Abstract

Amino-terminated ionic liquid assisted multiphoton photoreduction (IL-MPR) was developed for the direct writing of subwavelength gold nanostructures in AuCl4- ions aqueous solution by femtosecond laser. It was revealed that the carbon chain length was crucial for morphology and size control of gold nanostructures. A 228 nm width of gold nanostructure, which was beyond the optical diffraction limit, was fabricated by the matching between IL and the power and scanning speed of the laser beam. The measured conductivity is of the same order as that of bulk gold. Furthermore, we successfully fabricated a U-shaped terahertz planar metamaterial whose spectral response is consistent with the theoretical expectation. The IL-MPR nanofabrication protocol is expected to play an important role in the fabrication of fine metallic micro/nanostructures for applications in microelectromechanical systems, nanoelectronics and nanophotonics.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Greiner, S. Quednau, F. Dassinger, R. Sarwar, H. F. Schlaak, M. Guttmann, and P. Meyer, “Fabrication techniques for multiscale 3D-MEMS with vertical metal micro- and nanowire integration,” J. Micromech. Microeng.23(2), 025018 (2013).
    [CrossRef]
  2. K. S. Ramadan, T. Nasr, and I. G. Foulds, “Development of an SU-8 MEMS process with two metal electrodes using amorphous silicon as a sacrificial material,” J. Micromech. Microeng.23(3), 035037 (2013).
    [CrossRef]
  3. C. Feng, Z. N. Tang, J. Yu, and C. Y. Sun, “A MEMS device capable of measuring near-field thermal radiation between membranes,” Sensors (Basel)13(2), 1998–2010 (2013).
    [CrossRef] [PubMed]
  4. F. H. Mei, W. A. Phillips, B. Lu, W. J. Meng, and S. Guo, “Fabrication of copper-based microchannel devices and analysis of their flow and heat transfer characteristics,” J. Micromech. Microeng.19(3), 035009 (2009).
    [CrossRef]
  5. B. R. Lu, J. Wan, Z. Shu, S. Q. Xie, Y. F. Chen, E. Huq, X. P. Qua, and R. Liu, “Metallic and dielectric photonic crystals with chiral elements by combined nanoimprint and reversal lithography in SU-8,” Microelectron. Eng.86(4–6), 619–621 (2009).
    [CrossRef]
  6. S. K. Bhattacharya and R. R. Tummala, “Next generation integral passives: Materials, processes, and integration of resistors and capacitors on PWB substrates,” J. Mater. Sci. Mater. Electron.11(3), 253–268 (2000).
    [CrossRef]
  7. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008).
    [CrossRef] [PubMed]
  8. C. D. Petruczok and K. K. Gleason, “Initiated chemical vapor deposition-based method for patterning polymer and metal microstructures on curved substrates,” Adv. Mater.24(48), 6445–6450 (2012).
    [CrossRef] [PubMed]
  9. X. F. Yang, W. B. Li, and D. H. Zhang, “Subwavelength lithography using metallic grating waveguide heterostructure,” Appl. Phys., A Mater. Sci. Process.107(1), 123–126 (2012).
    [CrossRef]
  10. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
    [CrossRef]
  11. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
    [CrossRef] [PubMed]
  12. H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon absorption photopolymerization of resin,” Appl. Phys. Lett.74(6), 786–788 (1999).
    [CrossRef]
  13. X. Z. Dong, Z. S. Zhao, and X. M. Duan, “Photonic bandgap of gradient quasidiamond lattice photonic crystal,” Appl. Phys. Lett.91, 124103 (2007).
    [CrossRef]
  14. W. E. Lu, X. Z. Dong, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Novel photoinitiator with a radical quenching moiety for confining radical diffusion in two-photon induced photopolymerization,” J. Mater. Chem.21(15), 5650–5659 (2011).
    [CrossRef]
  15. Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, X. M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: In situ synthesis and fabrication of 3D microstructures,” Adv. Mater.20(5), 914–919 (2008).
    [CrossRef]
  16. C. F. Li, X. Z. Dong, F. Jin, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Polymeric distributed-feedback resonator with sub-micrometer fibers fabricated by two-photon induced photopolymerization,” Appl. Phys., A Mater. Sci. Process.89(1), 145–148 (2007).
    [CrossRef]
  17. L. J. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
    [CrossRef] [PubMed]
  18. D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
    [CrossRef]
  19. J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007).
    [CrossRef]
  20. S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science306(5700), 1351–1353 (2004).
    [CrossRef] [PubMed]
  21. P. W. Wu, W. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater.12(19), 1438–1441 (2000).
    [CrossRef]
  22. F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. D. Zhang, S. R. Marder, and J. W. Perry, “Laser and electron-beam induced growth of nanoparticles for 2d and 3d metal patterning,” Adv. Mater.14(3), 194–198 (2002).
    [CrossRef]
  23. X. M. Duan, H. B. Sun, K. Kaneko, and S. Kawata, “Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication,” Thin Solid Films453–454, 518–521 (2004).
    [CrossRef]
  24. K. Kaneko, H. B. Sun, X. M. Duan, and S. Kawata, “Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix,” Appl. Phys. Lett.83(7), 1426–1428 (2003).
    [CrossRef]
  25. T. Baldacchini, A. C. Pons, J. Pons, C. N. Lafratta, J. T. Fourkas, Y. Sun, and M. Naughton, “Multiphoton laser direct writing of two-dimensional silver structures,” Opt. Express13(4), 1275–1280 (2005).
    [CrossRef] [PubMed]
  26. S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K. T. Kim, Y. K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano5(3), 1947–1957 (2011).
    [CrossRef] [PubMed]
  27. T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett.88(8), 081107 (2006).
    [CrossRef]
  28. A. Ishikawa, T. Tanaka, and S. Kawata, “Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye,” Appl. Phys. Lett.89(11), 113102 (2006).
    [CrossRef]
  29. Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small5(10), 1144–1148 (2009).
    [PubMed]
  30. B. B. Xu, H. Xia, L. G. Niu, Y. L. Zhang, K. Sun, Q. D. Chen, Y. Xu, Z. Q. Lv, Z. H. Li, H. Misawa, and H. B. Sun, “Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating,” Small6(16), 1762–1766 (2010).
    [CrossRef] [PubMed]
  31. B. B. Xu, R. Zhang, H. Wang, X. Q. Liu, L. Wang, Z. C. Ma, Q. D. Chen, X. Z. Xiao, B. Han, and H. B. Sun, “Laser patterning of conductive gold micronanostructures from nanodots,” Nanoscale4(22), 6955–6958 (2012).
    [CrossRef] [PubMed]
  32. T. Welton, “Room-temperature ionic liquids. solvents for synthesis and catalysis,” Chem. Rev.99(8), 2071–2084 (1999).
    [CrossRef] [PubMed]
  33. L. P. N. Rebelo, V. Najdanovic-Visak, Z. P. Visak, M. Nunes da Ponte, J. Szydlowski, C. A. Cerdeiriña, J. Troncoso, L. Romaní, J. M. S. S. Esperanca, H. J. R. Guedes, and H. C. de Sousa, “Thermodynamic analysis of [C4mim][BF4]+ water as a case study to model ionic liquid aqueous solutions,” Green Chem.6, 369–381 (2004).
    [CrossRef]
  34. W. E. Lu, M. L. Zheng, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Gold nanoparticles prepared by glycinate ionic liquid assisted multi-photon photoreduction,” Phys. Chem. Chem. Phys.14(34), 11930–11936 (2012).
    [CrossRef] [PubMed]
  35. J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, and X. Zhang, “Synthesis, characterization, and catalytic activity of ionic liquids based on biosources,” Nat. Commun.1, 143 (2010).
    [CrossRef] [PubMed]
  36. Y. Y. Cao, X. Z. Dong, N. Takeyasu, T. Tanaka, Z. S. Zhao, X. M. Duan, and S. Kawata, “Morphology and size dependence of silver microstructures in fatty salts-assisted multiphoton photoreduction microfabrication,” Appl. Phys., A Mater. Sci. Process.96(2), 453–458 (2009).
    [CrossRef]
  37. J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat Commun1(9), 143 (2010).
    [CrossRef] [PubMed]
  38. Y. L. Zhang, W. Jin, X. Z. Dong, Z. S. Zhao, and X. M. Duan, “Asymmetric fishnet metamaterials with strong optical activity,” Opt. Express20(10), 10776–10787 (2012).
    [CrossRef] [PubMed]
  39. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
    [CrossRef] [PubMed]

2013 (3)

F. Greiner, S. Quednau, F. Dassinger, R. Sarwar, H. F. Schlaak, M. Guttmann, and P. Meyer, “Fabrication techniques for multiscale 3D-MEMS with vertical metal micro- and nanowire integration,” J. Micromech. Microeng.23(2), 025018 (2013).
[CrossRef]

K. S. Ramadan, T. Nasr, and I. G. Foulds, “Development of an SU-8 MEMS process with two metal electrodes using amorphous silicon as a sacrificial material,” J. Micromech. Microeng.23(3), 035037 (2013).
[CrossRef]

C. Feng, Z. N. Tang, J. Yu, and C. Y. Sun, “A MEMS device capable of measuring near-field thermal radiation between membranes,” Sensors (Basel)13(2), 1998–2010 (2013).
[CrossRef] [PubMed]

2012 (5)

C. D. Petruczok and K. K. Gleason, “Initiated chemical vapor deposition-based method for patterning polymer and metal microstructures on curved substrates,” Adv. Mater.24(48), 6445–6450 (2012).
[CrossRef] [PubMed]

X. F. Yang, W. B. Li, and D. H. Zhang, “Subwavelength lithography using metallic grating waveguide heterostructure,” Appl. Phys., A Mater. Sci. Process.107(1), 123–126 (2012).
[CrossRef]

B. B. Xu, R. Zhang, H. Wang, X. Q. Liu, L. Wang, Z. C. Ma, Q. D. Chen, X. Z. Xiao, B. Han, and H. B. Sun, “Laser patterning of conductive gold micronanostructures from nanodots,” Nanoscale4(22), 6955–6958 (2012).
[CrossRef] [PubMed]

W. E. Lu, M. L. Zheng, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Gold nanoparticles prepared by glycinate ionic liquid assisted multi-photon photoreduction,” Phys. Chem. Chem. Phys.14(34), 11930–11936 (2012).
[CrossRef] [PubMed]

Y. L. Zhang, W. Jin, X. Z. Dong, Z. S. Zhao, and X. M. Duan, “Asymmetric fishnet metamaterials with strong optical activity,” Opt. Express20(10), 10776–10787 (2012).
[CrossRef] [PubMed]

2011 (2)

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K. T. Kim, Y. K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano5(3), 1947–1957 (2011).
[CrossRef] [PubMed]

W. E. Lu, X. Z. Dong, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Novel photoinitiator with a radical quenching moiety for confining radical diffusion in two-photon induced photopolymerization,” J. Mater. Chem.21(15), 5650–5659 (2011).
[CrossRef]

2010 (3)

J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat Commun1(9), 143 (2010).
[CrossRef] [PubMed]

J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, and X. Zhang, “Synthesis, characterization, and catalytic activity of ionic liquids based on biosources,” Nat. Commun.1, 143 (2010).
[CrossRef] [PubMed]

B. B. Xu, H. Xia, L. G. Niu, Y. L. Zhang, K. Sun, Q. D. Chen, Y. Xu, Z. Q. Lv, Z. H. Li, H. Misawa, and H. B. Sun, “Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating,” Small6(16), 1762–1766 (2010).
[CrossRef] [PubMed]

2009 (5)

Y. Y. Cao, X. Z. Dong, N. Takeyasu, T. Tanaka, Z. S. Zhao, X. M. Duan, and S. Kawata, “Morphology and size dependence of silver microstructures in fatty salts-assisted multiphoton photoreduction microfabrication,” Appl. Phys., A Mater. Sci. Process.96(2), 453–458 (2009).
[CrossRef]

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small5(10), 1144–1148 (2009).
[PubMed]

L. J. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
[CrossRef] [PubMed]

F. H. Mei, W. A. Phillips, B. Lu, W. J. Meng, and S. Guo, “Fabrication of copper-based microchannel devices and analysis of their flow and heat transfer characteristics,” J. Micromech. Microeng.19(3), 035009 (2009).
[CrossRef]

B. R. Lu, J. Wan, Z. Shu, S. Q. Xie, Y. F. Chen, E. Huq, X. P. Qua, and R. Liu, “Metallic and dielectric photonic crystals with chiral elements by combined nanoimprint and reversal lithography in SU-8,” Microelectron. Eng.86(4–6), 619–621 (2009).
[CrossRef]

2008 (2)

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, X. M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: In situ synthesis and fabrication of 3D microstructures,” Adv. Mater.20(5), 914–919 (2008).
[CrossRef]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008).
[CrossRef] [PubMed]

2007 (4)

X. Z. Dong, Z. S. Zhao, and X. M. Duan, “Photonic bandgap of gradient quasidiamond lattice photonic crystal,” Appl. Phys. Lett.91, 124103 (2007).
[CrossRef]

C. F. Li, X. Z. Dong, F. Jin, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Polymeric distributed-feedback resonator with sub-micrometer fibers fabricated by two-photon induced photopolymerization,” Appl. Phys., A Mater. Sci. Process.89(1), 145–148 (2007).
[CrossRef]

D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007).
[CrossRef]

2006 (3)

T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett.88(8), 081107 (2006).
[CrossRef]

A. Ishikawa, T. Tanaka, and S. Kawata, “Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye,” Appl. Phys. Lett.89(11), 113102 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (3)

L. P. N. Rebelo, V. Najdanovic-Visak, Z. P. Visak, M. Nunes da Ponte, J. Szydlowski, C. A. Cerdeiriña, J. Troncoso, L. Romaní, J. M. S. S. Esperanca, H. J. R. Guedes, and H. C. de Sousa, “Thermodynamic analysis of [C4mim][BF4]+ water as a case study to model ionic liquid aqueous solutions,” Green Chem.6, 369–381 (2004).
[CrossRef]

X. M. Duan, H. B. Sun, K. Kaneko, and S. Kawata, “Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication,” Thin Solid Films453–454, 518–521 (2004).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

2003 (1)

K. Kaneko, H. B. Sun, X. M. Duan, and S. Kawata, “Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix,” Appl. Phys. Lett.83(7), 1426–1428 (2003).
[CrossRef]

2002 (1)

F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. D. Zhang, S. R. Marder, and J. W. Perry, “Laser and electron-beam induced growth of nanoparticles for 2d and 3d metal patterning,” Adv. Mater.14(3), 194–198 (2002).
[CrossRef]

2001 (1)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

2000 (2)

S. K. Bhattacharya and R. R. Tummala, “Next generation integral passives: Materials, processes, and integration of resistors and capacitors on PWB substrates,” J. Mater. Sci. Mater. Electron.11(3), 253–268 (2000).
[CrossRef]

P. W. Wu, W. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater.12(19), 1438–1441 (2000).
[CrossRef]

1999 (3)

H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon absorption photopolymerization of resin,” Appl. Phys. Lett.74(6), 786–788 (1999).
[CrossRef]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

T. Welton, “Room-temperature ionic liquids. solvents for synthesis and catalysis,” Chem. Rev.99(8), 2071–2084 (1999).
[CrossRef] [PubMed]

Alain, V.

F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. D. Zhang, S. R. Marder, and J. W. Perry, “Laser and electron-beam induced growth of nanoparticles for 2d and 3d metal patterning,” Adv. Mater.14(3), 194–198 (2002).
[CrossRef]

Ananthavel, S. P.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

Baldacchini, T.

Barlow, S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

Bartal, G.

J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, and X. Zhang, “Synthesis, characterization, and catalytic activity of ionic liquids based on biosources,” Nat. Commun.1, 143 (2010).
[CrossRef] [PubMed]

J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat Commun1(9), 143 (2010).
[CrossRef] [PubMed]

Bauer, C. A.

F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. D. Zhang, S. R. Marder, and J. W. Perry, “Laser and electron-beam induced growth of nanoparticles for 2d and 3d metal patterning,” Adv. Mater.14(3), 194–198 (2002).
[CrossRef]

Bhattacharya, S. K.

S. K. Bhattacharya and R. R. Tummala, “Next generation integral passives: Materials, processes, and integration of resistors and capacitors on PWB substrates,” J. Mater. Sci. Mater. Electron.11(3), 253–268 (2000).
[CrossRef]

Cao, Y. Y.

Y. Y. Cao, X. Z. Dong, N. Takeyasu, T. Tanaka, Z. S. Zhao, X. M. Duan, and S. Kawata, “Morphology and size dependence of silver microstructures in fatty salts-assisted multiphoton photoreduction microfabrication,” Appl. Phys., A Mater. Sci. Process.96(2), 453–458 (2009).
[CrossRef]

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small5(10), 1144–1148 (2009).
[PubMed]

Cerdeiriña, C. A.

L. P. N. Rebelo, V. Najdanovic-Visak, Z. P. Visak, M. Nunes da Ponte, J. Szydlowski, C. A. Cerdeiriña, J. Troncoso, L. Romaní, J. M. S. S. Esperanca, H. J. R. Guedes, and H. C. de Sousa, “Thermodynamic analysis of [C4mim][BF4]+ water as a case study to model ionic liquid aqueous solutions,” Green Chem.6, 369–381 (2004).
[CrossRef]

Chen, Q. D.

B. B. Xu, R. Zhang, H. Wang, X. Q. Liu, L. Wang, Z. C. Ma, Q. D. Chen, X. Z. Xiao, B. Han, and H. B. Sun, “Laser patterning of conductive gold micronanostructures from nanodots,” Nanoscale4(22), 6955–6958 (2012).
[CrossRef] [PubMed]

B. B. Xu, H. Xia, L. G. Niu, Y. L. Zhang, K. Sun, Q. D. Chen, Y. Xu, Z. Q. Lv, Z. H. Li, H. Misawa, and H. B. Sun, “Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating,” Small6(16), 1762–1766 (2010).
[CrossRef] [PubMed]

Chen, W. Q.

W. E. Lu, M. L. Zheng, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Gold nanoparticles prepared by glycinate ionic liquid assisted multi-photon photoreduction,” Phys. Chem. Chem. Phys.14(34), 11930–11936 (2012).
[CrossRef] [PubMed]

W. E. Lu, X. Z. Dong, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Novel photoinitiator with a radical quenching moiety for confining radical diffusion in two-photon induced photopolymerization,” J. Mater. Chem.21(15), 5650–5659 (2011).
[CrossRef]

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, X. M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: In situ synthesis and fabrication of 3D microstructures,” Adv. Mater.20(5), 914–919 (2008).
[CrossRef]

J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007).
[CrossRef]

C. F. Li, X. Z. Dong, F. Jin, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Polymeric distributed-feedback resonator with sub-micrometer fibers fabricated by two-photon induced photopolymerization,” Appl. Phys., A Mater. Sci. Process.89(1), 145–148 (2007).
[CrossRef]

Chen, Y. F.

B. R. Lu, J. Wan, Z. Shu, S. Q. Xie, Y. F. Chen, E. Huq, X. P. Qua, and R. Liu, “Metallic and dielectric photonic crystals with chiral elements by combined nanoimprint and reversal lithography in SU-8,” Microelectron. Eng.86(4–6), 619–621 (2009).
[CrossRef]

Cheng, W.

P. W. Wu, W. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater.12(19), 1438–1441 (2000).
[CrossRef]

Choi, H.

J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, and X. Zhang, “Synthesis, characterization, and catalytic activity of ionic liquids based on biosources,” Nat. Commun.1, 143 (2010).
[CrossRef] [PubMed]

J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat Commun1(9), 143 (2010).
[CrossRef] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Cumpston, B. H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

Dassinger, F.

F. Greiner, S. Quednau, F. Dassinger, R. Sarwar, H. F. Schlaak, M. Guttmann, and P. Meyer, “Fabrication techniques for multiscale 3D-MEMS with vertical metal micro- and nanowire integration,” J. Micromech. Microeng.23(2), 025018 (2013).
[CrossRef]

de Sousa, H. C.

L. P. N. Rebelo, V. Najdanovic-Visak, Z. P. Visak, M. Nunes da Ponte, J. Szydlowski, C. A. Cerdeiriña, J. Troncoso, L. Romaní, J. M. S. S. Esperanca, H. J. R. Guedes, and H. C. de Sousa, “Thermodynamic analysis of [C4mim][BF4]+ water as a case study to model ionic liquid aqueous solutions,” Green Chem.6, 369–381 (2004).
[CrossRef]

Dong, X.

D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

Dong, X. Z.

Y. L. Zhang, W. Jin, X. Z. Dong, Z. S. Zhao, and X. M. Duan, “Asymmetric fishnet metamaterials with strong optical activity,” Opt. Express20(10), 10776–10787 (2012).
[CrossRef] [PubMed]

W. E. Lu, X. Z. Dong, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Novel photoinitiator with a radical quenching moiety for confining radical diffusion in two-photon induced photopolymerization,” J. Mater. Chem.21(15), 5650–5659 (2011).
[CrossRef]

Y. Y. Cao, X. Z. Dong, N. Takeyasu, T. Tanaka, Z. S. Zhao, X. M. Duan, and S. Kawata, “Morphology and size dependence of silver microstructures in fatty salts-assisted multiphoton photoreduction microfabrication,” Appl. Phys., A Mater. Sci. Process.96(2), 453–458 (2009).
[CrossRef]

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, X. M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: In situ synthesis and fabrication of 3D microstructures,” Adv. Mater.20(5), 914–919 (2008).
[CrossRef]

J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007).
[CrossRef]

X. Z. Dong, Z. S. Zhao, and X. M. Duan, “Photonic bandgap of gradient quasidiamond lattice photonic crystal,” Appl. Phys. Lett.91, 124103 (2007).
[CrossRef]

C. F. Li, X. Z. Dong, F. Jin, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Polymeric distributed-feedback resonator with sub-micrometer fibers fabricated by two-photon induced photopolymerization,” Appl. Phys., A Mater. Sci. Process.89(1), 145–148 (2007).
[CrossRef]

Duan, X.

D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

Duan, X. M.

W. E. Lu, M. L. Zheng, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Gold nanoparticles prepared by glycinate ionic liquid assisted multi-photon photoreduction,” Phys. Chem. Chem. Phys.14(34), 11930–11936 (2012).
[CrossRef] [PubMed]

Y. L. Zhang, W. Jin, X. Z. Dong, Z. S. Zhao, and X. M. Duan, “Asymmetric fishnet metamaterials with strong optical activity,” Opt. Express20(10), 10776–10787 (2012).
[CrossRef] [PubMed]

W. E. Lu, X. Z. Dong, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Novel photoinitiator with a radical quenching moiety for confining radical diffusion in two-photon induced photopolymerization,” J. Mater. Chem.21(15), 5650–5659 (2011).
[CrossRef]

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small5(10), 1144–1148 (2009).
[PubMed]

Y. Y. Cao, X. Z. Dong, N. Takeyasu, T. Tanaka, Z. S. Zhao, X. M. Duan, and S. Kawata, “Morphology and size dependence of silver microstructures in fatty salts-assisted multiphoton photoreduction microfabrication,” Appl. Phys., A Mater. Sci. Process.96(2), 453–458 (2009).
[CrossRef]

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, X. M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: In situ synthesis and fabrication of 3D microstructures,” Adv. Mater.20(5), 914–919 (2008).
[CrossRef]

J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007).
[CrossRef]

X. Z. Dong, Z. S. Zhao, and X. M. Duan, “Photonic bandgap of gradient quasidiamond lattice photonic crystal,” Appl. Phys. Lett.91, 124103 (2007).
[CrossRef]

C. F. Li, X. Z. Dong, F. Jin, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Polymeric distributed-feedback resonator with sub-micrometer fibers fabricated by two-photon induced photopolymerization,” Appl. Phys., A Mater. Sci. Process.89(1), 145–148 (2007).
[CrossRef]

X. M. Duan, H. B. Sun, K. Kaneko, and S. Kawata, “Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication,” Thin Solid Films453–454, 518–521 (2004).
[CrossRef]

K. Kaneko, H. B. Sun, X. M. Duan, and S. Kawata, “Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix,” Appl. Phys. Lett.83(7), 1426–1428 (2003).
[CrossRef]

Dunn, B.

P. W. Wu, W. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater.12(19), 1438–1441 (2000).
[CrossRef]

Dyer, D. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

Ehrlich, J. E.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

Enkrich, C.

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Erskine, L. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

Esperanca, J. M. S. S.

L. P. N. Rebelo, V. Najdanovic-Visak, Z. P. Visak, M. Nunes da Ponte, J. Szydlowski, C. A. Cerdeiriña, J. Troncoso, L. Romaní, J. M. S. S. Esperanca, H. J. R. Guedes, and H. C. de Sousa, “Thermodynamic analysis of [C4mim][BF4]+ water as a case study to model ionic liquid aqueous solutions,” Green Chem.6, 369–381 (2004).
[CrossRef]

Feng, C.

C. Feng, Z. N. Tang, J. Yu, and C. Y. Sun, “A MEMS device capable of measuring near-field thermal radiation between membranes,” Sensors (Basel)13(2), 1998–2010 (2013).
[CrossRef] [PubMed]

Foulds, I. G.

K. S. Ramadan, T. Nasr, and I. G. Foulds, “Development of an SU-8 MEMS process with two metal electrodes using amorphous silicon as a sacrificial material,” J. Micromech. Microeng.23(3), 035037 (2013).
[CrossRef]

Fourkas, J. T.

L. J. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
[CrossRef] [PubMed]

T. Baldacchini, A. C. Pons, J. Pons, C. N. Lafratta, J. T. Fourkas, Y. Sun, and M. Naughton, “Multiphoton laser direct writing of two-dimensional silver structures,” Opt. Express13(4), 1275–1280 (2005).
[CrossRef] [PubMed]

Furlani, E. P.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K. T. Kim, Y. K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano5(3), 1947–1957 (2011).
[CrossRef] [PubMed]

Gattass, R. R.

L. J. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Gershgoren, E.

L. J. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Gleason, K. K.

C. D. Petruczok and K. K. Gleason, “Initiated chemical vapor deposition-based method for patterning polymer and metal microstructures on curved substrates,” Adv. Mater.24(48), 6445–6450 (2012).
[CrossRef] [PubMed]

Gong, Q. H.

D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

Greiner, F.

F. Greiner, S. Quednau, F. Dassinger, R. Sarwar, H. F. Schlaak, M. Guttmann, and P. Meyer, “Fabrication techniques for multiscale 3D-MEMS with vertical metal micro- and nanowire integration,” J. Micromech. Microeng.23(2), 025018 (2013).
[CrossRef]

Guedes, H. J. R.

L. P. N. Rebelo, V. Najdanovic-Visak, Z. P. Visak, M. Nunes da Ponte, J. Szydlowski, C. A. Cerdeiriña, J. Troncoso, L. Romaní, J. M. S. S. Esperanca, H. J. R. Guedes, and H. C. de Sousa, “Thermodynamic analysis of [C4mim][BF4]+ water as a case study to model ionic liquid aqueous solutions,” Green Chem.6, 369–381 (2004).
[CrossRef]

Guo, S.

F. H. Mei, W. A. Phillips, B. Lu, W. J. Meng, and S. Guo, “Fabrication of copper-based microchannel devices and analysis of their flow and heat transfer characteristics,” J. Micromech. Microeng.19(3), 035009 (2009).
[CrossRef]

Guttmann, M.

F. Greiner, S. Quednau, F. Dassinger, R. Sarwar, H. F. Schlaak, M. Guttmann, and P. Meyer, “Fabrication techniques for multiscale 3D-MEMS with vertical metal micro- and nanowire integration,” J. Micromech. Microeng.23(2), 025018 (2013).
[CrossRef]

Han, B.

B. B. Xu, R. Zhang, H. Wang, X. Q. Liu, L. Wang, Z. C. Ma, Q. D. Chen, X. Z. Xiao, B. Han, and H. B. Sun, “Laser patterning of conductive gold micronanostructures from nanodots,” Nanoscale4(22), 6955–6958 (2012).
[CrossRef] [PubMed]

Heikal, A. A.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

Huq, E.

B. R. Lu, J. Wan, Z. Shu, S. Q. Xie, Y. F. Chen, E. Huq, X. P. Qua, and R. Liu, “Metallic and dielectric photonic crystals with chiral elements by combined nanoimprint and reversal lithography in SU-8,” Microelectron. Eng.86(4–6), 619–621 (2009).
[CrossRef]

Hwang, H.

L. J. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Ishikawa, A.

A. Ishikawa, T. Tanaka, and S. Kawata, “Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye,” Appl. Phys. Lett.89(11), 113102 (2006).
[CrossRef]

T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett.88(8), 081107 (2006).
[CrossRef]

Jin, F.

C. F. Li, X. Z. Dong, F. Jin, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Polymeric distributed-feedback resonator with sub-micrometer fibers fabricated by two-photon induced photopolymerization,” Appl. Phys., A Mater. Sci. Process.89(1), 145–148 (2007).
[CrossRef]

Jin, W.

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kaneko, K.

X. M. Duan, H. B. Sun, K. Kaneko, and S. Kawata, “Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication,” Thin Solid Films453–454, 518–521 (2004).
[CrossRef]

K. Kaneko, H. B. Sun, X. M. Duan, and S. Kawata, “Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix,” Appl. Phys. Lett.83(7), 1426–1428 (2003).
[CrossRef]

Kawata, S.

Y. Y. Cao, X. Z. Dong, N. Takeyasu, T. Tanaka, Z. S. Zhao, X. M. Duan, and S. Kawata, “Morphology and size dependence of silver microstructures in fatty salts-assisted multiphoton photoreduction microfabrication,” Appl. Phys., A Mater. Sci. Process.96(2), 453–458 (2009).
[CrossRef]

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small5(10), 1144–1148 (2009).
[PubMed]

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, X. M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: In situ synthesis and fabrication of 3D microstructures,” Adv. Mater.20(5), 914–919 (2008).
[CrossRef]

J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007).
[CrossRef]

A. Ishikawa, T. Tanaka, and S. Kawata, “Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye,” Appl. Phys. Lett.89(11), 113102 (2006).
[CrossRef]

T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett.88(8), 081107 (2006).
[CrossRef]

X. M. Duan, H. B. Sun, K. Kaneko, and S. Kawata, “Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication,” Thin Solid Films453–454, 518–521 (2004).
[CrossRef]

K. Kaneko, H. B. Sun, X. M. Duan, and S. Kawata, “Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix,” Appl. Phys. Lett.83(7), 1426–1428 (2003).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Kim, K. T.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K. T. Kim, Y. K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano5(3), 1947–1957 (2011).
[CrossRef] [PubMed]

Koschny, T.

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Kuebler, S. M.

F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. D. Zhang, S. R. Marder, and J. W. Perry, “Laser and electron-beam induced growth of nanoparticles for 2d and 3d metal patterning,” Adv. Mater.14(3), 194–198 (2002).
[CrossRef]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

Lafratta, C. N.

Lee, I. Y. S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

Li, C. F.

C. F. Li, X. Z. Dong, F. Jin, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Polymeric distributed-feedback resonator with sub-micrometer fibers fabricated by two-photon induced photopolymerization,” Appl. Phys., A Mater. Sci. Process.89(1), 145–148 (2007).
[CrossRef]

Li, L. J.

L. J. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Li, W. B.

X. F. Yang, W. B. Li, and D. H. Zhang, “Subwavelength lithography using metallic grating waveguide heterostructure,” Appl. Phys., A Mater. Sci. Process.107(1), 123–126 (2012).
[CrossRef]

Li, Y.

D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

Li, Z. H.

B. B. Xu, H. Xia, L. G. Niu, Y. L. Zhang, K. Sun, Q. D. Chen, Y. Xu, Z. Q. Lv, Z. H. Li, H. Misawa, and H. B. Sun, “Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating,” Small6(16), 1762–1766 (2010).
[CrossRef] [PubMed]

Linden, S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Liu, R.

B. R. Lu, J. Wan, Z. Shu, S. Q. Xie, Y. F. Chen, E. Huq, X. P. Qua, and R. Liu, “Metallic and dielectric photonic crystals with chiral elements by combined nanoimprint and reversal lithography in SU-8,” Microelectron. Eng.86(4–6), 619–621 (2009).
[CrossRef]

Liu, X. Q.

B. B. Xu, R. Zhang, H. Wang, X. Q. Liu, L. Wang, Z. C. Ma, Q. D. Chen, X. Z. Xiao, B. Han, and H. B. Sun, “Laser patterning of conductive gold micronanostructures from nanodots,” Nanoscale4(22), 6955–6958 (2012).
[CrossRef] [PubMed]

Liu, Z. W.

J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, and X. Zhang, “Synthesis, characterization, and catalytic activity of ionic liquids based on biosources,” Nat. Commun.1, 143 (2010).
[CrossRef] [PubMed]

J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat Commun1(9), 143 (2010).
[CrossRef] [PubMed]

Lu, B.

F. H. Mei, W. A. Phillips, B. Lu, W. J. Meng, and S. Guo, “Fabrication of copper-based microchannel devices and analysis of their flow and heat transfer characteristics,” J. Micromech. Microeng.19(3), 035009 (2009).
[CrossRef]

Lu, B. R.

B. R. Lu, J. Wan, Z. Shu, S. Q. Xie, Y. F. Chen, E. Huq, X. P. Qua, and R. Liu, “Metallic and dielectric photonic crystals with chiral elements by combined nanoimprint and reversal lithography in SU-8,” Microelectron. Eng.86(4–6), 619–621 (2009).
[CrossRef]

Lu, W. E.

W. E. Lu, M. L. Zheng, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Gold nanoparticles prepared by glycinate ionic liquid assisted multi-photon photoreduction,” Phys. Chem. Chem. Phys.14(34), 11930–11936 (2012).
[CrossRef] [PubMed]

W. E. Lu, X. Z. Dong, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Novel photoinitiator with a radical quenching moiety for confining radical diffusion in two-photon induced photopolymerization,” J. Mater. Chem.21(15), 5650–5659 (2011).
[CrossRef]

Lv, Z. Q.

B. B. Xu, H. Xia, L. G. Niu, Y. L. Zhang, K. Sun, Q. D. Chen, Y. Xu, Z. Q. Lv, Z. H. Li, H. Misawa, and H. B. Sun, “Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating,” Small6(16), 1762–1766 (2010).
[CrossRef] [PubMed]

Ma, Z. C.

B. B. Xu, R. Zhang, H. Wang, X. Q. Liu, L. Wang, Z. C. Ma, Q. D. Chen, X. Z. Xiao, B. Han, and H. B. Sun, “Laser patterning of conductive gold micronanostructures from nanodots,” Nanoscale4(22), 6955–6958 (2012).
[CrossRef] [PubMed]

Marder, S. R.

F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. D. Zhang, S. R. Marder, and J. W. Perry, “Laser and electron-beam induced growth of nanoparticles for 2d and 3d metal patterning,” Adv. Mater.14(3), 194–198 (2002).
[CrossRef]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

Martini, I. B.

P. W. Wu, W. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater.12(19), 1438–1441 (2000).
[CrossRef]

Matsuo, S.

H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon absorption photopolymerization of resin,” Appl. Phys. Lett.74(6), 786–788 (1999).
[CrossRef]

McCord-Maughon, D.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

Mei, F. H.

F. H. Mei, W. A. Phillips, B. Lu, W. J. Meng, and S. Guo, “Fabrication of copper-based microchannel devices and analysis of their flow and heat transfer characteristics,” J. Micromech. Microeng.19(3), 035009 (2009).
[CrossRef]

Meng, W. J.

F. H. Mei, W. A. Phillips, B. Lu, W. J. Meng, and S. Guo, “Fabrication of copper-based microchannel devices and analysis of their flow and heat transfer characteristics,” J. Micromech. Microeng.19(3), 035009 (2009).
[CrossRef]

Meyer, P.

F. Greiner, S. Quednau, F. Dassinger, R. Sarwar, H. F. Schlaak, M. Guttmann, and P. Meyer, “Fabrication techniques for multiscale 3D-MEMS with vertical metal micro- and nanowire integration,” J. Micromech. Microeng.23(2), 025018 (2013).
[CrossRef]

Meyer-Friedrichsen, T.

F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. D. Zhang, S. R. Marder, and J. W. Perry, “Laser and electron-beam induced growth of nanoparticles for 2d and 3d metal patterning,” Adv. Mater.14(3), 194–198 (2002).
[CrossRef]

Misawa, H.

B. B. Xu, H. Xia, L. G. Niu, Y. L. Zhang, K. Sun, Q. D. Chen, Y. Xu, Z. Q. Lv, Z. H. Li, H. Misawa, and H. B. Sun, “Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating,” Small6(16), 1762–1766 (2010).
[CrossRef] [PubMed]

H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon absorption photopolymerization of resin,” Appl. Phys. Lett.74(6), 786–788 (1999).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Najdanovic-Visak, V.

L. P. N. Rebelo, V. Najdanovic-Visak, Z. P. Visak, M. Nunes da Ponte, J. Szydlowski, C. A. Cerdeiriña, J. Troncoso, L. Romaní, J. M. S. S. Esperanca, H. J. R. Guedes, and H. C. de Sousa, “Thermodynamic analysis of [C4mim][BF4]+ water as a case study to model ionic liquid aqueous solutions,” Green Chem.6, 369–381 (2004).
[CrossRef]

Nakanishi, S.

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, X. M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: In situ synthesis and fabrication of 3D microstructures,” Adv. Mater.20(5), 914–919 (2008).
[CrossRef]

Nasr, T.

K. S. Ramadan, T. Nasr, and I. G. Foulds, “Development of an SU-8 MEMS process with two metal electrodes using amorphous silicon as a sacrificial material,” J. Micromech. Microeng.23(3), 035037 (2013).
[CrossRef]

Naughton, M.

Niu, L. G.

B. B. Xu, H. Xia, L. G. Niu, Y. L. Zhang, K. Sun, Q. D. Chen, Y. Xu, Z. Q. Lv, Z. H. Li, H. Misawa, and H. B. Sun, “Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating,” Small6(16), 1762–1766 (2010).
[CrossRef] [PubMed]

Nunes da Ponte, M.

L. P. N. Rebelo, V. Najdanovic-Visak, Z. P. Visak, M. Nunes da Ponte, J. Szydlowski, C. A. Cerdeiriña, J. Troncoso, L. Romaní, J. M. S. S. Esperanca, H. J. R. Guedes, and H. C. de Sousa, “Thermodynamic analysis of [C4mim][BF4]+ water as a case study to model ionic liquid aqueous solutions,” Green Chem.6, 369–381 (2004).
[CrossRef]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Perry, J. W.

F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. D. Zhang, S. R. Marder, and J. W. Perry, “Laser and electron-beam induced growth of nanoparticles for 2d and 3d metal patterning,” Adv. Mater.14(3), 194–198 (2002).
[CrossRef]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

Petruczok, C. D.

C. D. Petruczok and K. K. Gleason, “Initiated chemical vapor deposition-based method for patterning polymer and metal microstructures on curved substrates,” Adv. Mater.24(48), 6445–6450 (2012).
[CrossRef] [PubMed]

Phillips, W. A.

F. H. Mei, W. A. Phillips, B. Lu, W. J. Meng, and S. Guo, “Fabrication of copper-based microchannel devices and analysis of their flow and heat transfer characteristics,” J. Micromech. Microeng.19(3), 035009 (2009).
[CrossRef]

Plet, C.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008).
[CrossRef] [PubMed]

Pond, S. J. K.

F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. D. Zhang, S. R. Marder, and J. W. Perry, “Laser and electron-beam induced growth of nanoparticles for 2d and 3d metal patterning,” Adv. Mater.14(3), 194–198 (2002).
[CrossRef]

Pons, A. C.

Pons, J.

Prasad, P. N.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K. T. Kim, Y. K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano5(3), 1947–1957 (2011).
[CrossRef] [PubMed]

Qi, F. J.

D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

Qin, J. Q.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

Qua, X. P.

B. R. Lu, J. Wan, Z. Shu, S. Q. Xie, Y. F. Chen, E. Huq, X. P. Qua, and R. Liu, “Metallic and dielectric photonic crystals with chiral elements by combined nanoimprint and reversal lithography in SU-8,” Microelectron. Eng.86(4–6), 619–621 (2009).
[CrossRef]

Quednau, S.

F. Greiner, S. Quednau, F. Dassinger, R. Sarwar, H. F. Schlaak, M. Guttmann, and P. Meyer, “Fabrication techniques for multiscale 3D-MEMS with vertical metal micro- and nanowire integration,” J. Micromech. Microeng.23(2), 025018 (2013).
[CrossRef]

Ramadan, K. S.

K. S. Ramadan, T. Nasr, and I. G. Foulds, “Development of an SU-8 MEMS process with two metal electrodes using amorphous silicon as a sacrificial material,” J. Micromech. Microeng.23(3), 035037 (2013).
[CrossRef]

Rebelo, L. P. N.

L. P. N. Rebelo, V. Najdanovic-Visak, Z. P. Visak, M. Nunes da Ponte, J. Szydlowski, C. A. Cerdeiriña, J. Troncoso, L. Romaní, J. M. S. S. Esperanca, H. J. R. Guedes, and H. C. de Sousa, “Thermodynamic analysis of [C4mim][BF4]+ water as a case study to model ionic liquid aqueous solutions,” Green Chem.6, 369–381 (2004).
[CrossRef]

Rho, J.

J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, and X. Zhang, “Synthesis, characterization, and catalytic activity of ionic liquids based on biosources,” Nat. Commun.1, 143 (2010).
[CrossRef] [PubMed]

J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat Commun1(9), 143 (2010).
[CrossRef] [PubMed]

Rill, M. S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008).
[CrossRef] [PubMed]

Rockel, H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

Romaní, L.

L. P. N. Rebelo, V. Najdanovic-Visak, Z. P. Visak, M. Nunes da Ponte, J. Szydlowski, C. A. Cerdeiriña, J. Troncoso, L. Romaní, J. M. S. S. Esperanca, H. J. R. Guedes, and H. C. de Sousa, “Thermodynamic analysis of [C4mim][BF4]+ water as a case study to model ionic liquid aqueous solutions,” Green Chem.6, 369–381 (2004).
[CrossRef]

Rumi, M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

Sarwar, R.

F. Greiner, S. Quednau, F. Dassinger, R. Sarwar, H. F. Schlaak, M. Guttmann, and P. Meyer, “Fabrication techniques for multiscale 3D-MEMS with vertical metal micro- and nanowire integration,” J. Micromech. Microeng.23(2), 025018 (2013).
[CrossRef]

Schlaak, H. F.

F. Greiner, S. Quednau, F. Dassinger, R. Sarwar, H. F. Schlaak, M. Guttmann, and P. Meyer, “Fabrication techniques for multiscale 3D-MEMS with vertical metal micro- and nanowire integration,” J. Micromech. Microeng.23(2), 025018 (2013).
[CrossRef]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Schwartz, B. J.

P. W. Wu, W. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater.12(19), 1438–1441 (2000).
[CrossRef]

Shu, Z.

B. R. Lu, J. Wan, Z. Shu, S. Q. Xie, Y. F. Chen, E. Huq, X. P. Qua, and R. Liu, “Metallic and dielectric photonic crystals with chiral elements by combined nanoimprint and reversal lithography in SU-8,” Microelectron. Eng.86(4–6), 619–621 (2009).
[CrossRef]

Shukla, S.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K. T. Kim, Y. K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano5(3), 1947–1957 (2011).
[CrossRef] [PubMed]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Soukoulis, C. M.

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Staude, I.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008).
[CrossRef] [PubMed]

Stellacci, F.

F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. D. Zhang, S. R. Marder, and J. W. Perry, “Laser and electron-beam induced growth of nanoparticles for 2d and 3d metal patterning,” Adv. Mater.14(3), 194–198 (2002).
[CrossRef]

Sun, C. Y.

C. Feng, Z. N. Tang, J. Yu, and C. Y. Sun, “A MEMS device capable of measuring near-field thermal radiation between membranes,” Sensors (Basel)13(2), 1998–2010 (2013).
[CrossRef] [PubMed]

Sun, H. B.

B. B. Xu, R. Zhang, H. Wang, X. Q. Liu, L. Wang, Z. C. Ma, Q. D. Chen, X. Z. Xiao, B. Han, and H. B. Sun, “Laser patterning of conductive gold micronanostructures from nanodots,” Nanoscale4(22), 6955–6958 (2012).
[CrossRef] [PubMed]

B. B. Xu, H. Xia, L. G. Niu, Y. L. Zhang, K. Sun, Q. D. Chen, Y. Xu, Z. Q. Lv, Z. H. Li, H. Misawa, and H. B. Sun, “Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating,” Small6(16), 1762–1766 (2010).
[CrossRef] [PubMed]

X. M. Duan, H. B. Sun, K. Kaneko, and S. Kawata, “Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication,” Thin Solid Films453–454, 518–521 (2004).
[CrossRef]

K. Kaneko, H. B. Sun, X. M. Duan, and S. Kawata, “Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix,” Appl. Phys. Lett.83(7), 1426–1428 (2003).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon absorption photopolymerization of resin,” Appl. Phys. Lett.74(6), 786–788 (1999).
[CrossRef]

Sun, K.

B. B. Xu, H. Xia, L. G. Niu, Y. L. Zhang, K. Sun, Q. D. Chen, Y. Xu, Z. Q. Lv, Z. H. Li, H. Misawa, and H. B. Sun, “Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating,” Small6(16), 1762–1766 (2010).
[CrossRef] [PubMed]

Sun, Y.

Sun, Z. B.

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, X. M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: In situ synthesis and fabrication of 3D microstructures,” Adv. Mater.20(5), 914–919 (2008).
[CrossRef]

Swihart, M. T.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K. T. Kim, Y. K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano5(3), 1947–1957 (2011).
[CrossRef] [PubMed]

Szydlowski, J.

L. P. N. Rebelo, V. Najdanovic-Visak, Z. P. Visak, M. Nunes da Ponte, J. Szydlowski, C. A. Cerdeiriña, J. Troncoso, L. Romaní, J. M. S. S. Esperanca, H. J. R. Guedes, and H. C. de Sousa, “Thermodynamic analysis of [C4mim][BF4]+ water as a case study to model ionic liquid aqueous solutions,” Green Chem.6, 369–381 (2004).
[CrossRef]

Takada, K.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Takeyasu, N.

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small5(10), 1144–1148 (2009).
[PubMed]

Y. Y. Cao, X. Z. Dong, N. Takeyasu, T. Tanaka, Z. S. Zhao, X. M. Duan, and S. Kawata, “Morphology and size dependence of silver microstructures in fatty salts-assisted multiphoton photoreduction microfabrication,” Appl. Phys., A Mater. Sci. Process.96(2), 453–458 (2009).
[CrossRef]

J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007).
[CrossRef]

Tan, D. F.

D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

Tanaka, T.

Y. Y. Cao, X. Z. Dong, N. Takeyasu, T. Tanaka, Z. S. Zhao, X. M. Duan, and S. Kawata, “Morphology and size dependence of silver microstructures in fatty salts-assisted multiphoton photoreduction microfabrication,” Appl. Phys., A Mater. Sci. Process.96(2), 453–458 (2009).
[CrossRef]

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small5(10), 1144–1148 (2009).
[PubMed]

J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007).
[CrossRef]

A. Ishikawa, T. Tanaka, and S. Kawata, “Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye,” Appl. Phys. Lett.89(11), 113102 (2006).
[CrossRef]

T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett.88(8), 081107 (2006).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Tang, Z. N.

C. Feng, Z. N. Tang, J. Yu, and C. Y. Sun, “A MEMS device capable of measuring near-field thermal radiation between membranes,” Sensors (Basel)13(2), 1998–2010 (2013).
[CrossRef] [PubMed]

Thiel, M.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008).
[CrossRef] [PubMed]

Troncoso, J.

L. P. N. Rebelo, V. Najdanovic-Visak, Z. P. Visak, M. Nunes da Ponte, J. Szydlowski, C. A. Cerdeiriña, J. Troncoso, L. Romaní, J. M. S. S. Esperanca, H. J. R. Guedes, and H. C. de Sousa, “Thermodynamic analysis of [C4mim][BF4]+ water as a case study to model ionic liquid aqueous solutions,” Green Chem.6, 369–381 (2004).
[CrossRef]

Tummala, R. R.

S. K. Bhattacharya and R. R. Tummala, “Next generation integral passives: Materials, processes, and integration of resistors and capacitors on PWB substrates,” J. Mater. Sci. Mater. Electron.11(3), 253–268 (2000).
[CrossRef]

Urbas, A.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K. T. Kim, Y. K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano5(3), 1947–1957 (2011).
[CrossRef] [PubMed]

Vidal, X.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K. T. Kim, Y. K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano5(3), 1947–1957 (2011).
[CrossRef] [PubMed]

Visak, Z. P.

L. P. N. Rebelo, V. Najdanovic-Visak, Z. P. Visak, M. Nunes da Ponte, J. Szydlowski, C. A. Cerdeiriña, J. Troncoso, L. Romaní, J. M. S. S. Esperanca, H. J. R. Guedes, and H. C. de Sousa, “Thermodynamic analysis of [C4mim][BF4]+ water as a case study to model ionic liquid aqueous solutions,” Green Chem.6, 369–381 (2004).
[CrossRef]

von Freymann, G.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008).
[CrossRef] [PubMed]

Wan, J.

B. R. Lu, J. Wan, Z. Shu, S. Q. Xie, Y. F. Chen, E. Huq, X. P. Qua, and R. Liu, “Metallic and dielectric photonic crystals with chiral elements by combined nanoimprint and reversal lithography in SU-8,” Microelectron. Eng.86(4–6), 619–621 (2009).
[CrossRef]

Wang, H.

B. B. Xu, R. Zhang, H. Wang, X. Q. Liu, L. Wang, Z. C. Ma, Q. D. Chen, X. Z. Xiao, B. Han, and H. B. Sun, “Laser patterning of conductive gold micronanostructures from nanodots,” Nanoscale4(22), 6955–6958 (2012).
[CrossRef] [PubMed]

Wang, L.

B. B. Xu, R. Zhang, H. Wang, X. Q. Liu, L. Wang, Z. C. Ma, Q. D. Chen, X. Z. Xiao, B. Han, and H. B. Sun, “Laser patterning of conductive gold micronanostructures from nanodots,” Nanoscale4(22), 6955–6958 (2012).
[CrossRef] [PubMed]

Wegener, M.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Welton, T.

T. Welton, “Room-temperature ionic liquids. solvents for synthesis and catalysis,” Chem. Rev.99(8), 2071–2084 (1999).
[CrossRef] [PubMed]

Wenseleers, W.

F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. D. Zhang, S. R. Marder, and J. W. Perry, “Laser and electron-beam induced growth of nanoparticles for 2d and 3d metal patterning,” Adv. Mater.14(3), 194–198 (2002).
[CrossRef]

Wu, P. W.

P. W. Wu, W. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater.12(19), 1438–1441 (2000).
[CrossRef]

Wu, X. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

Xia, H.

B. B. Xu, H. Xia, L. G. Niu, Y. L. Zhang, K. Sun, Q. D. Chen, Y. Xu, Z. Q. Lv, Z. H. Li, H. Misawa, and H. B. Sun, “Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating,” Small6(16), 1762–1766 (2010).
[CrossRef] [PubMed]

Xiao, X. Z.

B. B. Xu, R. Zhang, H. Wang, X. Q. Liu, L. Wang, Z. C. Ma, Q. D. Chen, X. Z. Xiao, B. Han, and H. B. Sun, “Laser patterning of conductive gold micronanostructures from nanodots,” Nanoscale4(22), 6955–6958 (2012).
[CrossRef] [PubMed]

Xie, S. Q.

B. R. Lu, J. Wan, Z. Shu, S. Q. Xie, Y. F. Chen, E. Huq, X. P. Qua, and R. Liu, “Metallic and dielectric photonic crystals with chiral elements by combined nanoimprint and reversal lithography in SU-8,” Microelectron. Eng.86(4–6), 619–621 (2009).
[CrossRef]

Xing, J. F.

J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007).
[CrossRef]

Xiong, Y.

J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat Commun1(9), 143 (2010).
[CrossRef] [PubMed]

J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, and X. Zhang, “Synthesis, characterization, and catalytic activity of ionic liquids based on biosources,” Nat. Commun.1, 143 (2010).
[CrossRef] [PubMed]

Xu, B. B.

B. B. Xu, R. Zhang, H. Wang, X. Q. Liu, L. Wang, Z. C. Ma, Q. D. Chen, X. Z. Xiao, B. Han, and H. B. Sun, “Laser patterning of conductive gold micronanostructures from nanodots,” Nanoscale4(22), 6955–6958 (2012).
[CrossRef] [PubMed]

B. B. Xu, H. Xia, L. G. Niu, Y. L. Zhang, K. Sun, Q. D. Chen, Y. Xu, Z. Q. Lv, Z. H. Li, H. Misawa, and H. B. Sun, “Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating,” Small6(16), 1762–1766 (2010).
[CrossRef] [PubMed]

Xu, Y.

B. B. Xu, H. Xia, L. G. Niu, Y. L. Zhang, K. Sun, Q. D. Chen, Y. Xu, Z. Q. Lv, Z. H. Li, H. Misawa, and H. B. Sun, “Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating,” Small6(16), 1762–1766 (2010).
[CrossRef] [PubMed]

Yablonovitch, E.

P. W. Wu, W. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater.12(19), 1438–1441 (2000).
[CrossRef]

Yang, H.

D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

Yang, X. F.

X. F. Yang, W. B. Li, and D. H. Zhang, “Subwavelength lithography using metallic grating waveguide heterostructure,” Appl. Phys., A Mater. Sci. Process.107(1), 123–126 (2012).
[CrossRef]

Ye, Z. L.

J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat Commun1(9), 143 (2010).
[CrossRef] [PubMed]

J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, and X. Zhang, “Synthesis, characterization, and catalytic activity of ionic liquids based on biosources,” Nat. Commun.1, 143 (2010).
[CrossRef] [PubMed]

Yin, X. B.

J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, and X. Zhang, “Synthesis, characterization, and catalytic activity of ionic liquids based on biosources,” Nat. Commun.1, 143 (2010).
[CrossRef] [PubMed]

J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat Commun1(9), 143 (2010).
[CrossRef] [PubMed]

Yoon, Y. K.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K. T. Kim, Y. K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano5(3), 1947–1957 (2011).
[CrossRef] [PubMed]

Yu, J.

C. Feng, Z. N. Tang, J. Yu, and C. Y. Sun, “A MEMS device capable of measuring near-field thermal radiation between membranes,” Sensors (Basel)13(2), 1998–2010 (2013).
[CrossRef] [PubMed]

Zhang, D. H.

X. F. Yang, W. B. Li, and D. H. Zhang, “Subwavelength lithography using metallic grating waveguide heterostructure,” Appl. Phys., A Mater. Sci. Process.107(1), 123–126 (2012).
[CrossRef]

Zhang, R.

B. B. Xu, R. Zhang, H. Wang, X. Q. Liu, L. Wang, Z. C. Ma, Q. D. Chen, X. Z. Xiao, B. Han, and H. B. Sun, “Laser patterning of conductive gold micronanostructures from nanodots,” Nanoscale4(22), 6955–6958 (2012).
[CrossRef] [PubMed]

Zhang, X.

J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, and X. Zhang, “Synthesis, characterization, and catalytic activity of ionic liquids based on biosources,” Nat. Commun.1, 143 (2010).
[CrossRef] [PubMed]

J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat Commun1(9), 143 (2010).
[CrossRef] [PubMed]

Zhang, Y. D.

F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. D. Zhang, S. R. Marder, and J. W. Perry, “Laser and electron-beam induced growth of nanoparticles for 2d and 3d metal patterning,” Adv. Mater.14(3), 194–198 (2002).
[CrossRef]

Zhang, Y. L.

Y. L. Zhang, W. Jin, X. Z. Dong, Z. S. Zhao, and X. M. Duan, “Asymmetric fishnet metamaterials with strong optical activity,” Opt. Express20(10), 10776–10787 (2012).
[CrossRef] [PubMed]

B. B. Xu, H. Xia, L. G. Niu, Y. L. Zhang, K. Sun, Q. D. Chen, Y. Xu, Z. Q. Lv, Z. H. Li, H. Misawa, and H. B. Sun, “Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating,” Small6(16), 1762–1766 (2010).
[CrossRef] [PubMed]

Zhao, Z. S.

Y. L. Zhang, W. Jin, X. Z. Dong, Z. S. Zhao, and X. M. Duan, “Asymmetric fishnet metamaterials with strong optical activity,” Opt. Express20(10), 10776–10787 (2012).
[CrossRef] [PubMed]

W. E. Lu, M. L. Zheng, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Gold nanoparticles prepared by glycinate ionic liquid assisted multi-photon photoreduction,” Phys. Chem. Chem. Phys.14(34), 11930–11936 (2012).
[CrossRef] [PubMed]

W. E. Lu, X. Z. Dong, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Novel photoinitiator with a radical quenching moiety for confining radical diffusion in two-photon induced photopolymerization,” J. Mater. Chem.21(15), 5650–5659 (2011).
[CrossRef]

Y. Y. Cao, X. Z. Dong, N. Takeyasu, T. Tanaka, Z. S. Zhao, X. M. Duan, and S. Kawata, “Morphology and size dependence of silver microstructures in fatty salts-assisted multiphoton photoreduction microfabrication,” Appl. Phys., A Mater. Sci. Process.96(2), 453–458 (2009).
[CrossRef]

C. F. Li, X. Z. Dong, F. Jin, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Polymeric distributed-feedback resonator with sub-micrometer fibers fabricated by two-photon induced photopolymerization,” Appl. Phys., A Mater. Sci. Process.89(1), 145–148 (2007).
[CrossRef]

X. Z. Dong, Z. S. Zhao, and X. M. Duan, “Photonic bandgap of gradient quasidiamond lattice photonic crystal,” Appl. Phys. Lett.91, 124103 (2007).
[CrossRef]

Zheng, M. L.

W. E. Lu, M. L. Zheng, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Gold nanoparticles prepared by glycinate ionic liquid assisted multi-photon photoreduction,” Phys. Chem. Chem. Phys.14(34), 11930–11936 (2012).
[CrossRef] [PubMed]

Zhou, J. F.

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

ACS Nano (1)

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K. T. Kim, Y. K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano5(3), 1947–1957 (2011).
[CrossRef] [PubMed]

Adv. Mater. (4)

P. W. Wu, W. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater.12(19), 1438–1441 (2000).
[CrossRef]

F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. D. Zhang, S. R. Marder, and J. W. Perry, “Laser and electron-beam induced growth of nanoparticles for 2d and 3d metal patterning,” Adv. Mater.14(3), 194–198 (2002).
[CrossRef]

C. D. Petruczok and K. K. Gleason, “Initiated chemical vapor deposition-based method for patterning polymer and metal microstructures on curved substrates,” Adv. Mater.24(48), 6445–6450 (2012).
[CrossRef] [PubMed]

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, X. M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: In situ synthesis and fabrication of 3D microstructures,” Adv. Mater.20(5), 914–919 (2008).
[CrossRef]

Appl. Phys. Lett. (7)

D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007).
[CrossRef]

H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon absorption photopolymerization of resin,” Appl. Phys. Lett.74(6), 786–788 (1999).
[CrossRef]

X. Z. Dong, Z. S. Zhao, and X. M. Duan, “Photonic bandgap of gradient quasidiamond lattice photonic crystal,” Appl. Phys. Lett.91, 124103 (2007).
[CrossRef]

K. Kaneko, H. B. Sun, X. M. Duan, and S. Kawata, “Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix,” Appl. Phys. Lett.83(7), 1426–1428 (2003).
[CrossRef]

T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett.88(8), 081107 (2006).
[CrossRef]

A. Ishikawa, T. Tanaka, and S. Kawata, “Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye,” Appl. Phys. Lett.89(11), 113102 (2006).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (3)

Y. Y. Cao, X. Z. Dong, N. Takeyasu, T. Tanaka, Z. S. Zhao, X. M. Duan, and S. Kawata, “Morphology and size dependence of silver microstructures in fatty salts-assisted multiphoton photoreduction microfabrication,” Appl. Phys., A Mater. Sci. Process.96(2), 453–458 (2009).
[CrossRef]

C. F. Li, X. Z. Dong, F. Jin, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Polymeric distributed-feedback resonator with sub-micrometer fibers fabricated by two-photon induced photopolymerization,” Appl. Phys., A Mater. Sci. Process.89(1), 145–148 (2007).
[CrossRef]

X. F. Yang, W. B. Li, and D. H. Zhang, “Subwavelength lithography using metallic grating waveguide heterostructure,” Appl. Phys., A Mater. Sci. Process.107(1), 123–126 (2012).
[CrossRef]

Chem. Rev. (1)

T. Welton, “Room-temperature ionic liquids. solvents for synthesis and catalysis,” Chem. Rev.99(8), 2071–2084 (1999).
[CrossRef] [PubMed]

Green Chem. (1)

L. P. N. Rebelo, V. Najdanovic-Visak, Z. P. Visak, M. Nunes da Ponte, J. Szydlowski, C. A. Cerdeiriña, J. Troncoso, L. Romaní, J. M. S. S. Esperanca, H. J. R. Guedes, and H. C. de Sousa, “Thermodynamic analysis of [C4mim][BF4]+ water as a case study to model ionic liquid aqueous solutions,” Green Chem.6, 369–381 (2004).
[CrossRef]

J. Mater. Chem. (1)

W. E. Lu, X. Z. Dong, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Novel photoinitiator with a radical quenching moiety for confining radical diffusion in two-photon induced photopolymerization,” J. Mater. Chem.21(15), 5650–5659 (2011).
[CrossRef]

J. Mater. Sci. Mater. Electron. (1)

S. K. Bhattacharya and R. R. Tummala, “Next generation integral passives: Materials, processes, and integration of resistors and capacitors on PWB substrates,” J. Mater. Sci. Mater. Electron.11(3), 253–268 (2000).
[CrossRef]

J. Micromech. Microeng. (3)

F. Greiner, S. Quednau, F. Dassinger, R. Sarwar, H. F. Schlaak, M. Guttmann, and P. Meyer, “Fabrication techniques for multiscale 3D-MEMS with vertical metal micro- and nanowire integration,” J. Micromech. Microeng.23(2), 025018 (2013).
[CrossRef]

K. S. Ramadan, T. Nasr, and I. G. Foulds, “Development of an SU-8 MEMS process with two metal electrodes using amorphous silicon as a sacrificial material,” J. Micromech. Microeng.23(3), 035037 (2013).
[CrossRef]

F. H. Mei, W. A. Phillips, B. Lu, W. J. Meng, and S. Guo, “Fabrication of copper-based microchannel devices and analysis of their flow and heat transfer characteristics,” J. Micromech. Microeng.19(3), 035009 (2009).
[CrossRef]

Microelectron. Eng. (1)

B. R. Lu, J. Wan, Z. Shu, S. Q. Xie, Y. F. Chen, E. Huq, X. P. Qua, and R. Liu, “Metallic and dielectric photonic crystals with chiral elements by combined nanoimprint and reversal lithography in SU-8,” Microelectron. Eng.86(4–6), 619–621 (2009).
[CrossRef]

Nanoscale (1)

B. B. Xu, R. Zhang, H. Wang, X. Q. Liu, L. Wang, Z. C. Ma, Q. D. Chen, X. Z. Xiao, B. Han, and H. B. Sun, “Laser patterning of conductive gold micronanostructures from nanodots,” Nanoscale4(22), 6955–6958 (2012).
[CrossRef] [PubMed]

Nat Commun (1)

J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat Commun1(9), 143 (2010).
[CrossRef] [PubMed]

Nat. Commun. (1)

J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, and X. Zhang, “Synthesis, characterization, and catalytic activity of ionic liquids based on biosources,” Nat. Commun.1, 143 (2010).
[CrossRef] [PubMed]

Nat. Mater. (1)

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008).
[CrossRef] [PubMed]

Nature (2)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Chem. Chem. Phys. (1)

W. E. Lu, M. L. Zheng, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Gold nanoparticles prepared by glycinate ionic liquid assisted multi-photon photoreduction,” Phys. Chem. Chem. Phys.14(34), 11930–11936 (2012).
[CrossRef] [PubMed]

Science (3)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

L. J. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Sensors (Basel) (1)

C. Feng, Z. N. Tang, J. Yu, and C. Y. Sun, “A MEMS device capable of measuring near-field thermal radiation between membranes,” Sensors (Basel)13(2), 1998–2010 (2013).
[CrossRef] [PubMed]

Small (2)

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small5(10), 1144–1148 (2009).
[PubMed]

B. B. Xu, H. Xia, L. G. Niu, Y. L. Zhang, K. Sun, Q. D. Chen, Y. Xu, Z. Q. Lv, Z. H. Li, H. Misawa, and H. B. Sun, “Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating,” Small6(16), 1762–1766 (2010).
[CrossRef] [PubMed]

Thin Solid Films (1)

X. M. Duan, H. B. Sun, K. Kaneko, and S. Kawata, “Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication,” Thin Solid Films453–454, 518–521 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Scheme for femtosecond laser direct writing the mixture aqueous solution of HAuCl4 and ionic liquid. (b) Schematic illustration of the MPR process for the formation of gold micro/nanostructures. (c) The structure of ionic liquid C4, C5 and C6; and UV-Vis absorption spectra of HAuCl4, C5 and the mixture aqueous of C5 and HAuCl4 (C5/HAuCl4 = 7, the concentration of HAuCl4 is 0.08 M).

Fig. 2
Fig. 2

(a) SEM images of gold lines fabricated with assistance of ILs C4, C5, and C6, respectively, under the same scanning speed of 3 μm/s. The used laser powers were shown on the images. (b) SEM images of aqueous solution of HAuCl4 assisted by C5 after MPR at the laser power of 1.57 mW (the scanning speeds were 2, 3, 4, 5 μm/s for the image with red, blue, bright-red and green, respectively.); and the dependence of the linewidth upon laser power for the aqueous solution of C5 and HAuCl4 under the different laser scanning speed (2, 3, 4, 5 μm/s). (c) SEM image of aqueous solution of HAuCl4 assisted by C6 after MPR on the laser power of 1.57 mW (the scanning speeds were 2, 3, 4, 5 μm/s for the image with red, blue, bright-red and green, respectively.); and the dependence of the linewidth upon laser power for the aqueous solution of C6 and HAuCl4 under different laser scanning speed (2, 3, 4, 5 μm/s). (IL/HAuCl4 = 7, the concentration of HAuCl4 is 0.08 M).

Fig. 3
Fig. 3

(a) TEM image of gold nanoline fabricated using C5 assisted aqueous solution of HAuCl4. (b) The magnified TEM images selected from the square region of (a). (c), (d) and (e) were the magnified HR-TEM images from the marked region of (b).

Fig. 4
Fig. 4

Electrical characterization of gold nanoline: (a) SEM image of gold nanoline between two Au electrodes. (b) AFM image of the gold nanoline. (c) Height profile of the gold nanoline. (d) Current-voltage curve of the gold nanoline.

Fig. 5
Fig. 5

SEM images of (a) gears; (b) micro-circuit diagram; (c) coil; (d) microantenna.

Fig. 6
Fig. 6

(a) SEM images of the U-shape gold resonance rings on glass substrate, which was fabricated under the laser power of 1.57 mW and the scanning speed of 2 μm/s using the sample solution with C5, L = 1.9 μm, H = 150 nm, W = 640 nm, P = 3 μm. Magnified images in the edge (top, blue) and center (bottom, red) of the resonance rings. Measured (b) and numerical calculated (c) transmission and reflection spectra for the metamaterials with x-polarized illumination. (d) Simulated electric field and current density at the resonant frequency for x-polarized illumination.

Fig. 7
Fig. 7

The chemical structure of the C4-C6 and 1H NMR spectra of the pristine C5, and HAuCl4 mixed with C5 at different molar ratios (HAuCl4/C5: 0, 1/112, 1/56, 1/28, 1/14, 1/9 and 1/7, respectively.). The solvent used here was D2O.

Fig. 8
Fig. 8

Magnified CV curves for pristine HAuCl4 (black) and the solution of HAuCl4 mixed with IL (IL/HAuCl4 = 7) (C4, blue; C5, red; C6, green.), respectively. Inset showed the CV cycles in original range. The solvent used was 0.1 M NaCl aqueous solution. Scan rate: 0.05 V/s.

Fig. 9
Fig. 9

The schematic illustration of the formed IL stabilized AuNPs.

Fig. 10
Fig. 10

The dependence of the linewidth upon laser power for the aqueous solution of C6 and HAuCl4 under the scanning speed of 3 μm/s.

Fig. 11
Fig. 11

(a) Sketch of the designed planar metamaterial based on U-shaped split ring resonators (SRRs), P is defined as the period, L is the length, W is the width, and H is the height of the ring. (b) AFM image of a small region form the array which was fabricated under the laser power of 1.57 mW and the scanning speed of 3 μm/s using the sample solution with C5. (L = 1.9 μm, H = 150 nm, W = 640 nm, P = 3 μm). (c) Height profile of the gold resonant rings.

Fig. 12
Fig. 12

(a) Measured (b) and numerical calculated transmission and reflection spectra for the metamaterials (L = 1.9 μm, H = 150 nm, W = 640 nm, P = 3 μm) with y-polarized illumination.

Metrics