Abstract

A comparative analysis of the thermal shift of Sm3+ ion zero-phonon lines in YAG and sesquioxide (Y2O3 and Sc2O3) ceramics is presented. The Sm3+ lines in YAG show small red shifts, whereas in sesquioxides large blue shifts in absorption (up to ~9 cm−1 Y2O3 or ~6 cm−1 Sc2O3), and blue or red shifts in emission are observed for the C2 centers, while the C3i magnetic-dipole allowed lines exhibit small red shift. The data are analyzed in terms of competition between the dynamic (due to electron-phonon interaction) and the static shifts produced especially by the thermal local structural changes.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Gruber, Z. Bahram, and M. F. Reid, “Spectra, energy levels, and transition line strengths for Sm3+:Y3Al5O12,” Phys. Rev.60(23), 15643–15653 (1999).
    [CrossRef]
  2. Y. Zhao, W. Barvosa-Carter, S. D. Theiss, S. Mitha, M. J. Aziz, and D. Schiferl, “Pressure measurement at high temperature using ten Sm:YAG fluorescence peaks,” J. Appl. Phys.84(8), 4049–4059 (1998).
    [CrossRef]
  3. N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, “Optical spectra, energy levels, and crystal field analysis of tripositive rare earth ions in Y2O3. I. Kramers ions in C2 sites,” J. Chem. Phys.76(8), 3877–3889 (1982).
    [CrossRef]
  4. H. Yagi, J. F. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin.121(1), 88–94 (2006).
    [CrossRef]
  5. A. Lupei, V. Lupei, C. Gheorghe, and A. Ikesue, “Spectroscopic investigation of Sm3+ in YAG ceramic,” Rom. Rep. Physics6(3), 817–822 (2011).
  6. R. Huß, R. Wilhelm, C. Kolleck, J. Neumann, and D. Kracht, “Suppression of parasitic oscillations in a core-doped ceramic Nd:YAG laser by Sm:YAG cladding,” Opt. Express18(12), 13094–13101 (2010).
    [CrossRef] [PubMed]
  7. A. Lupei, C. Tiseanu, C. Gheorghe, and F. Voicu, “Optical spectroscopy of Sm3+in C2 and C3i sites of Y2O3 ceramics,” Appl. Phys. B108(4), 909–918 (2012).
    [CrossRef]
  8. C. M. Dobson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series:Calculated emission rates and oscillator strengths,” Phys. Rev. B86(12), 125102 (2012).
    [CrossRef]
  9. C. Gheorghe, A. Lupei, F. Voicu, and M. Enculescu, “Sm3+-doped Sc2O3 polycrystalline ceramics: Spectroscopic investigation,” J. Alloy. Comp.535, 78–82 (2012).
    [CrossRef]
  10. D. E. McCumber and M. D. Sturge, “Linewidth and Temperature Shift of the R Lines in Ruby,” J. Appl. Phys.34(6), 1682–1684 (1963).
    [CrossRef]
  11. T. Kushida, “Linewidths and thermal shifts of spectral lines in neodimium-doped Yttium Aluminium Garnet and Calcium Fluorophosphate,” Phys. Rev.185(2), 500–508 (1969).
    [CrossRef]
  12. Th. Sesselmann, W. Richter, D. Haarer, and H. Morawitz, “Spectroscopic studies of impurity-host interactions in dye-doped po]ymers:Hydrostatic-pressure effects versus temperature effects,” Phys. Rev. B36(14), 7601–7611 (1987).
    [CrossRef]
  13. A. Kuznetsov, A. Laisaar, and J. Kikas, “Temperature dependence of spectral positions and widths of 5DJ-7FJ fluorescence lines originating from Sm2+ ions in SrFCl crystals,” Opt. Mater.32(12), 1671–1675 (2010).
    [CrossRef]
  14. W. C. Zheng, P. Su, H. G. Liu, and G. Y. Feng, “Relative importance of static contribution to the thermal shifts of spectral lines in Nd3+-doped Y3Al5O12 laser crystals,” J. Phys. D Appl. Phys.45(34), 345305 (2012).
    [CrossRef]
  15. S. Kobyakov, A. Kaminska, A. Suchocki, D. Galanciak, and M. Malinowski, “Nd3+-doped yttrium aluminum garnet crystal as a near-infrared pressure sensor for diamond anvil cells,” Appl. Phys. Lett.88(23), 234102 (2006).
    [CrossRef]
  16. W. C. Zheng, B. X. Li, and G. Y. Feng, “Thermal shifts and electron–phonon coupling parameters of the R-lines for Cr3+ion in Y3Al5O12 crystal,” Opt. Mater.35(3), 626–628 (2013).
    [CrossRef]
  17. A. Lupei, C. Tiseanu, C. Gheorghe, ”Electronic structure and energy transfer processes of Sm3+ in sesquioxides,” presented at ICOM 2012, Belgrad, Serbia, 3–6 Sept, 2012.

2013

W. C. Zheng, B. X. Li, and G. Y. Feng, “Thermal shifts and electron–phonon coupling parameters of the R-lines for Cr3+ion in Y3Al5O12 crystal,” Opt. Mater.35(3), 626–628 (2013).
[CrossRef]

2012

W. C. Zheng, P. Su, H. G. Liu, and G. Y. Feng, “Relative importance of static contribution to the thermal shifts of spectral lines in Nd3+-doped Y3Al5O12 laser crystals,” J. Phys. D Appl. Phys.45(34), 345305 (2012).
[CrossRef]

A. Lupei, C. Tiseanu, C. Gheorghe, and F. Voicu, “Optical spectroscopy of Sm3+in C2 and C3i sites of Y2O3 ceramics,” Appl. Phys. B108(4), 909–918 (2012).
[CrossRef]

C. M. Dobson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series:Calculated emission rates and oscillator strengths,” Phys. Rev. B86(12), 125102 (2012).
[CrossRef]

C. Gheorghe, A. Lupei, F. Voicu, and M. Enculescu, “Sm3+-doped Sc2O3 polycrystalline ceramics: Spectroscopic investigation,” J. Alloy. Comp.535, 78–82 (2012).
[CrossRef]

2011

A. Lupei, V. Lupei, C. Gheorghe, and A. Ikesue, “Spectroscopic investigation of Sm3+ in YAG ceramic,” Rom. Rep. Physics6(3), 817–822 (2011).

2010

R. Huß, R. Wilhelm, C. Kolleck, J. Neumann, and D. Kracht, “Suppression of parasitic oscillations in a core-doped ceramic Nd:YAG laser by Sm:YAG cladding,” Opt. Express18(12), 13094–13101 (2010).
[CrossRef] [PubMed]

A. Kuznetsov, A. Laisaar, and J. Kikas, “Temperature dependence of spectral positions and widths of 5DJ-7FJ fluorescence lines originating from Sm2+ ions in SrFCl crystals,” Opt. Mater.32(12), 1671–1675 (2010).
[CrossRef]

2006

H. Yagi, J. F. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin.121(1), 88–94 (2006).
[CrossRef]

S. Kobyakov, A. Kaminska, A. Suchocki, D. Galanciak, and M. Malinowski, “Nd3+-doped yttrium aluminum garnet crystal as a near-infrared pressure sensor for diamond anvil cells,” Appl. Phys. Lett.88(23), 234102 (2006).
[CrossRef]

1999

J. B. Gruber, Z. Bahram, and M. F. Reid, “Spectra, energy levels, and transition line strengths for Sm3+:Y3Al5O12,” Phys. Rev.60(23), 15643–15653 (1999).
[CrossRef]

1998

Y. Zhao, W. Barvosa-Carter, S. D. Theiss, S. Mitha, M. J. Aziz, and D. Schiferl, “Pressure measurement at high temperature using ten Sm:YAG fluorescence peaks,” J. Appl. Phys.84(8), 4049–4059 (1998).
[CrossRef]

1987

Th. Sesselmann, W. Richter, D. Haarer, and H. Morawitz, “Spectroscopic studies of impurity-host interactions in dye-doped po]ymers:Hydrostatic-pressure effects versus temperature effects,” Phys. Rev. B36(14), 7601–7611 (1987).
[CrossRef]

1982

N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, “Optical spectra, energy levels, and crystal field analysis of tripositive rare earth ions in Y2O3. I. Kramers ions in C2 sites,” J. Chem. Phys.76(8), 3877–3889 (1982).
[CrossRef]

1969

T. Kushida, “Linewidths and thermal shifts of spectral lines in neodimium-doped Yttium Aluminium Garnet and Calcium Fluorophosphate,” Phys. Rev.185(2), 500–508 (1969).
[CrossRef]

1963

D. E. McCumber and M. D. Sturge, “Linewidth and Temperature Shift of the R Lines in Ruby,” J. Appl. Phys.34(6), 1682–1684 (1963).
[CrossRef]

Aziz, M. J.

Y. Zhao, W. Barvosa-Carter, S. D. Theiss, S. Mitha, M. J. Aziz, and D. Schiferl, “Pressure measurement at high temperature using ten Sm:YAG fluorescence peaks,” J. Appl. Phys.84(8), 4049–4059 (1998).
[CrossRef]

Bahram, Z.

J. B. Gruber, Z. Bahram, and M. F. Reid, “Spectra, energy levels, and transition line strengths for Sm3+:Y3Al5O12,” Phys. Rev.60(23), 15643–15653 (1999).
[CrossRef]

Barvosa-Carter, W.

Y. Zhao, W. Barvosa-Carter, S. D. Theiss, S. Mitha, M. J. Aziz, and D. Schiferl, “Pressure measurement at high temperature using ten Sm:YAG fluorescence peaks,” J. Appl. Phys.84(8), 4049–4059 (1998).
[CrossRef]

Bisson, J. F.

H. Yagi, J. F. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin.121(1), 88–94 (2006).
[CrossRef]

Chang, N. C.

N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, “Optical spectra, energy levels, and crystal field analysis of tripositive rare earth ions in Y2O3. I. Kramers ions in C2 sites,” J. Chem. Phys.76(8), 3877–3889 (1982).
[CrossRef]

Dobson, C. M.

C. M. Dobson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series:Calculated emission rates and oscillator strengths,” Phys. Rev. B86(12), 125102 (2012).
[CrossRef]

Enculescu, M.

C. Gheorghe, A. Lupei, F. Voicu, and M. Enculescu, “Sm3+-doped Sc2O3 polycrystalline ceramics: Spectroscopic investigation,” J. Alloy. Comp.535, 78–82 (2012).
[CrossRef]

Feng, G. Y.

W. C. Zheng, B. X. Li, and G. Y. Feng, “Thermal shifts and electron–phonon coupling parameters of the R-lines for Cr3+ion in Y3Al5O12 crystal,” Opt. Mater.35(3), 626–628 (2013).
[CrossRef]

W. C. Zheng, P. Su, H. G. Liu, and G. Y. Feng, “Relative importance of static contribution to the thermal shifts of spectral lines in Nd3+-doped Y3Al5O12 laser crystals,” J. Phys. D Appl. Phys.45(34), 345305 (2012).
[CrossRef]

Galanciak, D.

S. Kobyakov, A. Kaminska, A. Suchocki, D. Galanciak, and M. Malinowski, “Nd3+-doped yttrium aluminum garnet crystal as a near-infrared pressure sensor for diamond anvil cells,” Appl. Phys. Lett.88(23), 234102 (2006).
[CrossRef]

Gheorghe, C.

C. Gheorghe, A. Lupei, F. Voicu, and M. Enculescu, “Sm3+-doped Sc2O3 polycrystalline ceramics: Spectroscopic investigation,” J. Alloy. Comp.535, 78–82 (2012).
[CrossRef]

A. Lupei, C. Tiseanu, C. Gheorghe, and F. Voicu, “Optical spectroscopy of Sm3+in C2 and C3i sites of Y2O3 ceramics,” Appl. Phys. B108(4), 909–918 (2012).
[CrossRef]

A. Lupei, V. Lupei, C. Gheorghe, and A. Ikesue, “Spectroscopic investigation of Sm3+ in YAG ceramic,” Rom. Rep. Physics6(3), 817–822 (2011).

Gruber, J. B.

J. B. Gruber, Z. Bahram, and M. F. Reid, “Spectra, energy levels, and transition line strengths for Sm3+:Y3Al5O12,” Phys. Rev.60(23), 15643–15653 (1999).
[CrossRef]

N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, “Optical spectra, energy levels, and crystal field analysis of tripositive rare earth ions in Y2O3. I. Kramers ions in C2 sites,” J. Chem. Phys.76(8), 3877–3889 (1982).
[CrossRef]

Haarer, D.

Th. Sesselmann, W. Richter, D. Haarer, and H. Morawitz, “Spectroscopic studies of impurity-host interactions in dye-doped po]ymers:Hydrostatic-pressure effects versus temperature effects,” Phys. Rev. B36(14), 7601–7611 (1987).
[CrossRef]

Huß, R.

Ikesue, A.

A. Lupei, V. Lupei, C. Gheorghe, and A. Ikesue, “Spectroscopic investigation of Sm3+ in YAG ceramic,” Rom. Rep. Physics6(3), 817–822 (2011).

Kaminska, A.

S. Kobyakov, A. Kaminska, A. Suchocki, D. Galanciak, and M. Malinowski, “Nd3+-doped yttrium aluminum garnet crystal as a near-infrared pressure sensor for diamond anvil cells,” Appl. Phys. Lett.88(23), 234102 (2006).
[CrossRef]

Kikas, J.

A. Kuznetsov, A. Laisaar, and J. Kikas, “Temperature dependence of spectral positions and widths of 5DJ-7FJ fluorescence lines originating from Sm2+ ions in SrFCl crystals,” Opt. Mater.32(12), 1671–1675 (2010).
[CrossRef]

Kobyakov, S.

S. Kobyakov, A. Kaminska, A. Suchocki, D. Galanciak, and M. Malinowski, “Nd3+-doped yttrium aluminum garnet crystal as a near-infrared pressure sensor for diamond anvil cells,” Appl. Phys. Lett.88(23), 234102 (2006).
[CrossRef]

Kolleck, C.

Kracht, D.

Kushida, T.

T. Kushida, “Linewidths and thermal shifts of spectral lines in neodimium-doped Yttium Aluminium Garnet and Calcium Fluorophosphate,” Phys. Rev.185(2), 500–508 (1969).
[CrossRef]

Kuznetsov, A.

A. Kuznetsov, A. Laisaar, and J. Kikas, “Temperature dependence of spectral positions and widths of 5DJ-7FJ fluorescence lines originating from Sm2+ ions in SrFCl crystals,” Opt. Mater.32(12), 1671–1675 (2010).
[CrossRef]

Laisaar, A.

A. Kuznetsov, A. Laisaar, and J. Kikas, “Temperature dependence of spectral positions and widths of 5DJ-7FJ fluorescence lines originating from Sm2+ ions in SrFCl crystals,” Opt. Mater.32(12), 1671–1675 (2010).
[CrossRef]

Leavitt, R. P.

N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, “Optical spectra, energy levels, and crystal field analysis of tripositive rare earth ions in Y2O3. I. Kramers ions in C2 sites,” J. Chem. Phys.76(8), 3877–3889 (1982).
[CrossRef]

Li, B. X.

W. C. Zheng, B. X. Li, and G. Y. Feng, “Thermal shifts and electron–phonon coupling parameters of the R-lines for Cr3+ion in Y3Al5O12 crystal,” Opt. Mater.35(3), 626–628 (2013).
[CrossRef]

Liu, H. G.

W. C. Zheng, P. Su, H. G. Liu, and G. Y. Feng, “Relative importance of static contribution to the thermal shifts of spectral lines in Nd3+-doped Y3Al5O12 laser crystals,” J. Phys. D Appl. Phys.45(34), 345305 (2012).
[CrossRef]

Lupei, A.

A. Lupei, C. Tiseanu, C. Gheorghe, and F. Voicu, “Optical spectroscopy of Sm3+in C2 and C3i sites of Y2O3 ceramics,” Appl. Phys. B108(4), 909–918 (2012).
[CrossRef]

C. Gheorghe, A. Lupei, F. Voicu, and M. Enculescu, “Sm3+-doped Sc2O3 polycrystalline ceramics: Spectroscopic investigation,” J. Alloy. Comp.535, 78–82 (2012).
[CrossRef]

A. Lupei, V. Lupei, C. Gheorghe, and A. Ikesue, “Spectroscopic investigation of Sm3+ in YAG ceramic,” Rom. Rep. Physics6(3), 817–822 (2011).

Lupei, V.

A. Lupei, V. Lupei, C. Gheorghe, and A. Ikesue, “Spectroscopic investigation of Sm3+ in YAG ceramic,” Rom. Rep. Physics6(3), 817–822 (2011).

Malinowski, M.

S. Kobyakov, A. Kaminska, A. Suchocki, D. Galanciak, and M. Malinowski, “Nd3+-doped yttrium aluminum garnet crystal as a near-infrared pressure sensor for diamond anvil cells,” Appl. Phys. Lett.88(23), 234102 (2006).
[CrossRef]

McCumber, D. E.

D. E. McCumber and M. D. Sturge, “Linewidth and Temperature Shift of the R Lines in Ruby,” J. Appl. Phys.34(6), 1682–1684 (1963).
[CrossRef]

Mitha, S.

Y. Zhao, W. Barvosa-Carter, S. D. Theiss, S. Mitha, M. J. Aziz, and D. Schiferl, “Pressure measurement at high temperature using ten Sm:YAG fluorescence peaks,” J. Appl. Phys.84(8), 4049–4059 (1998).
[CrossRef]

Morawitz, H.

Th. Sesselmann, W. Richter, D. Haarer, and H. Morawitz, “Spectroscopic studies of impurity-host interactions in dye-doped po]ymers:Hydrostatic-pressure effects versus temperature effects,” Phys. Rev. B36(14), 7601–7611 (1987).
[CrossRef]

Morrison, C. A.

N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, “Optical spectra, energy levels, and crystal field analysis of tripositive rare earth ions in Y2O3. I. Kramers ions in C2 sites,” J. Chem. Phys.76(8), 3877–3889 (1982).
[CrossRef]

Neumann, J.

Reid, M. F.

J. B. Gruber, Z. Bahram, and M. F. Reid, “Spectra, energy levels, and transition line strengths for Sm3+:Y3Al5O12,” Phys. Rev.60(23), 15643–15653 (1999).
[CrossRef]

Richter, W.

Th. Sesselmann, W. Richter, D. Haarer, and H. Morawitz, “Spectroscopic studies of impurity-host interactions in dye-doped po]ymers:Hydrostatic-pressure effects versus temperature effects,” Phys. Rev. B36(14), 7601–7611 (1987).
[CrossRef]

Schiferl, D.

Y. Zhao, W. Barvosa-Carter, S. D. Theiss, S. Mitha, M. J. Aziz, and D. Schiferl, “Pressure measurement at high temperature using ten Sm:YAG fluorescence peaks,” J. Appl. Phys.84(8), 4049–4059 (1998).
[CrossRef]

Sesselmann, Th.

Th. Sesselmann, W. Richter, D. Haarer, and H. Morawitz, “Spectroscopic studies of impurity-host interactions in dye-doped po]ymers:Hydrostatic-pressure effects versus temperature effects,” Phys. Rev. B36(14), 7601–7611 (1987).
[CrossRef]

Sturge, M. D.

D. E. McCumber and M. D. Sturge, “Linewidth and Temperature Shift of the R Lines in Ruby,” J. Appl. Phys.34(6), 1682–1684 (1963).
[CrossRef]

Su, P.

W. C. Zheng, P. Su, H. G. Liu, and G. Y. Feng, “Relative importance of static contribution to the thermal shifts of spectral lines in Nd3+-doped Y3Al5O12 laser crystals,” J. Phys. D Appl. Phys.45(34), 345305 (2012).
[CrossRef]

Suchocki, A.

S. Kobyakov, A. Kaminska, A. Suchocki, D. Galanciak, and M. Malinowski, “Nd3+-doped yttrium aluminum garnet crystal as a near-infrared pressure sensor for diamond anvil cells,” Appl. Phys. Lett.88(23), 234102 (2006).
[CrossRef]

Theiss, S. D.

Y. Zhao, W. Barvosa-Carter, S. D. Theiss, S. Mitha, M. J. Aziz, and D. Schiferl, “Pressure measurement at high temperature using ten Sm:YAG fluorescence peaks,” J. Appl. Phys.84(8), 4049–4059 (1998).
[CrossRef]

Tiseanu, C.

A. Lupei, C. Tiseanu, C. Gheorghe, and F. Voicu, “Optical spectroscopy of Sm3+in C2 and C3i sites of Y2O3 ceramics,” Appl. Phys. B108(4), 909–918 (2012).
[CrossRef]

Ueda, K.

H. Yagi, J. F. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin.121(1), 88–94 (2006).
[CrossRef]

Voicu, F.

C. Gheorghe, A. Lupei, F. Voicu, and M. Enculescu, “Sm3+-doped Sc2O3 polycrystalline ceramics: Spectroscopic investigation,” J. Alloy. Comp.535, 78–82 (2012).
[CrossRef]

A. Lupei, C. Tiseanu, C. Gheorghe, and F. Voicu, “Optical spectroscopy of Sm3+in C2 and C3i sites of Y2O3 ceramics,” Appl. Phys. B108(4), 909–918 (2012).
[CrossRef]

Wilhelm, R.

Yagi, H.

H. Yagi, J. F. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin.121(1), 88–94 (2006).
[CrossRef]

Yanagitani, T.

H. Yagi, J. F. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin.121(1), 88–94 (2006).
[CrossRef]

Zhao, Y.

Y. Zhao, W. Barvosa-Carter, S. D. Theiss, S. Mitha, M. J. Aziz, and D. Schiferl, “Pressure measurement at high temperature using ten Sm:YAG fluorescence peaks,” J. Appl. Phys.84(8), 4049–4059 (1998).
[CrossRef]

Zheng, W. C.

W. C. Zheng, B. X. Li, and G. Y. Feng, “Thermal shifts and electron–phonon coupling parameters of the R-lines for Cr3+ion in Y3Al5O12 crystal,” Opt. Mater.35(3), 626–628 (2013).
[CrossRef]

W. C. Zheng, P. Su, H. G. Liu, and G. Y. Feng, “Relative importance of static contribution to the thermal shifts of spectral lines in Nd3+-doped Y3Al5O12 laser crystals,” J. Phys. D Appl. Phys.45(34), 345305 (2012).
[CrossRef]

Zia, R.

C. M. Dobson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series:Calculated emission rates and oscillator strengths,” Phys. Rev. B86(12), 125102 (2012).
[CrossRef]

Appl. Phys. B

A. Lupei, C. Tiseanu, C. Gheorghe, and F. Voicu, “Optical spectroscopy of Sm3+in C2 and C3i sites of Y2O3 ceramics,” Appl. Phys. B108(4), 909–918 (2012).
[CrossRef]

Appl. Phys. Lett.

S. Kobyakov, A. Kaminska, A. Suchocki, D. Galanciak, and M. Malinowski, “Nd3+-doped yttrium aluminum garnet crystal as a near-infrared pressure sensor for diamond anvil cells,” Appl. Phys. Lett.88(23), 234102 (2006).
[CrossRef]

J. Alloy. Comp.

C. Gheorghe, A. Lupei, F. Voicu, and M. Enculescu, “Sm3+-doped Sc2O3 polycrystalline ceramics: Spectroscopic investigation,” J. Alloy. Comp.535, 78–82 (2012).
[CrossRef]

J. Appl. Phys.

D. E. McCumber and M. D. Sturge, “Linewidth and Temperature Shift of the R Lines in Ruby,” J. Appl. Phys.34(6), 1682–1684 (1963).
[CrossRef]

Y. Zhao, W. Barvosa-Carter, S. D. Theiss, S. Mitha, M. J. Aziz, and D. Schiferl, “Pressure measurement at high temperature using ten Sm:YAG fluorescence peaks,” J. Appl. Phys.84(8), 4049–4059 (1998).
[CrossRef]

J. Chem. Phys.

N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, “Optical spectra, energy levels, and crystal field analysis of tripositive rare earth ions in Y2O3. I. Kramers ions in C2 sites,” J. Chem. Phys.76(8), 3877–3889 (1982).
[CrossRef]

J. Lumin.

H. Yagi, J. F. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin.121(1), 88–94 (2006).
[CrossRef]

J. Phys. D Appl. Phys.

W. C. Zheng, P. Su, H. G. Liu, and G. Y. Feng, “Relative importance of static contribution to the thermal shifts of spectral lines in Nd3+-doped Y3Al5O12 laser crystals,” J. Phys. D Appl. Phys.45(34), 345305 (2012).
[CrossRef]

Opt. Express

Opt. Mater.

A. Kuznetsov, A. Laisaar, and J. Kikas, “Temperature dependence of spectral positions and widths of 5DJ-7FJ fluorescence lines originating from Sm2+ ions in SrFCl crystals,” Opt. Mater.32(12), 1671–1675 (2010).
[CrossRef]

W. C. Zheng, B. X. Li, and G. Y. Feng, “Thermal shifts and electron–phonon coupling parameters of the R-lines for Cr3+ion in Y3Al5O12 crystal,” Opt. Mater.35(3), 626–628 (2013).
[CrossRef]

Phys. Rev.

T. Kushida, “Linewidths and thermal shifts of spectral lines in neodimium-doped Yttium Aluminium Garnet and Calcium Fluorophosphate,” Phys. Rev.185(2), 500–508 (1969).
[CrossRef]

J. B. Gruber, Z. Bahram, and M. F. Reid, “Spectra, energy levels, and transition line strengths for Sm3+:Y3Al5O12,” Phys. Rev.60(23), 15643–15653 (1999).
[CrossRef]

Phys. Rev. B

C. M. Dobson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series:Calculated emission rates and oscillator strengths,” Phys. Rev. B86(12), 125102 (2012).
[CrossRef]

Th. Sesselmann, W. Richter, D. Haarer, and H. Morawitz, “Spectroscopic studies of impurity-host interactions in dye-doped po]ymers:Hydrostatic-pressure effects versus temperature effects,” Phys. Rev. B36(14), 7601–7611 (1987).
[CrossRef]

Rom. Rep. Physics

A. Lupei, V. Lupei, C. Gheorghe, and A. Ikesue, “Spectroscopic investigation of Sm3+ in YAG ceramic,” Rom. Rep. Physics6(3), 817–822 (2011).

Other

A. Lupei, C. Tiseanu, C. Gheorghe, ”Electronic structure and energy transfer processes of Sm3+ in sesquioxides,” presented at ICOM 2012, Belgrad, Serbia, 3–6 Sept, 2012.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Partial energy level scheme of Sm3+ in YAG [1], (b),(c) the absorption spectra of Sm3+ (1wt. %) in YAG ceramic and (d) 4G5/26H7/2 emission, at 10K (black) and 300 K (red).

Fig. 2
Fig. 2

(a) 6H5/26F7/2,9/2 absorption spectra of Sm (1wt.%) in Y2O3 at 10 K (black) and 300 K (red); (b) T evolution of the line shift relative to 10 K position, ΔE(T), for several Sm3+ IR lines in Y2O3; (c) 6H5/24G5/2, 4F3/2 absorption at 10 K (black) and 300 K (red) temperature evolution of the peaks position ΔE(T) = E(T)-E(10K) of C2 and C3i absorption lines and (d) 4G5/26H5/2,7/2,9/2 emission at 10 K (black) and 300 K (red) of Sm:Y2O3.

Tables (1)

Tables Icon

Table 1 The Stark levels (cm−1) for several manifolds of Sm3+ C2 centers of Y2O3 and Sc2O3 at 10 and 300 K.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ E dyn (T)=E(T)E(0)=α ( T T D ) 4 0 T D T x 3 e x 1 dx

Metrics