Abstract

We correct an error in figure 6 of our manuscript [Opt. Mater. Exp. 2, 478–489 (2012)] showing the propagation length and confinement width of surface-plasmon-polariton on metal/air interface.

© 2013 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Titanium nitride as a plasmonic material for visible and near-infrared wavelengths

Gururaj V. Naik, Jeremy L. Schroeder, Xingjie Ni, Alexander V. Kildishev, Timothy D. Sands, and Alexandra Boltasseva
Opt. Mater. Express 2(4) 478-489 (2012)

Lifetime and propagation length of light in nanoscopic metallic slots

Goran Isić and Radoš Gajić
J. Opt. Soc. Am. B 31(2) 393-399 (2014)

Photo-thermal modulation of surface plasmon polariton propagation at telecommunication wavelengths

S. Kaya, J.-C. Weeber, F. Zacharatos, K. Hassan, T. Bernardin, B. Cluzel, J. Fatome, and C. Finot
Opt. Express 21(19) 22269-22284 (2013)

References

  • View by:
  • |
  • |
  • |

  1. G. Naik, J. Schroeder, X. Ni, A. Kildishev, T. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths optics,” Optical Materials Express 2, 478–489 (2012).
    [Crossref]

2012 (1)

G. Naik, J. Schroeder, X. Ni, A. Kildishev, T. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths optics,” Optical Materials Express 2, 478–489 (2012).
[Crossref]

Boltasseva, A.

G. Naik, J. Schroeder, X. Ni, A. Kildishev, T. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths optics,” Optical Materials Express 2, 478–489 (2012).
[Crossref]

Kildishev, A.

G. Naik, J. Schroeder, X. Ni, A. Kildishev, T. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths optics,” Optical Materials Express 2, 478–489 (2012).
[Crossref]

Naik, G.

G. Naik, J. Schroeder, X. Ni, A. Kildishev, T. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths optics,” Optical Materials Express 2, 478–489 (2012).
[Crossref]

Ni, X.

G. Naik, J. Schroeder, X. Ni, A. Kildishev, T. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths optics,” Optical Materials Express 2, 478–489 (2012).
[Crossref]

Sands, T.

G. Naik, J. Schroeder, X. Ni, A. Kildishev, T. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths optics,” Optical Materials Express 2, 478–489 (2012).
[Crossref]

Schroeder, J.

G. Naik, J. Schroeder, X. Ni, A. Kildishev, T. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths optics,” Optical Materials Express 2, 478–489 (2012).
[Crossref]

Optical Materials Express (1)

G. Naik, J. Schroeder, X. Ni, A. Kildishev, T. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths optics,” Optical Materials Express 2, 478–489 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Comparison of the performance characteristics of SPP waveguides formed by the interface of air with titanium nitride-, gold (JC)- and gold with loss factor of 3.5: a) Propagation length (1/e field decay length along the propagation direction) b) Confinement width (1/e field decay widths as defined in Eq. (2)).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L w = 1 / Im ( k 0 ε m ε m + 1 )
D w = { δ D for | ε m | e δ D + δ m ln ( e / | ε m | ) for | ε m | < e

Metrics