Abstract

We discuss a novel method for generating octave-spanning supercontinua and few-cycle pulses in the important mid-IR wavelength range. The technique relies on strongly phase-mismatched cascaded second-harmonic generation (SHG) in mid-IR nonlinear frequency conversion crystals. Importantly we here investigate the so-called noncritical SHG case, where no phase matching can be achieved but as a compensation the largest quadratic nonlinearities are exploited. A self-defocusing temporal soliton can be excited if the cascading nonlinearity is larger than the competing material self-focusing nonlinearity, and we define a suitable figure of merit to screen a wide range of mid-IR dielectric and semiconductor materials with large effective second-order nonlinearities deff. The best candidates have simultaneously a large bandgap and a large deff. We show selected realistic numerical examples using one of the promising crystals: in one case soliton pulse compression from 50 fs to 15 fs (1.5 cycles) at 3.0 μm is achieved, and at the same time a 3-cycle dispersive wave at 5.0 μm is formed that can be isolated using a long-pass filter. In another example we show that extremely broadband supercontinua can form spanning the near-IR to the end of the mid-IR (nearly 4 octaves).

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Bakker, Y. L. A. Rezus, and R. L. A. Timmer, “Molecular reorientation of liquid water studied with femtosecond midinfrared spectroscopy,” J. Phys. Chem. A112, 11523–11534 (2008).
    [CrossRef] [PubMed]
  2. M. Rini, R. Tobey, N. Dean, J. Itatani, Y. Tomioka, Y. Tokura, R. W. Schoenlein, and A. Cavalleri, “Control of the electronic phase of a manganite by mode-selective vibrational excitation,” Nature449, 72–74 (2007).
    [CrossRef] [PubMed]
  3. D. Brida, M. Marangoni, C. Manzoni, S. D. Silvestri, and G. Cerullo, “Two-optical-cycle pulses in the mid-infrared from an optical parametric amplifier,” Opt. Lett.33, 2901–2903 (2008).
    [CrossRef] [PubMed]
  4. S. Ashihara, T. Mochizuki, S. Yamamoto, T. Shimura, and K. Kuroda, “Generation of sub 50-fs mid-infrared pulses by optical parametric amplifier based on periodically-poled MgO:LiNbO3,” Jap. Journ. Appl. Phys.48, 042501 (2009).
    [CrossRef]
  5. S. Ashihara and Y. Kawahara, “Spectral broadening of mid-infrared femtosecond pulses in GaAs,” Opt. Lett.34, 3839–3841 (2009).
    [CrossRef] [PubMed]
  6. P. B. Corkum, P. P. Ho, R. R. Alfano, and J. T. Manassah, “Generation of infrared supercontinuum covering 3–14 μm in dielectrics and semiconductors,” Opt. Lett.10, 624–626 (1985).
    [CrossRef] [PubMed]
  7. F. Silva, D. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nature Comms.3, 807 (2012).
    [CrossRef]
  8. T. Fuji and T. Suzuki, “Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air,” Opt. Lett.32, 3330–3332 (2007).
    [CrossRef] [PubMed]
  9. P. B. Petersen and A. Tokmakoff, “Source for ultrafast continuum infrared and terahertz radiation,” Opt. Lett.35, 1962–1964 (2010).
    [CrossRef] [PubMed]
  10. O. Chalus, A. Thai, P. K. Bates, and J. Biegert, “Six-cycle mid-infrared source with 3.8 μ J at 100 kHz,” Opt. Lett.35, 3204–3206 (2010).
    [CrossRef] [PubMed]
  11. G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett.36, 2755–2757 (2011).
    [CrossRef] [PubMed]
  12. P. Moulton and E. Slobodchikov, “1-GW-peak-power, Cr:ZnSe laser,” in “CLEO:2011 - Laser Applications to Photonic Applications,” (Optical Society of America, 2011), p. PDPA10.
  13. P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett.71, 1994–1997 (1993).
    [CrossRef] [PubMed]
  14. T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn, “The attosecond nonlinear optics of bright coherent x-ray generation,” Nat. Photon.4, 822–832 (2010).
    [CrossRef]
  15. B. B. Zhou, A. Chong, F. W. Wise, and M. Bache, “Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched quadratic interactions,” Phys. Rev. Lett.109, 043902 (2012).
    [CrossRef] [PubMed]
  16. L. A. Ostrovskii, “Self-action of light in crystals,” Pisma Zh. Eksp. Teor. Fiz.5, 331 (1967). [JETP Lett. 5, 272–275 (1967)].
  17. J. M. R. Thomas and J. P. E. Taran, “Pulse distortions in mismatched second harmonic generation,” Opt. Commun.4, 329–334 (1972).
    [CrossRef]
  18. R. DeSalvo, D. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett.17, 28–30 (1992).
    [CrossRef] [PubMed]
  19. M. L. Sundheimer, C. Bosshard, E. W. V. Stryland, G. I. Stegeman, and J. D. Bierlein, “Large nonlinear phase modulation in quasi-phase-matched ktp waveguides as a result of cascaded second-order processes,” Opt. Lett.18, 1397–1399 (1993).
    [CrossRef] [PubMed]
  20. X. Liu, L.-J. Qian, and F. W. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascaded χ(2): χ(2)nonlinearity,” Opt. Lett.24, 1777–1779 (1999).
    [CrossRef]
  21. S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B19, 2505–2510 (2002).
    [CrossRef]
  22. M. Bache, O. Bang, J. Moses, and F. W. Wise, “Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression,” Opt. Lett.32, 2490–2492 (2007).
    [CrossRef] [PubMed]
  23. D. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, Berlin, 2005).
  24. V. Kemlin, B. Boulanger, V. Petrov, P. Segonds, B. Ménaert, P. G. Schunneman, and K. T. Zawilski, “Nonlinear, dispersive, and phase-matching properties of the new chalcopyrite CdSiP2[invited],” Opt. Mater. Express1, 1292–1300 (2011).
    [CrossRef]
  25. S. Das, G. C. Bhar, S. Gangopadhyay, and C. Ghosh, “Linear and nonlinear optical properties of zngep2crystal for infrared laser device applications: Revisited,” Appl. Opt.42, 4335–4340 (2003).
    [CrossRef] [PubMed]
  26. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91, 343–348 (2008).
    [CrossRef]
  27. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B14, 2268–2294 (1997).
    [CrossRef]
  28. V. Petrov, F. Noack, I. Tunchev, P. Schunemann, and K. Zawilski, “The nonlinear coefficient d36of CdSiP2,” Proc. SPIE7197, 71970M–71970M–8 (2009).
    [CrossRef]
  29. S. Avanesov, V. Badikov, A. Tyazhev, D. Badikov, V. Panyutin, G. Marchev, G. Shevyrdyaeva, K. Mitin, F. Noack, P. Vinogradova, N. Schebetova, V. Petrov, and A. Kwasniewski, “PbIn6Te10: new nonlinear crystal for three-wave interactions with transmission extending from 1.7 to 25 μm,” Opt. Mater. Express1, 1286–1291 (2011).
    [CrossRef]
  30. R. Santos-Ortiz, E. Tupitsyn, I. Nieves, P. Bhattacharya, and A. Burger, “Growth improvement and characterization of AgGax In1−x Se2chalcopyrite crystals using the horizontal Bridgman technique,” Journal of Crystal Growth314, 293–297 (2011).
    [CrossRef]
  31. H. Li, C. Kam, Y. Lam, F. Zhou, and W. Ji, “Nonlinear refraction of undoped and Fe-doped KTiOAsO4crystals in the femtosecond regime,” Applied Physics B70, 385–388 (2000).
    [CrossRef]
  32. M. Jazbinsek, L. Mutter, and P. Gunter, “Photonic applications with the organic nonlinear optical crystal DAST,” Selected Topics in Quantum Electronics, IEEE Journal of 14, 1298–1311 (2008).
    [CrossRef]
  33. K. Jagannathan and S. Kalainathan, “Growth and characterization of 4-dimethylamino-N-methyl 4-stilbazolium tosylate (DAST) single crystals grown by nucleation reduction method,” Mater. Res. Bull.42, 1881–1887 (2007).
    [CrossRef]
  34. X. Lin, G. Zhang, and N. Ye, “Growth and characterization of BaGa4S7: A new crystal for mid-IR nonlinear optics,” Crystal Growth & Design9, 1186–1189 (2009).
    [CrossRef]
  35. W. Ettoumi, Y. Petit, J. Kasparian, and J.-P. Wolf, “Generalized Miller formulæ,” Opt. Express18, 6613–6620 (2010).
    [CrossRef] [PubMed]
  36. M. Sheik-Bahae and E. W. V. Stryland, “Optical nonlinearities in the transparency region of bulk semiconductors,” in “Nonlinear Optics in Semiconductors I,”, vol. 58 of Semiconductors and Semimetals, E. Garmire and A. Kost, eds. (Elsevier, 1998), chap. 4, pp. 257–318.
    [CrossRef]
  37. R. DeSalvo, A. A. Said, D. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2in wide bandgap solids,” IEEE J. Quantum Electron.32, 1324–1333 (1996).
    [CrossRef]
  38. M. Bache, J. Moses, and F. W. Wise, “Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities,” J. Opt. Soc. Am. B24, 2752–2762 (2007). [erratum: ibid., 27, 2505 (2010)].
    [CrossRef]
  39. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2007), 4th ed.
  40. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135 (2006).
    [CrossRef]
  41. M. Bache, O. Bang, W. Krolikowski, J. Moses, and F. W. Wise, “Limits to compression with cascaded quadratic soliton compressors,” Opt. Express16, 3273–3287 (2008).
    [CrossRef] [PubMed]
  42. M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A82, 063806 (2010).
    [CrossRef]
  43. M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation by cascaded nonlinear interaction: an efficient source of few-cycle energetic near- to mid-IR pulses,” Opt. Express19, 22557–22562 (2011).
    [CrossRef] [PubMed]
  44. S. Fossier, S. Salaün, J. Mangin, O. Bidault, I. Thénot, J.-J. Zondy, W. Chen, F. Rotermund, V. Petrov, P. Petrov, J. Henningsen, A. Yelisseyev, L. Isaenko, S. Lobanov, O. Balachninaite, G. Slekys, and V. Sirutkaitis, “Optical, vibrational, thermal, electrical, damage, and phase-matching properties of lithium thioindate,” J. Opt. Soc. Am. B21, 1981–2007 (2004).
    [CrossRef]
  45. J. Moses and F. W. Wise, “Soliton compression in quadratic media: high-energy few-cycle pulses with a frequency-doubling crystal,” Opt. Lett.31, 1881–1883 (2006).
    [CrossRef] [PubMed]
  46. M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express18, 14778–14787 (2010).
    [CrossRef] [PubMed]
  47. W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave breaking of pulses in nonlinear optical fibers,” Opt. Lett.10, 457–459 (1985).
    [CrossRef]
  48. T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett.78, 3282–3285 (1997).
    [CrossRef]
  49. H. Guo, X. Zeng, B. Zhou, and M. Bache, “Nonlinear wave equation in frequency domain: accurate modeling of ultrafast interaction in anisotropic nonlinear media,” J. Opt. Soc. Am. B30, 494–504 (2013).
    [CrossRef]

2013 (1)

2012 (2)

F. Silva, D. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nature Comms.3, 807 (2012).
[CrossRef]

B. B. Zhou, A. Chong, F. W. Wise, and M. Bache, “Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched quadratic interactions,” Phys. Rev. Lett.109, 043902 (2012).
[CrossRef] [PubMed]

2011 (5)

2010 (6)

2009 (4)

S. Ashihara, T. Mochizuki, S. Yamamoto, T. Shimura, and K. Kuroda, “Generation of sub 50-fs mid-infrared pulses by optical parametric amplifier based on periodically-poled MgO:LiNbO3,” Jap. Journ. Appl. Phys.48, 042501 (2009).
[CrossRef]

S. Ashihara and Y. Kawahara, “Spectral broadening of mid-infrared femtosecond pulses in GaAs,” Opt. Lett.34, 3839–3841 (2009).
[CrossRef] [PubMed]

V. Petrov, F. Noack, I. Tunchev, P. Schunemann, and K. Zawilski, “The nonlinear coefficient d36of CdSiP2,” Proc. SPIE7197, 71970M–71970M–8 (2009).
[CrossRef]

X. Lin, G. Zhang, and N. Ye, “Growth and characterization of BaGa4S7: A new crystal for mid-IR nonlinear optics,” Crystal Growth & Design9, 1186–1189 (2009).
[CrossRef]

2008 (5)

M. Jazbinsek, L. Mutter, and P. Gunter, “Photonic applications with the organic nonlinear optical crystal DAST,” Selected Topics in Quantum Electronics, IEEE Journal of 14, 1298–1311 (2008).
[CrossRef]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91, 343–348 (2008).
[CrossRef]

H. J. Bakker, Y. L. A. Rezus, and R. L. A. Timmer, “Molecular reorientation of liquid water studied with femtosecond midinfrared spectroscopy,” J. Phys. Chem. A112, 11523–11534 (2008).
[CrossRef] [PubMed]

D. Brida, M. Marangoni, C. Manzoni, S. D. Silvestri, and G. Cerullo, “Two-optical-cycle pulses in the mid-infrared from an optical parametric amplifier,” Opt. Lett.33, 2901–2903 (2008).
[CrossRef] [PubMed]

M. Bache, O. Bang, W. Krolikowski, J. Moses, and F. W. Wise, “Limits to compression with cascaded quadratic soliton compressors,” Opt. Express16, 3273–3287 (2008).
[CrossRef] [PubMed]

2007 (5)

M. Bache, J. Moses, and F. W. Wise, “Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities,” J. Opt. Soc. Am. B24, 2752–2762 (2007). [erratum: ibid., 27, 2505 (2010)].
[CrossRef]

M. Rini, R. Tobey, N. Dean, J. Itatani, Y. Tomioka, Y. Tokura, R. W. Schoenlein, and A. Cavalleri, “Control of the electronic phase of a manganite by mode-selective vibrational excitation,” Nature449, 72–74 (2007).
[CrossRef] [PubMed]

T. Fuji and T. Suzuki, “Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air,” Opt. Lett.32, 3330–3332 (2007).
[CrossRef] [PubMed]

M. Bache, O. Bang, J. Moses, and F. W. Wise, “Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression,” Opt. Lett.32, 2490–2492 (2007).
[CrossRef] [PubMed]

K. Jagannathan and S. Kalainathan, “Growth and characterization of 4-dimethylamino-N-methyl 4-stilbazolium tosylate (DAST) single crystals grown by nucleation reduction method,” Mater. Res. Bull.42, 1881–1887 (2007).
[CrossRef]

2006 (2)

2004 (1)

2003 (1)

2002 (1)

2000 (1)

H. Li, C. Kam, Y. Lam, F. Zhou, and W. Ji, “Nonlinear refraction of undoped and Fe-doped KTiOAsO4crystals in the femtosecond regime,” Applied Physics B70, 385–388 (2000).
[CrossRef]

1999 (1)

1997 (2)

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B14, 2268–2294 (1997).
[CrossRef]

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett.78, 3282–3285 (1997).
[CrossRef]

1996 (1)

R. DeSalvo, A. A. Said, D. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2in wide bandgap solids,” IEEE J. Quantum Electron.32, 1324–1333 (1996).
[CrossRef]

1993 (2)

1992 (1)

1985 (2)

1972 (1)

J. M. R. Thomas and J. P. E. Taran, “Pulse distortions in mismatched second harmonic generation,” Opt. Commun.4, 329–334 (1972).
[CrossRef]

1967 (1)

L. A. Ostrovskii, “Self-action of light in crystals,” Pisma Zh. Eksp. Teor. Fiz.5, 331 (1967). [JETP Lett. 5, 272–275 (1967)].

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2007), 4th ed.

Alfano, R. R.

Ališauskas, S.

Andriukaitis, G.

Arie, A.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91, 343–348 (2008).
[CrossRef]

Arpin, P.

T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn, “The attosecond nonlinear optics of bright coherent x-ray generation,” Nat. Photon.4, 822–832 (2010).
[CrossRef]

Ashihara, S.

S. Ashihara and Y. Kawahara, “Spectral broadening of mid-infrared femtosecond pulses in GaAs,” Opt. Lett.34, 3839–3841 (2009).
[CrossRef] [PubMed]

S. Ashihara, T. Mochizuki, S. Yamamoto, T. Shimura, and K. Kuroda, “Generation of sub 50-fs mid-infrared pulses by optical parametric amplifier based on periodically-poled MgO:LiNbO3,” Jap. Journ. Appl. Phys.48, 042501 (2009).
[CrossRef]

S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B19, 2505–2510 (2002).
[CrossRef]

Austin, D.

F. Silva, D. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nature Comms.3, 807 (2012).
[CrossRef]

Avanesov, S.

Bache, M.

Badikov, D.

Badikov, V.

Bakker, H. J.

H. J. Bakker, Y. L. A. Rezus, and R. L. A. Timmer, “Molecular reorientation of liquid water studied with femtosecond midinfrared spectroscopy,” J. Phys. Chem. A112, 11523–11534 (2008).
[CrossRef] [PubMed]

Balachninaite, O.

Balciunas, T.

Baltuška, A.

Bang, O.

Bates, P. K.

Baudisch, M.

F. Silva, D. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nature Comms.3, 807 (2012).
[CrossRef]

Bhar, G. C.

Bhattacharya, P.

R. Santos-Ortiz, E. Tupitsyn, I. Nieves, P. Bhattacharya, and A. Burger, “Growth improvement and characterization of AgGax In1−x Se2chalcopyrite crystals using the horizontal Bridgman technique,” Journal of Crystal Growth314, 293–297 (2011).
[CrossRef]

Bidault, O.

Biegert, J.

F. Silva, D. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nature Comms.3, 807 (2012).
[CrossRef]

O. Chalus, A. Thai, P. K. Bates, and J. Biegert, “Six-cycle mid-infrared source with 3.8 μ J at 100 kHz,” Opt. Lett.35, 3204–3206 (2010).
[CrossRef] [PubMed]

Bierlein, J. D.

Bosshard, C.

Boulanger, B.

Brabec, T.

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett.78, 3282–3285 (1997).
[CrossRef]

Brida, D.

Burger, A.

R. Santos-Ortiz, E. Tupitsyn, I. Nieves, P. Bhattacharya, and A. Burger, “Growth improvement and characterization of AgGax In1−x Se2chalcopyrite crystals using the horizontal Bridgman technique,” Journal of Crystal Growth314, 293–297 (2011).
[CrossRef]

Cavalleri, A.

M. Rini, R. Tobey, N. Dean, J. Itatani, Y. Tomioka, Y. Tokura, R. W. Schoenlein, and A. Cavalleri, “Control of the electronic phase of a manganite by mode-selective vibrational excitation,” Nature449, 72–74 (2007).
[CrossRef] [PubMed]

Cerullo, G.

Chalus, O.

Chen, M.-C.

Chen, W.

Chong, A.

B. B. Zhou, A. Chong, F. W. Wise, and M. Bache, “Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched quadratic interactions,” Phys. Rev. Lett.109, 043902 (2012).
[CrossRef] [PubMed]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135 (2006).
[CrossRef]

Corkum, P. B.

Couairon, A.

F. Silva, D. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nature Comms.3, 807 (2012).
[CrossRef]

Das, S.

Dean, N.

M. Rini, R. Tobey, N. Dean, J. Itatani, Y. Tomioka, Y. Tokura, R. W. Schoenlein, and A. Cavalleri, “Control of the electronic phase of a manganite by mode-selective vibrational excitation,” Nature449, 72–74 (2007).
[CrossRef] [PubMed]

DeSalvo, R.

R. DeSalvo, A. A. Said, D. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2in wide bandgap solids,” IEEE J. Quantum Electron.32, 1324–1333 (1996).
[CrossRef]

R. DeSalvo, D. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett.17, 28–30 (1992).
[CrossRef] [PubMed]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135 (2006).
[CrossRef]

Ettoumi, W.

Faccio, D.

F. Silva, D. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nature Comms.3, 807 (2012).
[CrossRef]

Fossier, S.

Frosz, M. H.

Fuji, T.

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91, 343–348 (2008).
[CrossRef]

Gangopadhyay, S.

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91, 343–348 (2008).
[CrossRef]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135 (2006).
[CrossRef]

Ghosh, C.

Gunter, P.

M. Jazbinsek, L. Mutter, and P. Gunter, “Photonic applications with the organic nonlinear optical crystal DAST,” Selected Topics in Quantum Electronics, IEEE Journal of 14, 1298–1311 (2008).
[CrossRef]

Guo, H.

Hagan, D.

R. DeSalvo, A. A. Said, D. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2in wide bandgap solids,” IEEE J. Quantum Electron.32, 1324–1333 (1996).
[CrossRef]

R. DeSalvo, D. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett.17, 28–30 (1992).
[CrossRef] [PubMed]

Hemmer, M.

F. Silva, D. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nature Comms.3, 807 (2012).
[CrossRef]

Henningsen, J.

Ho, P. P.

Isaenko, L.

Itatani, J.

M. Rini, R. Tobey, N. Dean, J. Itatani, Y. Tomioka, Y. Tokura, R. W. Schoenlein, and A. Cavalleri, “Control of the electronic phase of a manganite by mode-selective vibrational excitation,” Nature449, 72–74 (2007).
[CrossRef] [PubMed]

Ito, R.

Jagannathan, K.

K. Jagannathan and S. Kalainathan, “Growth and characterization of 4-dimethylamino-N-methyl 4-stilbazolium tosylate (DAST) single crystals grown by nucleation reduction method,” Mater. Res. Bull.42, 1881–1887 (2007).
[CrossRef]

Jazbinsek, M.

M. Jazbinsek, L. Mutter, and P. Gunter, “Photonic applications with the organic nonlinear optical crystal DAST,” Selected Topics in Quantum Electronics, IEEE Journal of 14, 1298–1311 (2008).
[CrossRef]

Ji, W.

H. Li, C. Kam, Y. Lam, F. Zhou, and W. Ji, “Nonlinear refraction of undoped and Fe-doped KTiOAsO4crystals in the femtosecond regime,” Applied Physics B70, 385–388 (2000).
[CrossRef]

Johnson, A. M.

Kalainathan, S.

K. Jagannathan and S. Kalainathan, “Growth and characterization of 4-dimethylamino-N-methyl 4-stilbazolium tosylate (DAST) single crystals grown by nucleation reduction method,” Mater. Res. Bull.42, 1881–1887 (2007).
[CrossRef]

Kam, C.

H. Li, C. Kam, Y. Lam, F. Zhou, and W. Ji, “Nonlinear refraction of undoped and Fe-doped KTiOAsO4crystals in the femtosecond regime,” Applied Physics B70, 385–388 (2000).
[CrossRef]

Kapteyn, H. C.

Kasparian, J.

Kawahara, Y.

Kemlin, V.

Kitamoto, A.

Kondo, T.

Krausz, F.

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett.78, 3282–3285 (1997).
[CrossRef]

Krolikowski, W.

Kuroda, K.

S. Ashihara, T. Mochizuki, S. Yamamoto, T. Shimura, and K. Kuroda, “Generation of sub 50-fs mid-infrared pulses by optical parametric amplifier based on periodically-poled MgO:LiNbO3,” Jap. Journ. Appl. Phys.48, 042501 (2009).
[CrossRef]

S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B19, 2505–2510 (2002).
[CrossRef]

Kwasniewski, A.

Lam, Y.

H. Li, C. Kam, Y. Lam, F. Zhou, and W. Ji, “Nonlinear refraction of undoped and Fe-doped KTiOAsO4crystals in the femtosecond regime,” Applied Physics B70, 385–388 (2000).
[CrossRef]

Li, H.

H. Li, C. Kam, Y. Lam, F. Zhou, and W. Ji, “Nonlinear refraction of undoped and Fe-doped KTiOAsO4crystals in the femtosecond regime,” Applied Physics B70, 385–388 (2000).
[CrossRef]

Lin, X.

X. Lin, G. Zhang, and N. Ye, “Growth and characterization of BaGa4S7: A new crystal for mid-IR nonlinear optics,” Crystal Growth & Design9, 1186–1189 (2009).
[CrossRef]

Liu, X.

Lobanov, S.

Manassah, J. T.

Mangin, J.

Manzoni, C.

Marangoni, M.

Marchev, G.

Ménaert, B.

Mitin, K.

Mochizuki, T.

S. Ashihara, T. Mochizuki, S. Yamamoto, T. Shimura, and K. Kuroda, “Generation of sub 50-fs mid-infrared pulses by optical parametric amplifier based on periodically-poled MgO:LiNbO3,” Jap. Journ. Appl. Phys.48, 042501 (2009).
[CrossRef]

Moses, J.

Moulton, P.

P. Moulton and E. Slobodchikov, “1-GW-peak-power, Cr:ZnSe laser,” in “CLEO:2011 - Laser Applications to Photonic Applications,” (Optical Society of America, 2011), p. PDPA10.

Murnane, M. M.

Mutter, L.

M. Jazbinsek, L. Mutter, and P. Gunter, “Photonic applications with the organic nonlinear optical crystal DAST,” Selected Topics in Quantum Electronics, IEEE Journal of 14, 1298–1311 (2008).
[CrossRef]

Nieves, I.

R. Santos-Ortiz, E. Tupitsyn, I. Nieves, P. Bhattacharya, and A. Burger, “Growth improvement and characterization of AgGax In1−x Se2chalcopyrite crystals using the horizontal Bridgman technique,” Journal of Crystal Growth314, 293–297 (2011).
[CrossRef]

Nikogosyan, D.

D. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, Berlin, 2005).

Nishina, J.

Noack, F.

Ostrovskii, L. A.

L. A. Ostrovskii, “Self-action of light in crystals,” Pisma Zh. Eksp. Teor. Fiz.5, 331 (1967). [JETP Lett. 5, 272–275 (1967)].

Panyutin, V.

Petersen, P. B.

Petit, Y.

Petrov, P.

Petrov, V.

Popmintchev, T.

Pugžlys, A.

Qian, L.-J.

Rezus, Y. L. A.

H. J. Bakker, Y. L. A. Rezus, and R. L. A. Timmer, “Molecular reorientation of liquid water studied with femtosecond midinfrared spectroscopy,” J. Phys. Chem. A112, 11523–11534 (2008).
[CrossRef] [PubMed]

Rini, M.

M. Rini, R. Tobey, N. Dean, J. Itatani, Y. Tomioka, Y. Tokura, R. W. Schoenlein, and A. Cavalleri, “Control of the electronic phase of a manganite by mode-selective vibrational excitation,” Nature449, 72–74 (2007).
[CrossRef] [PubMed]

Rotermund, F.

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91, 343–348 (2008).
[CrossRef]

Said, A. A.

R. DeSalvo, A. A. Said, D. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2in wide bandgap solids,” IEEE J. Quantum Electron.32, 1324–1333 (1996).
[CrossRef]

Salaün, S.

Santos-Ortiz, R.

R. Santos-Ortiz, E. Tupitsyn, I. Nieves, P. Bhattacharya, and A. Burger, “Growth improvement and characterization of AgGax In1−x Se2chalcopyrite crystals using the horizontal Bridgman technique,” Journal of Crystal Growth314, 293–297 (2011).
[CrossRef]

Schebetova, N.

Schoenlein, R. W.

M. Rini, R. Tobey, N. Dean, J. Itatani, Y. Tomioka, Y. Tokura, R. W. Schoenlein, and A. Cavalleri, “Control of the electronic phase of a manganite by mode-selective vibrational excitation,” Nature449, 72–74 (2007).
[CrossRef] [PubMed]

Schunemann, P.

V. Petrov, F. Noack, I. Tunchev, P. Schunemann, and K. Zawilski, “The nonlinear coefficient d36of CdSiP2,” Proc. SPIE7197, 71970M–71970M–8 (2009).
[CrossRef]

Schunneman, P. G.

Segonds, P.

Sheik-Bahae, M.

R. DeSalvo, A. A. Said, D. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2in wide bandgap solids,” IEEE J. Quantum Electron.32, 1324–1333 (1996).
[CrossRef]

R. DeSalvo, D. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett.17, 28–30 (1992).
[CrossRef] [PubMed]

M. Sheik-Bahae and E. W. V. Stryland, “Optical nonlinearities in the transparency region of bulk semiconductors,” in “Nonlinear Optics in Semiconductors I,”, vol. 58 of Semiconductors and Semimetals, E. Garmire and A. Kost, eds. (Elsevier, 1998), chap. 4, pp. 257–318.
[CrossRef]

Shevyrdyaeva, G.

Shimura, T.

S. Ashihara, T. Mochizuki, S. Yamamoto, T. Shimura, and K. Kuroda, “Generation of sub 50-fs mid-infrared pulses by optical parametric amplifier based on periodically-poled MgO:LiNbO3,” Jap. Journ. Appl. Phys.48, 042501 (2009).
[CrossRef]

S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B19, 2505–2510 (2002).
[CrossRef]

Shirane, M.

Shoji, I.

Silva, F.

F. Silva, D. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nature Comms.3, 807 (2012).
[CrossRef]

Silvestri, S. D.

Sirutkaitis, V.

Slekys, G.

Slobodchikov, E.

P. Moulton and E. Slobodchikov, “1-GW-peak-power, Cr:ZnSe laser,” in “CLEO:2011 - Laser Applications to Photonic Applications,” (Optical Society of America, 2011), p. PDPA10.

Stegeman, G.

Stegeman, G. I.

Stolen, R. H.

Stryland, E. W. V.

M. L. Sundheimer, C. Bosshard, E. W. V. Stryland, G. I. Stegeman, and J. D. Bierlein, “Large nonlinear phase modulation in quasi-phase-matched ktp waveguides as a result of cascaded second-order processes,” Opt. Lett.18, 1397–1399 (1993).
[CrossRef] [PubMed]

M. Sheik-Bahae and E. W. V. Stryland, “Optical nonlinearities in the transparency region of bulk semiconductors,” in “Nonlinear Optics in Semiconductors I,”, vol. 58 of Semiconductors and Semimetals, E. Garmire and A. Kost, eds. (Elsevier, 1998), chap. 4, pp. 257–318.
[CrossRef]

Sundheimer, M. L.

Suzuki, T.

Taran, J. P. E.

J. M. R. Thomas and J. P. E. Taran, “Pulse distortions in mismatched second harmonic generation,” Opt. Commun.4, 329–334 (1972).
[CrossRef]

Thai, A.

F. Silva, D. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nature Comms.3, 807 (2012).
[CrossRef]

O. Chalus, A. Thai, P. K. Bates, and J. Biegert, “Six-cycle mid-infrared source with 3.8 μ J at 100 kHz,” Opt. Lett.35, 3204–3206 (2010).
[CrossRef] [PubMed]

Thénot, I.

Thomas, J. M. R.

J. M. R. Thomas and J. P. E. Taran, “Pulse distortions in mismatched second harmonic generation,” Opt. Commun.4, 329–334 (1972).
[CrossRef]

Timmer, R. L. A.

H. J. Bakker, Y. L. A. Rezus, and R. L. A. Timmer, “Molecular reorientation of liquid water studied with femtosecond midinfrared spectroscopy,” J. Phys. Chem. A112, 11523–11534 (2008).
[CrossRef] [PubMed]

Tobey, R.

M. Rini, R. Tobey, N. Dean, J. Itatani, Y. Tomioka, Y. Tokura, R. W. Schoenlein, and A. Cavalleri, “Control of the electronic phase of a manganite by mode-selective vibrational excitation,” Nature449, 72–74 (2007).
[CrossRef] [PubMed]

Tokmakoff, A.

Tokura, Y.

M. Rini, R. Tobey, N. Dean, J. Itatani, Y. Tomioka, Y. Tokura, R. W. Schoenlein, and A. Cavalleri, “Control of the electronic phase of a manganite by mode-selective vibrational excitation,” Nature449, 72–74 (2007).
[CrossRef] [PubMed]

Tomioka, Y.

M. Rini, R. Tobey, N. Dean, J. Itatani, Y. Tomioka, Y. Tokura, R. W. Schoenlein, and A. Cavalleri, “Control of the electronic phase of a manganite by mode-selective vibrational excitation,” Nature449, 72–74 (2007).
[CrossRef] [PubMed]

Tomlinson, W. J.

Tunchev, I.

V. Petrov, F. Noack, I. Tunchev, P. Schunemann, and K. Zawilski, “The nonlinear coefficient d36of CdSiP2,” Proc. SPIE7197, 71970M–71970M–8 (2009).
[CrossRef]

Tupitsyn, E.

R. Santos-Ortiz, E. Tupitsyn, I. Nieves, P. Bhattacharya, and A. Burger, “Growth improvement and characterization of AgGax In1−x Se2chalcopyrite crystals using the horizontal Bridgman technique,” Journal of Crystal Growth314, 293–297 (2011).
[CrossRef]

Tyazhev, A.

Van Stryland, E. W.

R. DeSalvo, A. A. Said, D. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2in wide bandgap solids,” IEEE J. Quantum Electron.32, 1324–1333 (1996).
[CrossRef]

R. DeSalvo, D. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett.17, 28–30 (1992).
[CrossRef] [PubMed]

Vanherzeele, H.

Vinogradova, P.

Wise, F. W.

B. B. Zhou, A. Chong, F. W. Wise, and M. Bache, “Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched quadratic interactions,” Phys. Rev. Lett.109, 043902 (2012).
[CrossRef] [PubMed]

M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation by cascaded nonlinear interaction: an efficient source of few-cycle energetic near- to mid-IR pulses,” Opt. Express19, 22557–22562 (2011).
[CrossRef] [PubMed]

M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A82, 063806 (2010).
[CrossRef]

M. Bache, O. Bang, W. Krolikowski, J. Moses, and F. W. Wise, “Limits to compression with cascaded quadratic soliton compressors,” Opt. Express16, 3273–3287 (2008).
[CrossRef] [PubMed]

M. Bache, J. Moses, and F. W. Wise, “Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities,” J. Opt. Soc. Am. B24, 2752–2762 (2007). [erratum: ibid., 27, 2505 (2010)].
[CrossRef]

M. Bache, O. Bang, J. Moses, and F. W. Wise, “Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression,” Opt. Lett.32, 2490–2492 (2007).
[CrossRef] [PubMed]

J. Moses and F. W. Wise, “Soliton compression in quadratic media: high-energy few-cycle pulses with a frequency-doubling crystal,” Opt. Lett.31, 1881–1883 (2006).
[CrossRef] [PubMed]

X. Liu, L.-J. Qian, and F. W. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascaded χ(2): χ(2)nonlinearity,” Opt. Lett.24, 1777–1779 (1999).
[CrossRef]

Wolf, J.-P.

Yamamoto, S.

S. Ashihara, T. Mochizuki, S. Yamamoto, T. Shimura, and K. Kuroda, “Generation of sub 50-fs mid-infrared pulses by optical parametric amplifier based on periodically-poled MgO:LiNbO3,” Jap. Journ. Appl. Phys.48, 042501 (2009).
[CrossRef]

Ye, N.

X. Lin, G. Zhang, and N. Ye, “Growth and characterization of BaGa4S7: A new crystal for mid-IR nonlinear optics,” Crystal Growth & Design9, 1186–1189 (2009).
[CrossRef]

Yelisseyev, A.

Zawilski, K.

V. Petrov, F. Noack, I. Tunchev, P. Schunemann, and K. Zawilski, “The nonlinear coefficient d36of CdSiP2,” Proc. SPIE7197, 71970M–71970M–8 (2009).
[CrossRef]

Zawilski, K. T.

Zeng, X.

Zhang, G.

X. Lin, G. Zhang, and N. Ye, “Growth and characterization of BaGa4S7: A new crystal for mid-IR nonlinear optics,” Crystal Growth & Design9, 1186–1189 (2009).
[CrossRef]

Zhou, B.

Zhou, B. B.

B. B. Zhou, A. Chong, F. W. Wise, and M. Bache, “Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched quadratic interactions,” Phys. Rev. Lett.109, 043902 (2012).
[CrossRef] [PubMed]

M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation by cascaded nonlinear interaction: an efficient source of few-cycle energetic near- to mid-IR pulses,” Opt. Express19, 22557–22562 (2011).
[CrossRef] [PubMed]

M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A82, 063806 (2010).
[CrossRef]

Zhou, F.

H. Li, C. Kam, Y. Lam, F. Zhou, and W. Ji, “Nonlinear refraction of undoped and Fe-doped KTiOAsO4crystals in the femtosecond regime,” Applied Physics B70, 385–388 (2000).
[CrossRef]

Zondy, J.-J.

Appl. Opt. (1)

Appl. Phys. B (1)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91, 343–348 (2008).
[CrossRef]

Applied Physics B (1)

H. Li, C. Kam, Y. Lam, F. Zhou, and W. Ji, “Nonlinear refraction of undoped and Fe-doped KTiOAsO4crystals in the femtosecond regime,” Applied Physics B70, 385–388 (2000).
[CrossRef]

Crystal Growth & Design (1)

X. Lin, G. Zhang, and N. Ye, “Growth and characterization of BaGa4S7: A new crystal for mid-IR nonlinear optics,” Crystal Growth & Design9, 1186–1189 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. DeSalvo, A. A. Said, D. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2in wide bandgap solids,” IEEE J. Quantum Electron.32, 1324–1333 (1996).
[CrossRef]

J. Opt. Soc. Am. B (5)

J. Phys. Chem. A (1)

H. J. Bakker, Y. L. A. Rezus, and R. L. A. Timmer, “Molecular reorientation of liquid water studied with femtosecond midinfrared spectroscopy,” J. Phys. Chem. A112, 11523–11534 (2008).
[CrossRef] [PubMed]

Jap. Journ. Appl. Phys. (1)

S. Ashihara, T. Mochizuki, S. Yamamoto, T. Shimura, and K. Kuroda, “Generation of sub 50-fs mid-infrared pulses by optical parametric amplifier based on periodically-poled MgO:LiNbO3,” Jap. Journ. Appl. Phys.48, 042501 (2009).
[CrossRef]

Journal of Crystal Growth (1)

R. Santos-Ortiz, E. Tupitsyn, I. Nieves, P. Bhattacharya, and A. Burger, “Growth improvement and characterization of AgGax In1−x Se2chalcopyrite crystals using the horizontal Bridgman technique,” Journal of Crystal Growth314, 293–297 (2011).
[CrossRef]

Mater. Res. Bull. (1)

K. Jagannathan and S. Kalainathan, “Growth and characterization of 4-dimethylamino-N-methyl 4-stilbazolium tosylate (DAST) single crystals grown by nucleation reduction method,” Mater. Res. Bull.42, 1881–1887 (2007).
[CrossRef]

Nat. Photon. (1)

T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn, “The attosecond nonlinear optics of bright coherent x-ray generation,” Nat. Photon.4, 822–832 (2010).
[CrossRef]

Nature (1)

M. Rini, R. Tobey, N. Dean, J. Itatani, Y. Tomioka, Y. Tokura, R. W. Schoenlein, and A. Cavalleri, “Control of the electronic phase of a manganite by mode-selective vibrational excitation,” Nature449, 72–74 (2007).
[CrossRef] [PubMed]

Nature Comms. (1)

F. Silva, D. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nature Comms.3, 807 (2012).
[CrossRef]

Opt. Commun. (1)

J. M. R. Thomas and J. P. E. Taran, “Pulse distortions in mismatched second harmonic generation,” Opt. Commun.4, 329–334 (1972).
[CrossRef]

Opt. Express (4)

Opt. Lett. (13)

J. Moses and F. W. Wise, “Soliton compression in quadratic media: high-energy few-cycle pulses with a frequency-doubling crystal,” Opt. Lett.31, 1881–1883 (2006).
[CrossRef] [PubMed]

W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave breaking of pulses in nonlinear optical fibers,” Opt. Lett.10, 457–459 (1985).
[CrossRef]

R. DeSalvo, D. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett.17, 28–30 (1992).
[CrossRef] [PubMed]

M. L. Sundheimer, C. Bosshard, E. W. V. Stryland, G. I. Stegeman, and J. D. Bierlein, “Large nonlinear phase modulation in quasi-phase-matched ktp waveguides as a result of cascaded second-order processes,” Opt. Lett.18, 1397–1399 (1993).
[CrossRef] [PubMed]

X. Liu, L.-J. Qian, and F. W. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascaded χ(2): χ(2)nonlinearity,” Opt. Lett.24, 1777–1779 (1999).
[CrossRef]

M. Bache, O. Bang, J. Moses, and F. W. Wise, “Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression,” Opt. Lett.32, 2490–2492 (2007).
[CrossRef] [PubMed]

T. Fuji and T. Suzuki, “Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air,” Opt. Lett.32, 3330–3332 (2007).
[CrossRef] [PubMed]

P. B. Petersen and A. Tokmakoff, “Source for ultrafast continuum infrared and terahertz radiation,” Opt. Lett.35, 1962–1964 (2010).
[CrossRef] [PubMed]

O. Chalus, A. Thai, P. K. Bates, and J. Biegert, “Six-cycle mid-infrared source with 3.8 μ J at 100 kHz,” Opt. Lett.35, 3204–3206 (2010).
[CrossRef] [PubMed]

G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett.36, 2755–2757 (2011).
[CrossRef] [PubMed]

D. Brida, M. Marangoni, C. Manzoni, S. D. Silvestri, and G. Cerullo, “Two-optical-cycle pulses in the mid-infrared from an optical parametric amplifier,” Opt. Lett.33, 2901–2903 (2008).
[CrossRef] [PubMed]

S. Ashihara and Y. Kawahara, “Spectral broadening of mid-infrared femtosecond pulses in GaAs,” Opt. Lett.34, 3839–3841 (2009).
[CrossRef] [PubMed]

P. B. Corkum, P. P. Ho, R. R. Alfano, and J. T. Manassah, “Generation of infrared supercontinuum covering 3–14 μm in dielectrics and semiconductors,” Opt. Lett.10, 624–626 (1985).
[CrossRef] [PubMed]

Opt. Mater. Express (2)

Phys. Rev. A (1)

M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A82, 063806 (2010).
[CrossRef]

Phys. Rev. Lett. (3)

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett.78, 3282–3285 (1997).
[CrossRef]

P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett.71, 1994–1997 (1993).
[CrossRef] [PubMed]

B. B. Zhou, A. Chong, F. W. Wise, and M. Bache, “Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched quadratic interactions,” Phys. Rev. Lett.109, 043902 (2012).
[CrossRef] [PubMed]

Pisma Zh. Eksp. Teor. Fiz. (1)

L. A. Ostrovskii, “Self-action of light in crystals,” Pisma Zh. Eksp. Teor. Fiz.5, 331 (1967). [JETP Lett. 5, 272–275 (1967)].

Proc. SPIE (1)

V. Petrov, F. Noack, I. Tunchev, P. Schunemann, and K. Zawilski, “The nonlinear coefficient d36of CdSiP2,” Proc. SPIE7197, 71970M–71970M–8 (2009).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135 (2006).
[CrossRef]

Selected Topics in Quantum Electronics (1)

M. Jazbinsek, L. Mutter, and P. Gunter, “Photonic applications with the organic nonlinear optical crystal DAST,” Selected Topics in Quantum Electronics, IEEE Journal of 14, 1298–1311 (2008).
[CrossRef]

Other (4)

M. Sheik-Bahae and E. W. V. Stryland, “Optical nonlinearities in the transparency region of bulk semiconductors,” in “Nonlinear Optics in Semiconductors I,”, vol. 58 of Semiconductors and Semimetals, E. Garmire and A. Kost, eds. (Elsevier, 1998), chap. 4, pp. 257–318.
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2007), 4th ed.

D. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, Berlin, 2005).

P. Moulton and E. Slobodchikov, “1-GW-peak-power, Cr:ZnSe laser,” in “CLEO:2011 - Laser Applications to Photonic Applications,” (Optical Society of America, 2011), p. PDPA10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Cascading figure-of-merit (FOM) |n2,casc|/n2,Kerr vs. FW wavelength for cascaded noncritical type 0 SHG. Various dielectric (red) and semiconductor (black) materials are shown and the curves are only shown up to their λZD. A single organic crystal (DAST) is shown with blue. Sellmeier equations, deff, and Eg were taken from [2334].

Fig. 2
Fig. 2

The dispersive wave phase-matching point vs. wavelength of the self-defocusing soliton for selected crystals. In the gray area the dispersive waves cannot be excited because they would require a self-focusing soliton.

Fig. 3
Fig. 3

Numerical simulation of soliton compression in a 15 mm long LiInS2 bulk crystal. (a) Power spectral density at 0, 10 and 15 mm. (b) Temporal intensity at 0 and 10 mm. Input pulse: 50 fs FWHM and 50 GW/cm2 centered at λ1 = 3.0 μm. (c) Temporal profile after applying a long-pass filter with λ = 4.5 μm cut-off wavelength. The simulation was done with a plane-wave SEWA model and the PSD was calculated assuming a ≃ 0.5 mm spot size, corresponding to an input pulse energy of around 6 μJ.

Fig. 4
Fig. 4

Numerical simulation of supercontinuum generation in a 15 mm long LiInS2 bulk crystal. (a) Power spectral density of the output pulses (thick lines) for input wavelengths ranging from 2.0–4.0 μm (thin lines). All input pulses have the same input intensity 300 GW/cm2 and pulse duration 200 fs FWHM. The simulations were done with a plane-wave SEWA model and the PSD was calculated assuming a ≃ 0.5 mm spot size, corresponding to an input pulse energy of around 0.2 mJ. The input pulses were seeded with noise (one photon per mode) and the PSDs are averaged over 50 realizations. Each PSD displays the combined FW and SH spectral content. (b) Single realization at 2.8 μm showing the pulse evolution along the crystal for the FW and SH intensities in time and the PSDs in frequency domain.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n 2 , casc ( ω ) = d eff 2 ( ω ) c ε 0 n 2 ( ω ) n ( 2 ω ) [ n ( 2 ω ) n ( ω ) ]
d eff ( ω ) = d eff ( ω 0 ) [ n 2 ( ω ) 1 ] 2 [ n 2 ( 2 ω ) 1 ] [ n 2 ( ω 0 ) 1 ] 2 [ n 2 ( 2 ω 0 ) 1 ]

Metrics