoddart, and S. Juodkazis, “Laser fabricated ripple substrates for surface-enahnced Raman scattering,” Annalen der Physik524, L5–L10 (2012).
    [CrossRef]
  36. Y. Liao, Y. L. Shen, L. L. Qiao, D. P. Chen, Y. Cheng, K. Sugioka, and K. Midorikawa, “Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes,” Opt. Lett.38, 187–189 (2013).
    [CrossRef] [PubMed]
  37. C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett.12, 123901 (2011).
    [CrossRef]
  38. R. Taylor, C. Hnatovsky, E. Simova, P. Rajeev, D. Rayner, and P. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett.32, 2888–2890 (2007).
    [CrossRef] [PubMed]
  39. R. Taylor, E. Simova, and C. Hnatovsky, “Creation of chiral structures inside fused silica glass,” Opt. Lett.33, 1312–1314 (2008).
    [CrossRef] [PubMed]
  40. K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nano-particle-enhanced photo-polymerization,” J. Phys. Chem. C113, 11720–11724 (2009).
    [CrossRef]
  41. J. Morikawa, E. Hayakawa, T. Hashimoto, R. Buividas, and S. Juodkazis, “Thermal imaging of a heat transport in regions structured by femtosecond laser,” Opt. Express19, 20542–20550 (2011).
    [CrossRef] [PubMed]
  42. J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions of sapphire,” Opt. Express18, 8300–8310 (2010).
    [CrossRef] [PubMed]
  43. J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys. A.98, 551–556 (2010).
    [CrossRef]
  44. J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of femtosecond laser-structured PMMA,” Appl. Phys. A101, 27–31 (2010).
    [CrossRef]
  45. S. Rekštyte, M. Malinauskas, and S. Juodkazis, “Three-dimensional laser micro-sculpturing of silicone: towards bio-compatible scaffolds,” Opt. Express21, 17028 (2013).
    [CrossRef]
  46. S. Maruo, T. Hasegawa, and N. Yoshimura, “Single-anchor support and supercritical CO2drying enable high-precision microfabrication of three-dimensional structures,” Opt. Express17, 20945–20951 (2009).
    [CrossRef] [PubMed]
  47. T. Kondo, S. Juodkazis, and H. Misawa, “Reduction of capillary force for high-aspect ratio nanofabrication,” Appl. Phys. A81, 1583–1586 (2005).
    [CrossRef]
  48. M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
    [CrossRef]
  49. C. Coenjarts and C. Ober, “Two-photon three-dimensional microfabrication of poly(dimethylsiloxane) elastomers,” Chem. Mater.16, 5556–5558 (2004).
    [CrossRef]
  50. M. Malinauskas, D. Baltriukiene, A. Kraniauskas, P. Danilevicius, R. Jarasiene, R. Sirmenis, A. Zukauskas, E. Balciunas, V. Purlys, R. Gadonas, V. Bukelskiene, V. Sirvydis, and A. Piskarskas, “In vitro and in vivo bio-compatibility study on laser 3D microstructurable polymers.” Appl. Phys. A108, 751–759 (2012).
    [CrossRef]
  51. R. Houbertz, G. Domann, J. Schulz, B. Olsowski, L. Frohlich, and W.-S. Kim, “Impact of photoinitiators on the photopolymerization and the optical properties of inorganicorganic hybrid polymers,” Appl. Phys. Lett.84, 1105–1107 (2004).
    [CrossRef]
  52. S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett.91, 241904 (2007).
    [CrossRef]
  53. K. Cicha, T. Koch, J. Torgersen, Z. Li, R. Liska, and J. Stampfl, “Youngs modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment,” J. Appl. Phys.112, 094906 (2012).
    [CrossRef]

2013 (3)

2012 (5)

M. Malinauskas, D. Baltriukiene, A. Kraniauskas, P. Danilevicius, R. Jarasiene, R. Sirmenis, A. Zukauskas, E. Balciunas, V. Purlys, R. Gadonas, V. Bukelskiene, V. Sirvydis, and A. Piskarskas, “In vitro and in vivo bio-compatibility study on laser 3D microstructurable polymers.” Appl. Phys. A108, 751–759 (2012).
[CrossRef]

K. Cicha, T. Koch, J. Torgersen, Z. Li, R. Liska, and J. Stampfl, “Youngs modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment,” J. Appl. Phys.112, 094906 (2012).
[CrossRef]

R. Buividas, P. R. Stoddart, and S. Juodkazis, “Laser fabricated ripple substrates for surface-enahnced Raman scattering,” Annalen der Physik524, L5–L10 (2012).
[CrossRef]

F. Liang, R. Vallee, and S. L. Chin, “Mechanism of nanograting formation on the surface of fused silica,” Opt. Express20, 4389–4396 (2012).
[CrossRef] [PubMed]

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Jarasiene, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, and M. Malinauskas, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Optics17, 081405 (2012).
[CrossRef]

2011 (6)

M. Malinauskas, P. Danilevicius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19, 5602–5610 (2011).
[CrossRef] [PubMed]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO_2 and SiO_2 glasses: fictive temperature effect [Invited],” Opt. Mat. Express1, 605 (2011).
[CrossRef]

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011).
[CrossRef]

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett.12, 123901 (2011).
[CrossRef]

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater.7, 967–974 (2011).
[CrossRef]

J. Morikawa, E. Hayakawa, T. Hashimoto, R. Buividas, and S. Juodkazis, “Thermal imaging of a heat transport in regions structured by femtosecond laser,” Opt. Express19, 20542–20550 (2011).
[CrossRef] [PubMed]

2010 (10)

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions of sapphire,” Opt. Express18, 8300–8310 (2010).
[CrossRef] [PubMed]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys. A.98, 551–556 (2010).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of femtosecond laser-structured PMMA,” Appl. Phys. A101, 27–31 (2010).
[CrossRef]

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
[CrossRef]

M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiutė, and R. Gadonas, “Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers,” Lith. J. Phys.50, 201–208 (2010).
[CrossRef]

R. Buividas, T. Kudrius, R. Sliupas, L. Rosa, G. Slekys, S. Bagdonas, R. Rotomskis, and S. Juodkazis, “Ripple-patterned substrates for light enhancement applications,” Proc. SPIE7376, 737620 (2010).

R. A. Ganeev, M. Baba, T. Ozaki, and H. Kuroda, “Long- and short-period nanostructure formation on semiconductor surfaces at different ambient conditions,” J. Opt. Soc. Am. B27, 1077–1082 (2010).
[CrossRef]

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100, 1–6 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18, 10209–10221 (2010).
[CrossRef] [PubMed]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97, 221102 (2010).
[CrossRef]

2009 (5)

M. Farsari and B. Chichkov, “Materials processing: Two-photon fabrication,” Nature Photon.3, 450–452 (2009).
[CrossRef]

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Science256, 61–66 (2009).
[CrossRef]

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on metal surface by femtosecond laser pulse,” Phys. Rev. B79, 033409 (2009).
[CrossRef]

S. Maruo, T. Hasegawa, and N. Yoshimura, “Single-anchor support and supercritical CO2drying enable high-precision microfabrication of three-dimensional structures,” Opt. Express17, 20945–20951 (2009).
[CrossRef] [PubMed]

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nano-particle-enhanced photo-polymerization,” J. Phys. Chem. C113, 11720–11724 (2009).
[CrossRef]

2008 (3)

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2, 2257–2262 (2008).
[CrossRef]

R. Taylor, E. Simova, and C. Hnatovsky, “Creation of chiral structures inside fused silica glass,” Opt. Lett.33, 1312–1314 (2008).
[CrossRef] [PubMed]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for multi-photon polymerization microfabrication,” ACS Nano2, 2257–2262 (2008).
[CrossRef]

2007 (4)

J.F. Xing, X.Z. Dong, W.Q. Chen, X.-M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90, 131106 (2007).
[CrossRef]

C.Y. Liao, M. Bouriauand, P. L. Baldeck, J.-C. Léon, C. Masclet, and T.-T. Chung, “Two-dimensional slicing method to speed up the fabrication of microobjects based on two-photon polymerization,” Appl. Phys. Lett.91, 033108 (2007).
[CrossRef]

R. Taylor, C. Hnatovsky, E. Simova, P. Rajeev, D. Rayner, and P. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett.32, 2888–2890 (2007).
[CrossRef] [PubMed]

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett.91, 241904 (2007).
[CrossRef]

2006 (2)

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett.89, 024106 (2006).
[CrossRef]

P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. Taylor, V. Bhardwaj, D. Rayner, and P. Corkum, “Memory in nonlinear ionization of transparent solids,” Phys. Rev. Lett.97, 253001 (2006).
[CrossRef]

2005 (1)

T. Kondo, S. Juodkazis, and H. Misawa, “Reduction of capillary force for high-aspect ratio nanofabrication,” Appl. Phys. A81, 1583–1586 (2005).
[CrossRef]

2004 (2)

C. Coenjarts and C. Ober, “Two-photon three-dimensional microfabrication of poly(dimethylsiloxane) elastomers,” Chem. Mater.16, 5556–5558 (2004).
[CrossRef]

R. Houbertz, G. Domann, J. Schulz, B. Olsowski, L. Frohlich, and W.-S. Kim, “Impact of photoinitiators on the photopolymerization and the optical properties of inorganicorganic hybrid polymers,” Appl. Phys. Lett.84, 1105–1107 (2004).
[CrossRef]

2003 (5)

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Review Lett.91, 247405 (2003).
[CrossRef]

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett.82, 1703 (2003).
[CrossRef]

N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC,” Appl. Phys. A76, 983–985 (2003).
[CrossRef]

A. Borowiec and H. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82, 4462 (2003).
[CrossRef]

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B77, 361–368 (2003).
[CrossRef]

2001 (1)

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412, 697–698 (2001).
[CrossRef] [PubMed]

2000 (1)

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett.76, 2656–2658 (2000).
[CrossRef]

1997 (1)

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.2, 132–134 (1997).
[CrossRef]

1983 (1)

J. Sipe, J. Young, J. Preston, and H. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27, 1141–1154 (1983).
[CrossRef]

1965 (1)

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys.36, 3688 (1965).
[CrossRef]

Baba, M.

Bagdonas, S.

R. Buividas, T. Kudrius, R. Sliupas, L. Rosa, G. Slekys, S. Bagdonas, R. Rotomskis, and S. Juodkazis, “Ripple-patterned substrates for light enhancement applications,” Proc. SPIE7376, 737620 (2010).

Balciunas, E.

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Jarasiene, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, and M. Malinauskas, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Optics17, 081405 (2012).
[CrossRef]

M. Malinauskas, D. Baltriukiene, A. Kraniauskas, P. Danilevicius, R. Jarasiene, R. Sirmenis, A. Zukauskas, E. Balciunas, V. Purlys, R. Gadonas, V. Bukelskiene, V. Sirvydis, and A. Piskarskas, “In vitro and in vivo bio-compatibility study on laser 3D microstructurable polymers.” Appl. Phys. A108, 751–759 (2012).
[CrossRef]

Baldeck, P. L.

C.Y. Liao, M. Bouriauand, P. L. Baldeck, J.-C. Léon, C. Masclet, and T.-T. Chung, “Two-dimensional slicing method to speed up the fabrication of microobjects based on two-photon polymerization,” Appl. Phys. Lett.91, 033108 (2007).
[CrossRef]

Baltriukiene, D.

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Jarasiene, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, and M. Malinauskas, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Optics17, 081405 (2012).
[CrossRef]

M. Malinauskas, D. Baltriukiene, A. Kraniauskas, P. Danilevicius, R. Jarasiene, R. Sirmenis, A. Zukauskas, E. Balciunas, V. Purlys, R. Gadonas, V. Bukelskiene, V. Sirvydis, and A. Piskarskas, “In vitro and in vivo bio-compatibility study on laser 3D microstructurable polymers.” Appl. Phys. A108, 751–759 (2012).
[CrossRef]

Belazaras, K.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
[CrossRef]

Bhardwaj, V.

P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. Taylor, V. Bhardwaj, D. Rayner, and P. Corkum, “Memory in nonlinear ionization of transparent solids,” Phys. Rev. Lett.97, 253001 (2006).
[CrossRef]

Bickauskaite, G.

Birnbaum, M.

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys.36, 3688 (1965).
[CrossRef]

Borowiec, A.

A. Borowiec and H. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82, 4462 (2003).
[CrossRef]

Bouriauand, M.

C.Y. Liao, M. Bouriauand, P. L. Baldeck, J.-C. Léon, C. Masclet, and T.-T. Chung, “Two-dimensional slicing method to speed up the fabrication of microobjects based on two-photon polymerization,” Appl. Phys. Lett.91, 033108 (2007).
[CrossRef]

Bressel, L.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO_2 and SiO_2 glasses: fictive temperature effect [Invited],” Opt. Mat. Express1, 605 (2011).
[CrossRef]

Buividas, R.

R. Buividas, P. R. Stoddart, and S. Juodkazis, “Laser fabricated ripple substrates for surface-enahnced Raman scattering,” Annalen der Physik524, L5–L10 (2012).
[CrossRef]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO_2 and SiO_2 glasses: fictive temperature effect [Invited],” Opt. Mat. Express1, 605 (2011).
[CrossRef]

J. Morikawa, E. Hayakawa, T. Hashimoto, R. Buividas, and S. Juodkazis, “Thermal imaging of a heat transport in regions structured by femtosecond laser,” Opt. Express19, 20542–20550 (2011).
[CrossRef] [PubMed]

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011).
[CrossRef]

R. Buividas, T. Kudrius, R. Sliupas, L. Rosa, G. Slekys, S. Bagdonas, R. Rotomskis, and S. Juodkazis, “Ripple-patterned substrates for light enhancement applications,” Proc. SPIE7376, 737620 (2010).

Bukelskiene, V.

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Jarasiene, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, and M. Malinauskas, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Optics17, 081405 (2012).
[CrossRef]

M. Malinauskas, D. Baltriukiene, A. Kraniauskas, P. Danilevicius, R. Jarasiene, R. Sirmenis, A. Zukauskas, E. Balciunas, V. Purlys, R. Gadonas, V. Bukelskiene, V. Sirvydis, and A. Piskarskas, “In vitro and in vivo bio-compatibility study on laser 3D microstructurable polymers.” Appl. Phys. A108, 751–759 (2012).
[CrossRef]

Cai, L.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Science256, 61–66 (2009).
[CrossRef]

Chen, D. P.

Chen, W.Q.

J.F. Xing, X.Z. Dong, W.Q. Chen, X.-M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90, 131106 (2007).
[CrossRef]

Chen, X.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett.82, 1703 (2003).
[CrossRef]

Cheng, Y.

Chichkov, B.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater.7, 967–974 (2011).
[CrossRef]

M. Farsari and B. Chichkov, “Materials processing: Two-photon fabrication,” Nature Photon.3, 450–452 (2009).
[CrossRef]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for multi-photon polymerization microfabrication,” ACS Nano2, 2257–2262 (2008).
[CrossRef]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2, 2257–2262 (2008).
[CrossRef]

Chin, S. L.

Chung, T.-T.

C.Y. Liao, M. Bouriauand, P. L. Baldeck, J.-C. Léon, C. Masclet, and T.-T. Chung, “Two-dimensional slicing method to speed up the fabrication of microobjects based on two-photon polymerization,” Appl. Phys. Lett.91, 033108 (2007).
[CrossRef]

Cicha, K.

K. Cicha, T. Koch, J. Torgersen, Z. Li, R. Liska, and J. Stampfl, “Youngs modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment,” J. Appl. Phys.112, 094906 (2012).
[CrossRef]

Coenjarts, C.

C. Coenjarts and C. Ober, “Two-photon three-dimensional microfabrication of poly(dimethylsiloxane) elastomers,” Chem. Mater.16, 5556–5558 (2004).
[CrossRef]

Corkum, P.

R. Taylor, C. Hnatovsky, E. Simova, P. Rajeev, D. Rayner, and P. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett.32, 2888–2890 (2007).
[CrossRef] [PubMed]

P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. Taylor, V. Bhardwaj, D. Rayner, and P. Corkum, “Memory in nonlinear ionization of transparent solids,” Phys. Rev. Lett.97, 253001 (2006).
[CrossRef]

Danilevicius, P.

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Jarasiene, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, and M. Malinauskas, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Optics17, 081405 (2012).
[CrossRef]

M. Malinauskas, D. Baltriukiene, A. Kraniauskas, P. Danilevicius, R. Jarasiene, R. Sirmenis, A. Zukauskas, E. Balciunas, V. Purlys, R. Gadonas, V. Bukelskiene, V. Sirvydis, and A. Piskarskas, “In vitro and in vivo bio-compatibility study on laser 3D microstructurable polymers.” Appl. Phys. A108, 751–759 (2012).
[CrossRef]

M. Malinauskas, P. Danilevicius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19, 5602–5610 (2011).
[CrossRef] [PubMed]

Datsyuk, V.

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011).
[CrossRef]

de Ligny, D.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO_2 and SiO_2 glasses: fictive temperature effect [Invited],” Opt. Mat. Express1, 605 (2011).
[CrossRef]

Domann, G.

R. Houbertz, G. Domann, J. Schulz, B. Olsowski, L. Frohlich, and W.-S. Kim, “Impact of photoinitiators on the photopolymerization and the optical properties of inorganicorganic hybrid polymers,” Appl. Phys. Lett.84, 1105–1107 (2004).
[CrossRef]

Dong, X.Z.

J.F. Xing, X.Z. Dong, W.Q. Chen, X.-M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90, 131106 (2007).
[CrossRef]

Dreisow, F.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100, 1–6 (2010).
[CrossRef]

Duan, X.-M.

J.F. Xing, X.Z. Dong, W.Q. Chen, X.-M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90, 131106 (2007).
[CrossRef]

Fang, R.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett.82, 1703 (2003).
[CrossRef]

Farsari, M.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
[CrossRef]

M. Farsari and B. Chichkov, “Materials processing: Two-photon fabrication,” Nature Photon.3, 450–452 (2009).
[CrossRef]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for multi-photon polymerization microfabrication,” ACS Nano2, 2257–2262 (2008).
[CrossRef]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2, 2257–2262 (2008).
[CrossRef]

Fischer, J.

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97, 221102 (2010).
[CrossRef]

Fotakis, C.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for multi-photon polymerization microfabrication,” ACS Nano2, 2257–2262 (2008).
[CrossRef]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2, 2257–2262 (2008).
[CrossRef]

Frohlich, L.

R. Houbertz, G. Domann, J. Schulz, B. Olsowski, L. Frohlich, and W.-S. Kim, “Impact of photoinitiators on the photopolymerization and the optical properties of inorganicorganic hybrid polymers,” Appl. Phys. Lett.84, 1105–1107 (2004).
[CrossRef]

Gadonas, R.

M. Malinauskas, D. Baltriukiene, A. Kraniauskas, P. Danilevicius, R. Jarasiene, R. Sirmenis, A. Zukauskas, E. Balciunas, V. Purlys, R. Gadonas, V. Bukelskiene, V. Sirvydis, and A. Piskarskas, “In vitro and in vivo bio-compatibility study on laser 3D microstructurable polymers.” Appl. Phys. A108, 751–759 (2012).
[CrossRef]

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Jarasiene, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, and M. Malinauskas, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Optics17, 081405 (2012).
[CrossRef]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18, 10209–10221 (2010).
[CrossRef] [PubMed]

M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiutė, and R. Gadonas, “Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers,” Lith. J. Phys.50, 201–208 (2010).
[CrossRef]

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
[CrossRef]

Gaidukeviciute, A.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
[CrossRef]

M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiutė, and R. Gadonas, “Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers,” Lith. J. Phys.50, 201–208 (2010).
[CrossRef]

Gamaly, E. G.

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B77, 361–368 (2003).
[CrossRef]

E. G. Gamaly, Femtosecond Laser-Matter Interactions: Theory, Experiments and Applications(Pan Stanford Publishing, USA, 2011).

Ganeev, R. A.

Gertsvolf, M.

P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. Taylor, V. Bhardwaj, D. Rayner, and P. Corkum, “Memory in nonlinear ionization of transparent solids,” Phys. Rev. Lett.97, 253001 (2006).
[CrossRef]

Giakoumaki, A.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2, 2257–2262 (2008).
[CrossRef]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for multi-photon polymerization microfabrication,” ACS Nano2, 2257–2262 (2008).
[CrossRef]

Gilbergs, H.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
[CrossRef]

Gittard, S.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater.7, 967–974 (2011).
[CrossRef]

Gray, D.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2, 2257–2262 (2008).
[CrossRef]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for multi-photon polymerization microfabrication,” ACS Nano2, 2257–2262 (2008).
[CrossRef]

Hasegawa, T.

Hashida, M.

M. Hashida, Y. Ikuta, Y. Miyasaka, S. Tokita, and S. Sakabe, “Simple formula for the interspaces of periodic grating structures selforganized on metal surfaces by femtosecond laser ablation,” Appl. Phys. Lett.102, 174106 (2013).
[CrossRef]

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on metal surface by femtosecond laser pulse,” Phys. Rev. B79, 033409 (2009).
[CrossRef]

Hashimoto, T.

J. Morikawa, E. Hayakawa, T. Hashimoto, R. Buividas, and S. Juodkazis, “Thermal imaging of a heat transport in regions structured by femtosecond laser,” Opt. Express19, 20542–20550 (2011).
[CrossRef] [PubMed]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of femtosecond laser-structured PMMA,” Appl. Phys. A101, 27–31 (2010).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys. A.98, 551–556 (2010).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions of sapphire,” Opt. Express18, 8300–8310 (2010).
[CrossRef] [PubMed]

Haugen, H.

A. Borowiec and H. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82, 4462 (2003).
[CrossRef]

Haverich, A.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater.7, 967–974 (2011).
[CrossRef]

Hayakawa, E.

Heinrich, M.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100, 1–6 (2010).
[CrossRef]

Hirao, K.

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Review Lett.91, 247405 (2003).
[CrossRef]

Hnatovsky, C.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett.12, 123901 (2011).
[CrossRef]

R. Taylor, E. Simova, and C. Hnatovsky, “Creation of chiral structures inside fused silica glass,” Opt. Lett.33, 1312–1314 (2008).
[CrossRef] [PubMed]

R. Taylor, C. Hnatovsky, E. Simova, P. Rajeev, D. Rayner, and P. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett.32, 2888–2890 (2007).
[CrossRef] [PubMed]

P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. Taylor, V. Bhardwaj, D. Rayner, and P. Corkum, “Memory in nonlinear ionization of transparent solids,” Phys. Rev. Lett.97, 253001 (2006).
[CrossRef]

Houbertz, R.

R. Houbertz, G. Domann, J. Schulz, B. Olsowski, L. Frohlich, and W.-S. Kim, “Impact of photoinitiators on the photopolymerization and the optical properties of inorganicorganic hybrid polymers,” Appl. Phys. Lett.84, 1105–1107 (2004).
[CrossRef]

Ikuta, K.

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett.76, 2656–2658 (2000).
[CrossRef]

Ikuta, Y.

M. Hashida, Y. Ikuta, Y. Miyasaka, S. Tokita, and S. Sakabe, “Simple formula for the interspaces of periodic grating structures selforganized on metal surfaces by femtosecond laser ablation,” Appl. Phys. Lett.102, 174106 (2013).
[CrossRef]

Jarasiene, R.

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Jarasiene, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, and M. Malinauskas, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Optics17, 081405 (2012).
[CrossRef]

M. Malinauskas, D. Baltriukiene, A. Kraniauskas, P. Danilevicius, R. Jarasiene, R. Sirmenis, A. Zukauskas, E. Balciunas, V. Purlys, R. Gadonas, V. Bukelskiene, V. Sirvydis, and A. Piskarskas, “In vitro and in vivo bio-compatibility study on laser 3D microstructurable polymers.” Appl. Phys. A108, 751–759 (2012).
[CrossRef]

Jarutis, V.

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett.89, 024106 (2006).
[CrossRef]

Juodkazis, S.

S. Rekštyte, M. Malinauskas, and S. Juodkazis, “Three-dimensional laser micro-sculpturing of silicone: towards bio-compatible scaffolds,” Opt. Express21, 17028 (2013).
[CrossRef]

R. Buividas, P. R. Stoddart, and S. Juodkazis, “Laser fabricated ripple substrates for surface-enahnced Raman scattering,” Annalen der Physik524, L5–L10 (2012).
[CrossRef]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO_2 and SiO_2 glasses: fictive temperature effect [Invited],” Opt. Mat. Express1, 605 (2011).
[CrossRef]

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011).
[CrossRef]

J. Morikawa, E. Hayakawa, T. Hashimoto, R. Buividas, and S. Juodkazis, “Thermal imaging of a heat transport in regions structured by femtosecond laser,” Opt. Express19, 20542–20550 (2011).
[CrossRef] [PubMed]

M. Malinauskas, P. Danilevicius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19, 5602–5610 (2011).
[CrossRef] [PubMed]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18, 10209–10221 (2010).
[CrossRef] [PubMed]

R. Buividas, T. Kudrius, R. Sliupas, L. Rosa, G. Slekys, S. Bagdonas, R. Rotomskis, and S. Juodkazis, “Ripple-patterned substrates for light enhancement applications,” Proc. SPIE7376, 737620 (2010).

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions of sapphire,” Opt. Express18, 8300–8310 (2010).
[CrossRef] [PubMed]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys. A.98, 551–556 (2010).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of femtosecond laser-structured PMMA,” Appl. Phys. A101, 27–31 (2010).
[CrossRef]

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
[CrossRef]

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nano-particle-enhanced photo-polymerization,” J. Phys. Chem. C113, 11720–11724 (2009).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett.91, 241904 (2007).
[CrossRef]

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett.89, 024106 (2006).
[CrossRef]

T. Kondo, S. Juodkazis, and H. Misawa, “Reduction of capillary force for high-aspect ratio nanofabrication,” Appl. Phys. A81, 1583–1586 (2005).
[CrossRef]

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B77, 361–368 (2003).
[CrossRef]

Kawata, S.

J.F. Xing, X.Z. Dong, W.Q. Chen, X.-M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90, 131106 (2007).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412, 697–698 (2001).
[CrossRef] [PubMed]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.2, 132–134 (1997).
[CrossRef]

Kazansky, P.

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Review Lett.91, 247405 (2003).
[CrossRef]

Keil, R.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100, 1–6 (2010).
[CrossRef]

Kim, W.-S.

R. Houbertz, G. Domann, J. Schulz, B. Olsowski, L. Frohlich, and W.-S. Kim, “Impact of photoinitiators on the photopolymerization and the optical properties of inorganicorganic hybrid polymers,” Appl. Phys. Lett.84, 1105–1107 (2004).
[CrossRef]

Kiuchi, J.

N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC,” Appl. Phys. A76, 983–985 (2003).
[CrossRef]

Koch, T.

K. Cicha, T. Koch, J. Torgersen, Z. Li, R. Liska, and J. Stampfl, “Youngs modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment,” J. Appl. Phys.112, 094906 (2012).
[CrossRef]

Kondo, T.

T. Kondo, S. Juodkazis, and H. Misawa, “Reduction of capillary force for high-aspect ratio nanofabrication,” Appl. Phys. A81, 1583–1586 (2005).
[CrossRef]

Korovin, A. V.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100, 1–6 (2010).
[CrossRef]

Kraniauskas, A.

M. Malinauskas, D. Baltriukiene, A. Kraniauskas, P. Danilevicius, R. Jarasiene, R. Sirmenis, A. Zukauskas, E. Balciunas, V. Purlys, R. Gadonas, V. Bukelskiene, V. Sirvydis, and A. Piskarskas, “In vitro and in vivo bio-compatibility study on laser 3D microstructurable polymers.” Appl. Phys. A108, 751–759 (2012).
[CrossRef]

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Jarasiene, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, and M. Malinauskas, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Optics17, 081405 (2012).
[CrossRef]

Krolikowski, W.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett.12, 123901 (2011).
[CrossRef]

Kudrius, T.

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011).
[CrossRef]

R. Buividas, T. Kudrius, R. Sliupas, L. Rosa, G. Slekys, S. Bagdonas, R. Rotomskis, and S. Juodkazis, “Ripple-patterned substrates for light enhancement applications,” Proc. SPIE7376, 737620 (2010).

Kuroda, H.

Léon, J.-C.

C.Y. Liao, M. Bouriauand, P. L. Baldeck, J.-C. Léon, C. Masclet, and T.-T. Chung, “Two-dimensional slicing method to speed up the fabrication of microobjects based on two-photon polymerization,” Appl. Phys. Lett.91, 033108 (2007).
[CrossRef]

Li, G.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Science256, 61–66 (2009).
[CrossRef]

Li, J.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Science256, 61–66 (2009).
[CrossRef]

Li, Z.

K. Cicha, T. Koch, J. Torgersen, Z. Li, R. Liska, and J. Stampfl, “Youngs modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment,” J. Appl. Phys.112, 094906 (2012).
[CrossRef]

Liang, F.

Liao, C.Y.

C.Y. Liao, M. Bouriauand, P. L. Baldeck, J.-C. Léon, C. Masclet, and T.-T. Chung, “Two-dimensional slicing method to speed up the fabrication of microobjects based on two-photon polymerization,” Appl. Phys. Lett.91, 033108 (2007).
[CrossRef]

Liao, Y.

Y. Liao, Y. L. Shen, L. L. Qiao, D. P. Chen, Y. Cheng, K. Sugioka, and K. Midorikawa, “Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes,” Opt. Lett.38, 187–189 (2013).
[CrossRef] [PubMed]

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett.82, 1703 (2003).
[CrossRef]

Liska, R.

K. Cicha, T. Koch, J. Torgersen, Z. Li, R. Liska, and J. Stampfl, “Youngs modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment,” J. Appl. Phys.112, 094906 (2012).
[CrossRef]

Löbler, M.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater.7, 967–974 (2011).
[CrossRef]

Ma, Y.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett.82, 1703 (2003).
[CrossRef]

MacCraith, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for multi-photon polymerization microfabrication,” ACS Nano2, 2257–2262 (2008).
[CrossRef]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2, 2257–2262 (2008).
[CrossRef]

Malinauskas, M.

S. Rekštyte, M. Malinauskas, and S. Juodkazis, “Three-dimensional laser micro-sculpturing of silicone: towards bio-compatible scaffolds,” Opt. Express21, 17028 (2013).
[CrossRef]

M. Malinauskas, D. Baltriukiene, A. Kraniauskas, P. Danilevicius, R. Jarasiene, R. Sirmenis, A. Zukauskas, E. Balciunas, V. Purlys, R. Gadonas, V. Bukelskiene, V. Sirvydis, and A. Piskarskas, “In vitro and in vivo bio-compatibility study on laser 3D microstructurable polymers.” Appl. Phys. A108, 751–759 (2012).
[CrossRef]

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Jarasiene, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, and M. Malinauskas, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Optics17, 081405 (2012).
[CrossRef]

M. Malinauskas, P. Danilevicius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19, 5602–5610 (2011).
[CrossRef] [PubMed]

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater.7, 967–974 (2011).
[CrossRef]

M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiutė, and R. Gadonas, “Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers,” Lith. J. Phys.50, 201–208 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18, 10209–10221 (2010).
[CrossRef] [PubMed]

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
[CrossRef]

Martinez, V.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO_2 and SiO_2 glasses: fictive temperature effect [Invited],” Opt. Mat. Express1, 605 (2011).
[CrossRef]

Maruo, S.

S. Maruo, T. Hasegawa, and N. Yoshimura, “Single-anchor support and supercritical CO2drying enable high-precision microfabrication of three-dimensional structures,” Opt. Express17, 20945–20951 (2009).
[CrossRef] [PubMed]

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett.76, 2656–2658 (2000).
[CrossRef]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.2, 132–134 (1997).
[CrossRef]

Masclet, C.

C.Y. Liao, M. Bouriauand, P. L. Baldeck, J.-C. Léon, C. Masclet, and T.-T. Chung, “Two-dimensional slicing method to speed up the fabrication of microobjects based on two-photon polymerization,” Appl. Phys. Lett.91, 033108 (2007).
[CrossRef]

Matsuo, S.

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B77, 361–368 (2003).
[CrossRef]

Midorikawa, K.

Misawa, H.

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nano-particle-enhanced photo-polymerization,” J. Phys. Chem. C113, 11720–11724 (2009).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett.91, 241904 (2007).
[CrossRef]

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett.89, 024106 (2006).
[CrossRef]

T. Kondo, S. Juodkazis, and H. Misawa, “Reduction of capillary force for high-aspect ratio nanofabrication,” Appl. Phys. A81, 1583–1586 (2005).
[CrossRef]

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B77, 361–368 (2003).
[CrossRef]

Miyasaka, Y.

M. Hashida, Y. Ikuta, Y. Miyasaka, S. Tokita, and S. Sakabe, “Simple formula for the interspaces of periodic grating structures selforganized on metal surfaces by femtosecond laser ablation,” Appl. Phys. Lett.102, 174106 (2013).
[CrossRef]

Miyazaki, K.

N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC,” Appl. Phys. A76, 983–985 (2003).
[CrossRef]

Mizeikis, V.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO_2 and SiO_2 glasses: fictive temperature effect [Invited],” Opt. Mat. Express1, 605 (2011).
[CrossRef]

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nano-particle-enhanced photo-polymerization,” J. Phys. Chem. C113, 11720–11724 (2009).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett.91, 241904 (2007).
[CrossRef]

Momot, A.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
[CrossRef]

Morikawa, J.

J. Morikawa, E. Hayakawa, T. Hashimoto, R. Buividas, and S. Juodkazis, “Thermal imaging of a heat transport in regions structured by femtosecond laser,” Opt. Express19, 20542–20550 (2011).
[CrossRef] [PubMed]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys. A.98, 551–556 (2010).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions of sapphire,” Opt. Express18, 8300–8310 (2010).
[CrossRef] [PubMed]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of femtosecond laser-structured PMMA,” Appl. Phys. A101, 27–31 (2010).
[CrossRef]

Nakamura, O.

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.2, 132–134 (1997).
[CrossRef]

Namba, S.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on metal surface by femtosecond laser pulse,” Phys. Rev. B79, 033409 (2009).
[CrossRef]

Narayan, R.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater.7, 967–974 (2011).
[CrossRef]

Nolte, S.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100, 1–6 (2010).
[CrossRef]

Ober, C.

C. Coenjarts and C. Ober, “Two-photon three-dimensional microfabrication of poly(dimethylsiloxane) elastomers,” Chem. Mater.16, 5556–5558 (2004).
[CrossRef]

Okamuro, K.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on metal surface by femtosecond laser pulse,” Phys. Rev. B79, 033409 (2009).
[CrossRef]

Olsowski, B.

R. Houbertz, G. Domann, J. Schulz, B. Olsowski, L. Frohlich, and W.-S. Kim, “Impact of photoinitiators on the photopolymerization and the optical properties of inorganicorganic hybrid polymers,” Appl. Phys. Lett.84, 1105–1107 (2004).
[CrossRef]

Orie, A.

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of femtosecond laser-structured PMMA,” Appl. Phys. A101, 27–31 (2010).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions of sapphire,” Opt. Express18, 8300–8310 (2010).
[CrossRef] [PubMed]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys. A.98, 551–556 (2010).
[CrossRef]

Oubaha, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2, 2257–2262 (2008).
[CrossRef]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for multi-photon polymerization microfabrication,” ACS Nano2, 2257–2262 (2008).
[CrossRef]

Ovsianikov, A.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater.7, 967–974 (2011).
[CrossRef]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2, 2257–2262 (2008).
[CrossRef]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for multi-photon polymerization microfabrication,” ACS Nano2, 2257–2262 (2008).
[CrossRef]

Ozaki, T.

Paipulas, D.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
[CrossRef]

Peschel, U.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100, 1–6 (2010).
[CrossRef]

Piskarskas, A.

M. Malinauskas, D. Baltriukiene, A. Kraniauskas, P. Danilevicius, R. Jarasiene, R. Sirmenis, A. Zukauskas, E. Balciunas, V. Purlys, R. Gadonas, V. Bukelskiene, V. Sirvydis, and A. Piskarskas, “In vitro and in vivo bio-compatibility study on laser 3D microstructurable polymers.” Appl. Phys. A108, 751–759 (2012).
[CrossRef]

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
[CrossRef]

Preston, J.

J. Sipe, J. Young, J. Preston, and H. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27, 1141–1154 (1983).
[CrossRef]

Purlys, V.

M. Malinauskas, D. Baltriukiene, A. Kraniauskas, P. Danilevicius, R. Jarasiene, R. Sirmenis, A. Zukauskas, E. Balciunas, V. Purlys, R. Gadonas, V. Bukelskiene, V. Sirvydis, and A. Piskarskas, “In vitro and in vivo bio-compatibility study on laser 3D microstructurable polymers.” Appl. Phys. A108, 751–759 (2012).
[CrossRef]

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
[CrossRef]

M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiutė, and R. Gadonas, “Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers,” Lith. J. Phys.50, 201–208 (2010).
[CrossRef]

Qiao, L. L.

Qiu, J.

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Review Lett.91, 247405 (2003).
[CrossRef]

Rajeev, P.

R. Taylor, C. Hnatovsky, E. Simova, P. Rajeev, D. Rayner, and P. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett.32, 2888–2890 (2007).
[CrossRef] [PubMed]

P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. Taylor, V. Bhardwaj, D. Rayner, and P. Corkum, “Memory in nonlinear ionization of transparent solids,” Phys. Rev. Lett.97, 253001 (2006).
[CrossRef]

Ramirez, L. P. R.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100, 1–6 (2010).
[CrossRef]

Rayner, D.

R. Taylor, C. Hnatovsky, E. Simova, P. Rajeev, D. Rayner, and P. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett.32, 2888–2890 (2007).
[CrossRef] [PubMed]

P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. Taylor, V. Bhardwaj, D. Rayner, and P. Corkum, “Memory in nonlinear ionization of transparent solids,” Phys. Rev. Lett.97, 253001 (2006).
[CrossRef]

Rekstyte, S.

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Jarasiene, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, and M. Malinauskas, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Optics17, 081405 (2012).
[CrossRef]

Rekštyte, S.

Richter, S.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100, 1–6 (2010).
[CrossRef]

Rode, A.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett.12, 123901 (2011).
[CrossRef]

Rode, A. V.

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B77, 361–368 (2003).
[CrossRef]

Rosa, L.

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011).
[CrossRef]

R. Buividas, T. Kudrius, R. Sliupas, L. Rosa, G. Slekys, S. Bagdonas, R. Rotomskis, and S. Juodkazis, “Ripple-patterned substrates for light enhancement applications,” Proc. SPIE7376, 737620 (2010).

Rotomskis, R.

R. Buividas, T. Kudrius, R. Sliupas, L. Rosa, G. Slekys, S. Bagdonas, R. Rotomskis, and S. Juodkazis, “Ripple-patterned substrates for light enhancement applications,” Proc. SPIE7376, 737620 (2010).

Rutkauskas, M.

M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiutė, and R. Gadonas, “Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers,” Lith. J. Phys.50, 201–208 (2010).
[CrossRef]

Sakabe, S.

M. Hashida, Y. Ikuta, Y. Miyasaka, S. Tokita, and S. Sakabe, “Simple formula for the interspaces of periodic grating structures selforganized on metal surfaces by femtosecond laser ablation,” Appl. Phys. Lett.102, 174106 (2013).
[CrossRef]

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on metal surface by femtosecond laser pulse,” Phys. Rev. B79, 033409 (2009).
[CrossRef]

Sakellari, I.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
[CrossRef]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for multi-photon polymerization microfabrication,” ACS Nano2, 2257–2262 (2008).
[CrossRef]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2, 2257–2262 (2008).
[CrossRef]

Schlie, S.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater.7, 967–974 (2011).
[CrossRef]

Schmitz, K.-P.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater.7, 967–974 (2011).
[CrossRef]

Schulz, J.

R. Houbertz, G. Domann, J. Schulz, B. Olsowski, L. Frohlich, and W.-S. Kim, “Impact of photoinitiators on the photopolymerization and the optical properties of inorganicorganic hybrid polymers,” Appl. Phys. Lett.84, 1105–1107 (2004).
[CrossRef]

Seet, K. K.

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett.91, 241904 (2007).
[CrossRef]

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett.89, 024106 (2006).
[CrossRef]

Shen, Y. L.

Shibuya, T.

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nano-particle-enhanced photo-polymerization,” J. Phys. Chem. C113, 11720–11724 (2009).
[CrossRef]

Shimotsuma, Y.

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Review Lett.91, 247405 (2003).
[CrossRef]

Shvedov, V.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett.12, 123901 (2011).
[CrossRef]

Simova, E.

Sipe, J.

J. Sipe, J. Young, J. Preston, and H. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27, 1141–1154 (1983).
[CrossRef]

Sirmenis, R.

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Jarasiene, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, and M. Malinauskas, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Optics17, 081405 (2012).
[CrossRef]

M. Malinauskas, D. Baltriukiene, A. Kraniauskas, P. Danilevicius, R. Jarasiene, R. Sirmenis, A. Zukauskas, E. Balciunas, V. Purlys, R. Gadonas, V. Bukelskiene, V. Sirvydis, and A. Piskarskas, “In vitro and in vivo bio-compatibility study on laser 3D microstructurable polymers.” Appl. Phys. A108, 751–759 (2012).
[CrossRef]

Sirvydis, V.

M. Malinauskas, D. Baltriukiene, A. Kraniauskas, P. Danilevicius, R. Jarasiene, R. Sirmenis, A. Zukauskas, E. Balciunas, V. Purlys, R. Gadonas, V. Bukelskiene, V. Sirvydis, and A. Piskarskas, “In vitro and in vivo bio-compatibility study on laser 3D microstructurable polymers.” Appl. Phys. A108, 751–759 (2012).
[CrossRef]

Slekys, G.

R. Buividas, T. Kudrius, R. Sliupas, L. Rosa, G. Slekys, S. Bagdonas, R. Rotomskis, and S. Juodkazis, “Ripple-patterned substrates for light enhancement applications,” Proc. SPIE7376, 737620 (2010).

Šlekys, G.

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011).
[CrossRef]

Sliupas, R.

R. Buividas, T. Kudrius, R. Sliupas, L. Rosa, G. Slekys, S. Bagdonas, R. Rotomskis, and S. Juodkazis, “Ripple-patterned substrates for light enhancement applications,” Proc. SPIE7376, 737620 (2010).

Šliupas, R.

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011).
[CrossRef]

Sonneville, C.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO_2 and SiO_2 glasses: fictive temperature effect [Invited],” Opt. Mat. Express1, 605 (2011).
[CrossRef]

Stampfl, J.

K. Cicha, T. Koch, J. Torgersen, Z. Li, R. Liska, and J. Stampfl, “Youngs modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment,” J. Appl. Phys.112, 094906 (2012).
[CrossRef]

Sternberg, K.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater.7, 967–974 (2011).
[CrossRef]

Stoddart, P. R.

R. Buividas, P. R. Stoddart, and S. Juodkazis, “Laser fabricated ripple substrates for surface-enahnced Raman scattering,” Annalen der Physik524, L5–L10 (2012).
[CrossRef]

Sugioka, K.

Sun, H.-B.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412, 697–698 (2001).
[CrossRef] [PubMed]

Takada, K.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412, 697–698 (2001).
[CrossRef] [PubMed]

Takeyasu, N.

J.F. Xing, X.Z. Dong, W.Q. Chen, X.-M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90, 131106 (2007).
[CrossRef]

Tanaka, T.

J.F. Xing, X.Z. Dong, W.Q. Chen, X.-M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90, 131106 (2007).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412, 697–698 (2001).
[CrossRef] [PubMed]

Taylor, R.

Thiel, M.

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97, 221102 (2010).
[CrossRef]

Tokita, S.

M. Hashida, Y. Ikuta, Y. Miyasaka, S. Tokita, and S. Sakabe, “Simple formula for the interspaces of periodic grating structures selforganized on metal surfaces by femtosecond laser ablation,” Appl. Phys. Lett.102, 174106 (2013).
[CrossRef]

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on metal surface by femtosecond laser pulse,” Phys. Rev. B79, 033409 (2009).
[CrossRef]

Torgersen, J.

K. Cicha, T. Koch, J. Torgersen, Z. Li, R. Liska, and J. Stampfl, “Youngs modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment,” J. Appl. Phys.112, 094906 (2012).
[CrossRef]

Tünnermann, A.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100, 1–6 (2010).
[CrossRef]

Ueno, K.

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nano-particle-enhanced photo-polymerization,” J. Phys. Chem. C113, 11720–11724 (2009).
[CrossRef]

Vallee, R.

Vamvakaki, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for multi-photon polymerization microfabrication,” ACS Nano2, 2257–2262 (2008).
[CrossRef]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2, 2257–2262 (2008).
[CrossRef]

Van Driel, H.

J. Sipe, J. Young, J. Preston, and H. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27, 1141–1154 (1983).
[CrossRef]

Viertl, J.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2, 2257–2262 (2008).
[CrossRef]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for multi-photon polymerization microfabrication,” ACS Nano2, 2257–2262 (2008).
[CrossRef]

von Freymann, G.

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97, 221102 (2010).
[CrossRef]

Wang, K.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett.82, 1703 (2003).
[CrossRef]

Wegener, M.

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97, 221102 (2010).
[CrossRef]

Wegst, U. G. K.

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett.91, 241904 (2007).
[CrossRef]

Wu, B.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Science256, 61–66 (2009).
[CrossRef]

Wu, Q.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett.82, 1703 (2003).
[CrossRef]

Xing, J.F.

J.F. Xing, X.Z. Dong, W.Q. Chen, X.-M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90, 131106 (2007).
[CrossRef]

Yasumaru, N.

N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC,” Appl. Phys. A76, 983–985 (2003).
[CrossRef]

Ye, X.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Science256, 61–66 (2009).
[CrossRef]

Yokota, Y.

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nano-particle-enhanced photo-polymerization,” J. Phys. Chem. C113, 11720–11724 (2009).
[CrossRef]

Yoshimura, N.

Young, J.

J. Sipe, J. Young, J. Preston, and H. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27, 1141–1154 (1983).
[CrossRef]

Yu, Q.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett.82, 1703 (2003).
[CrossRef]

Zhou, M.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Science256, 61–66 (2009).
[CrossRef]

Zukauskas, A.

M. Malinauskas, D. Baltriukiene, A. Kraniauskas, P. Danilevicius, R. Jarasiene, R. Sirmenis, A. Zukauskas, E. Balciunas, V. Purlys, R. Gadonas, V. Bukelskiene, V. Sirvydis, and A. Piskarskas, “In vitro and in vivo bio-compatibility study on laser 3D microstructurable polymers.” Appl. Phys. A108, 751–759 (2012).
[CrossRef]

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
[CrossRef]

Žukauskas, A.

ACS Nano (2)

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for multi-photon polymerization microfabrication,” ACS Nano2, 2257–2262 (2008).
[CrossRef]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2, 2257–2262 (2008).
[CrossRef]

Acta Biomater. (1)

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater.7, 967–974 (2011).
[CrossRef]

Annalen der Physik (1)

R. Buividas, P. R. Stoddart, and S. Juodkazis, “Laser fabricated ripple substrates for surface-enahnced Raman scattering,” Annalen der Physik524, L5–L10 (2012).
[CrossRef]

Appl. Phys. A (5)

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100, 1–6 (2010).
[CrossRef]

N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC,” Appl. Phys. A76, 983–985 (2003).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of femtosecond laser-structured PMMA,” Appl. Phys. A101, 27–31 (2010).
[CrossRef]

T. Kondo, S. Juodkazis, and H. Misawa, “Reduction of capillary force for high-aspect ratio nanofabrication,” Appl. Phys. A81, 1583–1586 (2005).
[CrossRef]

M. Malinauskas, D. Baltriukiene, A. Kraniauskas, P. Danilevicius, R. Jarasiene, R. Sirmenis, A. Zukauskas, E. Balciunas, V. Purlys, R. Gadonas, V. Bukelskiene, V. Sirvydis, and A. Piskarskas, “In vitro and in vivo bio-compatibility study on laser 3D microstructurable polymers.” Appl. Phys. A108, 751–759 (2012).
[CrossRef]

Appl. Phys. A. (1)

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys. A.98, 551–556 (2010).
[CrossRef]

Appl. Phys. B (1)

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B77, 361–368 (2003).
[CrossRef]

Appl. Phys. Lett. (10)

A. Borowiec and H. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82, 4462 (2003).
[CrossRef]

J.F. Xing, X.Z. Dong, W.Q. Chen, X.-M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90, 131106 (2007).
[CrossRef]

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett.82, 1703 (2003).
[CrossRef]

M. Hashida, Y. Ikuta, Y. Miyasaka, S. Tokita, and S. Sakabe, “Simple formula for the interspaces of periodic grating structures selforganized on metal surfaces by femtosecond laser ablation,” Appl. Phys. Lett.102, 174106 (2013).
[CrossRef]

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett.76, 2656–2658 (2000).
[CrossRef]

C.Y. Liao, M. Bouriauand, P. L. Baldeck, J.-C. Léon, C. Masclet, and T.-T. Chung, “Two-dimensional slicing method to speed up the fabrication of microobjects based on two-photon polymerization,” Appl. Phys. Lett.91, 033108 (2007).
[CrossRef]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97, 221102 (2010).
[CrossRef]

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett.89, 024106 (2006).
[CrossRef]

R. Houbertz, G. Domann, J. Schulz, B. Olsowski, L. Frohlich, and W.-S. Kim, “Impact of photoinitiators on the photopolymerization and the optical properties of inorganicorganic hybrid polymers,” Appl. Phys. Lett.84, 1105–1107 (2004).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett.91, 241904 (2007).
[CrossRef]

Appl. Surf. Science (1)

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Science256, 61–66 (2009).
[CrossRef]

Chem. Mater. (1)

C. Coenjarts and C. Ober, “Two-photon three-dimensional microfabrication of poly(dimethylsiloxane) elastomers,” Chem. Mater.16, 5556–5558 (2004).
[CrossRef]

J. Appl. Phys. (2)

K. Cicha, T. Koch, J. Torgersen, Z. Li, R. Liska, and J. Stampfl, “Youngs modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment,” J. Appl. Phys.112, 094906 (2012).
[CrossRef]

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys.36, 3688 (1965).
[CrossRef]

J. Biomed. Optics (1)

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Jarasiene, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, and M. Malinauskas, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Optics17, 081405 (2012).
[CrossRef]

J. Opt. (1)

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nano-particle-enhanced photo-polymerization,” J. Phys. Chem. C113, 11720–11724 (2009).
[CrossRef]

Lith. J. Phys. (1)

M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiutė, and R. Gadonas, “Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers,” Lith. J. Phys.50, 201–208 (2010).
[CrossRef]

Nanotechnology (1)

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011).
[CrossRef]

Nature (1)

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412, 697–698 (2001).
[CrossRef] [PubMed]

Nature Photon. (1)

M. Farsari and B. Chichkov, “Materials processing: Two-photon fabrication,” Nature Photon.3, 450–452 (2009).
[CrossRef]

Opt. Express (7)

Opt. Lett. (4)

Opt. Mat. Express (1)

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO_2 and SiO_2 glasses: fictive temperature effect [Invited],” Opt. Mat. Express1, 605 (2011).
[CrossRef]

Phys. Rev. B (2)

J. Sipe, J. Young, J. Preston, and H. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27, 1141–1154 (1983).
[CrossRef]

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on metal surface by femtosecond laser pulse,” Phys. Rev. B79, 033409 (2009).
[CrossRef]

Phys. Rev. Lett. (2)

P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. Taylor, V. Bhardwaj, D. Rayner, and P. Corkum, “Memory in nonlinear ionization of transparent solids,” Phys. Rev. Lett.97, 253001 (2006).
[CrossRef]

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett.12, 123901 (2011).
[CrossRef]

Phys. Review Lett. (1)

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Review Lett.91, 247405 (2003).
[CrossRef]

Proc. SPIE (1)

R. Buividas, T. Kudrius, R. Sliupas, L. Rosa, G. Slekys, S. Bagdonas, R. Rotomskis, and S. Juodkazis, “Ripple-patterned substrates for light enhancement applications,” Proc. SPIE7376, 737620 (2010).

Other (2)

E. G. Gamaly, Femtosecond Laser-Matter Interactions: Theory, Experiments and Applications(Pan Stanford Publishing, USA, 2011).

3DPoli@gmail.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Plasma breakdown driven by an avalanche in a sub-surface region of a sapphire substrate under tight NA ≃ 0.7 focusing. Plasma nano-planes (perpendicular to the laser polarization) are formed in the bulk under the laser irradiation area and grow towards the surface (an incoming beam). (b) Geometry of interaction between subsurface scattered field superimposed with the Gaussian intensity distribution, which was used for focusing. Locations where breakdown plasma are formed marked by ellipsis. Intensity range corresponding to 50 nm diameter groove fabrication by ripple formation (>91 %) and by regular ablation (>99 %) are indicated. The period of surface charge is dependent on the free electron density, ne, which depends on light intensity, I. Top-view projection and the spot size at different intensity cross sections with ripples shown on the right-side (see Sec. 4 for discussion).

Fig. 2
Fig. 2

(a) A parameter space for ripple formation: number of pulses per focal spot pp = dfoc/dpp vs. pulse energy Ep for 400 nm/150 fs pulses focused using NA = 0.7 objective lens. 30 μm long lines with parallel ripples were fabricated for each condition. A colored region indicates ripple formation region, where light-shade color indicates uniform, not damaged ripples, while darker-shade region show where ripples start to deteriorate due to increased ablation; a “+” sign indicates full line fabrication, “–” no fabrication and “○” a partial line fabrication. (b) SEM images of ripples representing different fabrication conditions, numbers link parameters with the SEM images.

Fig. 3
Fig. 3

(a) A ripple period dependence on a pulse energy at three different pulse-to-pulse (pp) overlap values: 50, 100 and 1000. At low pulse energy and high pp overlap, period is close to predicted by λ0/2n0 = 112 nm, where n0 is refractive index for laser unaffected sapphire, value indicated on graphs by dotted line. Period is increasing with energy and saturates at ∼160 nm. Trend is more pronounced for higher pp values. (b) A ripple period dependence on pp overlap at the three different pulse energies: 25, 29 and 45 nJ. Only at the lowest energy period decreases with overlap. Inset shows SEM images linked by numbers with values on (a) and (b) graphs.

Fig. 4
Fig. 4

Ripples fabricated on a sapphire substrate by 25 nJ / 150 fs laser pulses at 400 nm wavelength and 500 pp overlap, beam focused using NA = 0.7 objective lens. Sample was scanned at 14 μm/s speed, beam was not blanked during acceleration. (a) 30 μm length line consisting of different number of ripples and extended length of a single ripple. Zoomed-in section (b) show groove width (50–75 nm), (c) transition from 3 to 2 to 1 ripple / groove, diameter of the focal spot (0.7 μm) indicated by circle.

Fig. 5
Fig. 5

(a) Probability of the ripple formation at different energies for the parallel (|| to the fabrication line) and perpendicular (⊥) ripples. Threshold is about 10 % lower for the parallel ripples. Each dot on the graph was calculated as an average probability from 3 trials; 10 lines were fabricated in each trial. (b) SEM images of the typical ||- and ⊥-ripples. Polarization direction and ripple period are indicated.

Fig. 6
Fig. 6

3D functional microstructures produced in a SZ2080 resist without a photo-initiator: (a) photonic crystal fabricated using 1 kHz pulse repetition rate, 1030 nm wavelength, NA = 1.4 focusing and 16.5 nJ pulse energy. (b) An array of microlenses fabricated using 200 kHz pulse repetition rate, 515 nm wavelength, NA = 0.95 focusing, 1.1 nJ pulse energy (0.22 mW) and 0.1 mm/s sample translation velocity.

Fig. 7
Fig. 7

3D structures produced in SZ2080 and PDMS without photo-initiators at 515 nm, 200 kHz irradiation: (a) array of pyramids fabricated in SZ2080 using NA = 0.95 focusing, 1.75 nJ pulse energy (0.35 mW) and a 0.2 mm/s sample translation velocity. (b) Bio-scaffold fabricated in PDMS using NA = 1.25 focusing, 2.5 nJ (0.5 mW), 2 nJ (0.4 mW) and 1.5 nJ (0.3 mW) pulse energies for the upper layer, supporting pillars and the secondary scan, respectively and 0.1 mm/s sample translation velocity.

Tables (1)

Tables Icon

Table 1 Ionisation rates estimated by formulae in Sec. 3 for the used fabrication conditions.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

w mpi w n ph 3 / 2 ( ε osc 2 Δ E ) n ph ,
w imp ε osc Δ E 2 ω 2 ν e ph ( ν e ph 2 + ω 2 ) ,
d n e d t = n e w imp + n a w mpi ,
n e ( I , λ , t ) = [ n e 0 + n a w mpi w imp [ 1 e w imp t ] ] e w imp t

Metrics