Abstract

The in-plane and cross-plane thermal conductivities of the cladding layers and active quantum wells of interband cascade lasers and type-II superlattice infrared detector are measured by the 2-wire 3ω method. The layers investigated include InAs/AlSb superlattice cladding layers, InAs/GaInSb/InAs/AlSb W-active quantum wells, an InAs/GaSb superlattice absorber, an InAs/GaSb/AlSb M-structure, and an AlAsSb digital alloy. The in-plane thermal conductivity of the InAs/AlSb superlattice is 4–5 times higher than the cross-plane value. The isotropic thermal conductivity of the AlAsSb digital alloy matches a theoretical expectation, but it is one order of magnitude lower than the only previously-reported experimental value.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Abdollahi Pour, E.K. Huang, G. Chen, A. Haddadi, B.M. Nguyen, and M. Razeghi, “High operating temperature midwave infrared photodiodes and focal plane arrays based on Type-II InAs/GaSb superlattices,” Appl. Phys. Lett.,98, 143501 (2011).
    [CrossRef]
  2. E.K. Huang, M.A. Hoang, G. Chen, S.R. Darvish, A. Haddadi, and M. Razeghi, “Highly selective two-color mid-wave and long-wave infrared detector hybrid based on Type-II superlattices,” Optics Letters, 37, 4744 (2012).
    [CrossRef] [PubMed]
  3. D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous-wave compact widely tunable external cavity interband cascade lasers,” Optics Letters, 18, 15691 (2010).
  4. I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR Type-II interband cascade lasers,” IEEE J. Sel. Topics Quantum Electron., 17, 1435 (2011).
    [CrossRef]
  5. C. Zhou, S. Birner, Tang Yang, K. Heinselman, and M. Grayson, “Driving perpendicular heat flow: p× n type transverse thermoelectrics for microscale and cryogenic peltier cooling,” Phys. Rev. Lett.110, 227701 (2013).
    [CrossRef]
  6. T. Borca-Tasciuc, D. Achimov, W. L. Liu, G. Chen, H.-W. Ren, C.-H. Lin, and S. S. Pei, “Thermal conductivity of InAs/AlSb superlattices,” Microscale Thermophysical Engineering5225 (2001).
    [CrossRef]
  7. T. Borca-Tasciuc, A.R. Kumar, and G. Chen, “Data reduction in 3ω method for thin-film thermal conductivity determination,” Rev. Sci. Instrum., 72, 2139 (2001).
    [CrossRef]
  8. T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93and Al0.9Ga0.1As0.07Sb0.93alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys., 92, 4994 (2002).
    [CrossRef]
  9. C. Zhou, B.-M. Nguyen, M. Razeghi, and M. Grayson, “Thermal conductivity of InAs/GaSb Superlattice,” J. Elect. Mat., 41, 2322 (2012).
    [CrossRef]
  10. C. Zhou, G. Koblmuller, M. Bichler, G. Abstreiter, and M. Grayson, “Thermal conductivity tensor of semiconductor layers using two-wire 3ω method,” Proc. of SPIE, 8631, 863129 (2013).
    [CrossRef]
  11. J. Garg, N. Bonini, and N. Marzari, “High thermal conductivity in short-period superlattices,” Nano Lett., 11, 5135 (2011).
    [CrossRef] [PubMed]

2013

C. Zhou, S. Birner, Tang Yang, K. Heinselman, and M. Grayson, “Driving perpendicular heat flow: p× n type transverse thermoelectrics for microscale and cryogenic peltier cooling,” Phys. Rev. Lett.110, 227701 (2013).
[CrossRef]

C. Zhou, G. Koblmuller, M. Bichler, G. Abstreiter, and M. Grayson, “Thermal conductivity tensor of semiconductor layers using two-wire 3ω method,” Proc. of SPIE, 8631, 863129 (2013).
[CrossRef]

2012

C. Zhou, B.-M. Nguyen, M. Razeghi, and M. Grayson, “Thermal conductivity of InAs/GaSb Superlattice,” J. Elect. Mat., 41, 2322 (2012).
[CrossRef]

E.K. Huang, M.A. Hoang, G. Chen, S.R. Darvish, A. Haddadi, and M. Razeghi, “Highly selective two-color mid-wave and long-wave infrared detector hybrid based on Type-II superlattices,” Optics Letters, 37, 4744 (2012).
[CrossRef] [PubMed]

2011

S. Abdollahi Pour, E.K. Huang, G. Chen, A. Haddadi, B.M. Nguyen, and M. Razeghi, “High operating temperature midwave infrared photodiodes and focal plane arrays based on Type-II InAs/GaSb superlattices,” Appl. Phys. Lett.,98, 143501 (2011).
[CrossRef]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR Type-II interband cascade lasers,” IEEE J. Sel. Topics Quantum Electron., 17, 1435 (2011).
[CrossRef]

J. Garg, N. Bonini, and N. Marzari, “High thermal conductivity in short-period superlattices,” Nano Lett., 11, 5135 (2011).
[CrossRef] [PubMed]

2010

D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous-wave compact widely tunable external cavity interband cascade lasers,” Optics Letters, 18, 15691 (2010).

2002

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93and Al0.9Ga0.1As0.07Sb0.93alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys., 92, 4994 (2002).
[CrossRef]

2001

T. Borca-Tasciuc, D. Achimov, W. L. Liu, G. Chen, H.-W. Ren, C.-H. Lin, and S. S. Pei, “Thermal conductivity of InAs/AlSb superlattices,” Microscale Thermophysical Engineering5225 (2001).
[CrossRef]

T. Borca-Tasciuc, A.R. Kumar, and G. Chen, “Data reduction in 3ω method for thin-film thermal conductivity determination,” Rev. Sci. Instrum., 72, 2139 (2001).
[CrossRef]

Abdollahi Pour, S.

S. Abdollahi Pour, E.K. Huang, G. Chen, A. Haddadi, B.M. Nguyen, and M. Razeghi, “High operating temperature midwave infrared photodiodes and focal plane arrays based on Type-II InAs/GaSb superlattices,” Appl. Phys. Lett.,98, 143501 (2011).
[CrossRef]

Abell, J.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR Type-II interband cascade lasers,” IEEE J. Sel. Topics Quantum Electron., 17, 1435 (2011).
[CrossRef]

D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous-wave compact widely tunable external cavity interband cascade lasers,” Optics Letters, 18, 15691 (2010).

Abstreiter, G.

C. Zhou, G. Koblmuller, M. Bichler, G. Abstreiter, and M. Grayson, “Thermal conductivity tensor of semiconductor layers using two-wire 3ω method,” Proc. of SPIE, 8631, 863129 (2013).
[CrossRef]

Achimov, D.

T. Borca-Tasciuc, D. Achimov, W. L. Liu, G. Chen, H.-W. Ren, C.-H. Lin, and S. S. Pei, “Thermal conductivity of InAs/AlSb superlattices,” Microscale Thermophysical Engineering5225 (2001).
[CrossRef]

Bewley, W. W.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR Type-II interband cascade lasers,” IEEE J. Sel. Topics Quantum Electron., 17, 1435 (2011).
[CrossRef]

D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous-wave compact widely tunable external cavity interband cascade lasers,” Optics Letters, 18, 15691 (2010).

Bichler, M.

C. Zhou, G. Koblmuller, M. Bichler, G. Abstreiter, and M. Grayson, “Thermal conductivity tensor of semiconductor layers using two-wire 3ω method,” Proc. of SPIE, 8631, 863129 (2013).
[CrossRef]

Birner, S.

C. Zhou, S. Birner, Tang Yang, K. Heinselman, and M. Grayson, “Driving perpendicular heat flow: p× n type transverse thermoelectrics for microscale and cryogenic peltier cooling,” Phys. Rev. Lett.110, 227701 (2013).
[CrossRef]

Bonini, N.

J. Garg, N. Bonini, and N. Marzari, “High thermal conductivity in short-period superlattices,” Nano Lett., 11, 5135 (2011).
[CrossRef] [PubMed]

Borca-Tasciuc, T.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93and Al0.9Ga0.1As0.07Sb0.93alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys., 92, 4994 (2002).
[CrossRef]

T. Borca-Tasciuc, D. Achimov, W. L. Liu, G. Chen, H.-W. Ren, C.-H. Lin, and S. S. Pei, “Thermal conductivity of InAs/AlSb superlattices,” Microscale Thermophysical Engineering5225 (2001).
[CrossRef]

T. Borca-Tasciuc, A.R. Kumar, and G. Chen, “Data reduction in 3ω method for thin-film thermal conductivity determination,” Rev. Sci. Instrum., 72, 2139 (2001).
[CrossRef]

Caffey, D.

D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous-wave compact widely tunable external cavity interband cascade lasers,” Optics Letters, 18, 15691 (2010).

Canedy, C. L.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR Type-II interband cascade lasers,” IEEE J. Sel. Topics Quantum Electron., 17, 1435 (2011).
[CrossRef]

D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous-wave compact widely tunable external cavity interband cascade lasers,” Optics Letters, 18, 15691 (2010).

Chen, G.

E.K. Huang, M.A. Hoang, G. Chen, S.R. Darvish, A. Haddadi, and M. Razeghi, “Highly selective two-color mid-wave and long-wave infrared detector hybrid based on Type-II superlattices,” Optics Letters, 37, 4744 (2012).
[CrossRef] [PubMed]

S. Abdollahi Pour, E.K. Huang, G. Chen, A. Haddadi, B.M. Nguyen, and M. Razeghi, “High operating temperature midwave infrared photodiodes and focal plane arrays based on Type-II InAs/GaSb superlattices,” Appl. Phys. Lett.,98, 143501 (2011).
[CrossRef]

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93and Al0.9Ga0.1As0.07Sb0.93alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys., 92, 4994 (2002).
[CrossRef]

T. Borca-Tasciuc, D. Achimov, W. L. Liu, G. Chen, H.-W. Ren, C.-H. Lin, and S. S. Pei, “Thermal conductivity of InAs/AlSb superlattices,” Microscale Thermophysical Engineering5225 (2001).
[CrossRef]

T. Borca-Tasciuc, A.R. Kumar, and G. Chen, “Data reduction in 3ω method for thin-film thermal conductivity determination,” Rev. Sci. Instrum., 72, 2139 (2001).
[CrossRef]

Darvish, S.R.

E.K. Huang, M.A. Hoang, G. Chen, S.R. Darvish, A. Haddadi, and M. Razeghi, “Highly selective two-color mid-wave and long-wave infrared detector hybrid based on Type-II superlattices,” Optics Letters, 37, 4744 (2012).
[CrossRef] [PubMed]

Day, T.

D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous-wave compact widely tunable external cavity interband cascade lasers,” Optics Letters, 18, 15691 (2010).

Garg, J.

J. Garg, N. Bonini, and N. Marzari, “High thermal conductivity in short-period superlattices,” Nano Lett., 11, 5135 (2011).
[CrossRef] [PubMed]

Grayson, M.

C. Zhou, G. Koblmuller, M. Bichler, G. Abstreiter, and M. Grayson, “Thermal conductivity tensor of semiconductor layers using two-wire 3ω method,” Proc. of SPIE, 8631, 863129 (2013).
[CrossRef]

C. Zhou, S. Birner, Tang Yang, K. Heinselman, and M. Grayson, “Driving perpendicular heat flow: p× n type transverse thermoelectrics for microscale and cryogenic peltier cooling,” Phys. Rev. Lett.110, 227701 (2013).
[CrossRef]

C. Zhou, B.-M. Nguyen, M. Razeghi, and M. Grayson, “Thermal conductivity of InAs/GaSb Superlattice,” J. Elect. Mat., 41, 2322 (2012).
[CrossRef]

Haddadi, A.

E.K. Huang, M.A. Hoang, G. Chen, S.R. Darvish, A. Haddadi, and M. Razeghi, “Highly selective two-color mid-wave and long-wave infrared detector hybrid based on Type-II superlattices,” Optics Letters, 37, 4744 (2012).
[CrossRef] [PubMed]

S. Abdollahi Pour, E.K. Huang, G. Chen, A. Haddadi, B.M. Nguyen, and M. Razeghi, “High operating temperature midwave infrared photodiodes and focal plane arrays based on Type-II InAs/GaSb superlattices,” Appl. Phys. Lett.,98, 143501 (2011).
[CrossRef]

Heinselman, K.

C. Zhou, S. Birner, Tang Yang, K. Heinselman, and M. Grayson, “Driving perpendicular heat flow: p× n type transverse thermoelectrics for microscale and cryogenic peltier cooling,” Phys. Rev. Lett.110, 227701 (2013).
[CrossRef]

Hoang, M.A.

E.K. Huang, M.A. Hoang, G. Chen, S.R. Darvish, A. Haddadi, and M. Razeghi, “Highly selective two-color mid-wave and long-wave infrared detector hybrid based on Type-II superlattices,” Optics Letters, 37, 4744 (2012).
[CrossRef] [PubMed]

Huang, E.K.

E.K. Huang, M.A. Hoang, G. Chen, S.R. Darvish, A. Haddadi, and M. Razeghi, “Highly selective two-color mid-wave and long-wave infrared detector hybrid based on Type-II superlattices,” Optics Letters, 37, 4744 (2012).
[CrossRef] [PubMed]

S. Abdollahi Pour, E.K. Huang, G. Chen, A. Haddadi, B.M. Nguyen, and M. Razeghi, “High operating temperature midwave infrared photodiodes and focal plane arrays based on Type-II InAs/GaSb superlattices,” Appl. Phys. Lett.,98, 143501 (2011).
[CrossRef]

Kim, C. S.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR Type-II interband cascade lasers,” IEEE J. Sel. Topics Quantum Electron., 17, 1435 (2011).
[CrossRef]

D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous-wave compact widely tunable external cavity interband cascade lasers,” Optics Letters, 18, 15691 (2010).

Kim, M.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR Type-II interband cascade lasers,” IEEE J. Sel. Topics Quantum Electron., 17, 1435 (2011).
[CrossRef]

D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous-wave compact widely tunable external cavity interband cascade lasers,” Optics Letters, 18, 15691 (2010).

Koblmuller, G.

C. Zhou, G. Koblmuller, M. Bichler, G. Abstreiter, and M. Grayson, “Thermal conductivity tensor of semiconductor layers using two-wire 3ω method,” Proc. of SPIE, 8631, 863129 (2013).
[CrossRef]

Kumar, A.R.

T. Borca-Tasciuc, A.R. Kumar, and G. Chen, “Data reduction in 3ω method for thin-film thermal conductivity determination,” Rev. Sci. Instrum., 72, 2139 (2001).
[CrossRef]

Lee, H.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93and Al0.9Ga0.1As0.07Sb0.93alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys., 92, 4994 (2002).
[CrossRef]

Lin, C.-H.

T. Borca-Tasciuc, D. Achimov, W. L. Liu, G. Chen, H.-W. Ren, C.-H. Lin, and S. S. Pei, “Thermal conductivity of InAs/AlSb superlattices,” Microscale Thermophysical Engineering5225 (2001).
[CrossRef]

Lindle, J. R.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR Type-II interband cascade lasers,” IEEE J. Sel. Topics Quantum Electron., 17, 1435 (2011).
[CrossRef]

D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous-wave compact widely tunable external cavity interband cascade lasers,” Optics Letters, 18, 15691 (2010).

Liu, W. L.

T. Borca-Tasciuc, D. Achimov, W. L. Liu, G. Chen, H.-W. Ren, C.-H. Lin, and S. S. Pei, “Thermal conductivity of InAs/AlSb superlattices,” Microscale Thermophysical Engineering5225 (2001).
[CrossRef]

Manfra, M. J.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93and Al0.9Ga0.1As0.07Sb0.93alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys., 92, 4994 (2002).
[CrossRef]

Martinelli, R. U.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93and Al0.9Ga0.1As0.07Sb0.93alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys., 92, 4994 (2002).
[CrossRef]

Marzari, N.

J. Garg, N. Bonini, and N. Marzari, “High thermal conductivity in short-period superlattices,” Nano Lett., 11, 5135 (2011).
[CrossRef] [PubMed]

Merritt, C. D.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR Type-II interband cascade lasers,” IEEE J. Sel. Topics Quantum Electron., 17, 1435 (2011).
[CrossRef]

Meyer, J. R.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR Type-II interband cascade lasers,” IEEE J. Sel. Topics Quantum Electron., 17, 1435 (2011).
[CrossRef]

D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous-wave compact widely tunable external cavity interband cascade lasers,” Optics Letters, 18, 15691 (2010).

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93and Al0.9Ga0.1As0.07Sb0.93alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys., 92, 4994 (2002).
[CrossRef]

Nguyen, B.M.

S. Abdollahi Pour, E.K. Huang, G. Chen, A. Haddadi, B.M. Nguyen, and M. Razeghi, “High operating temperature midwave infrared photodiodes and focal plane arrays based on Type-II InAs/GaSb superlattices,” Appl. Phys. Lett.,98, 143501 (2011).
[CrossRef]

Nguyen, B.-M.

C. Zhou, B.-M. Nguyen, M. Razeghi, and M. Grayson, “Thermal conductivity of InAs/GaSb Superlattice,” J. Elect. Mat., 41, 2322 (2012).
[CrossRef]

Nosho, B. Z.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93and Al0.9Ga0.1As0.07Sb0.93alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys., 92, 4994 (2002).
[CrossRef]

Pei, S. S.

T. Borca-Tasciuc, D. Achimov, W. L. Liu, G. Chen, H.-W. Ren, C.-H. Lin, and S. S. Pei, “Thermal conductivity of InAs/AlSb superlattices,” Microscale Thermophysical Engineering5225 (2001).
[CrossRef]

Razeghi, M.

E.K. Huang, M.A. Hoang, G. Chen, S.R. Darvish, A. Haddadi, and M. Razeghi, “Highly selective two-color mid-wave and long-wave infrared detector hybrid based on Type-II superlattices,” Optics Letters, 37, 4744 (2012).
[CrossRef] [PubMed]

C. Zhou, B.-M. Nguyen, M. Razeghi, and M. Grayson, “Thermal conductivity of InAs/GaSb Superlattice,” J. Elect. Mat., 41, 2322 (2012).
[CrossRef]

S. Abdollahi Pour, E.K. Huang, G. Chen, A. Haddadi, B.M. Nguyen, and M. Razeghi, “High operating temperature midwave infrared photodiodes and focal plane arrays based on Type-II InAs/GaSb superlattices,” Appl. Phys. Lett.,98, 143501 (2011).
[CrossRef]

Ren, H.-W.

T. Borca-Tasciuc, D. Achimov, W. L. Liu, G. Chen, H.-W. Ren, C.-H. Lin, and S. S. Pei, “Thermal conductivity of InAs/AlSb superlattices,” Microscale Thermophysical Engineering5225 (2001).
[CrossRef]

Song, D. W.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93and Al0.9Ga0.1As0.07Sb0.93alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys., 92, 4994 (2002).
[CrossRef]

Turner, G. W.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93and Al0.9Ga0.1As0.07Sb0.93alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys., 92, 4994 (2002).
[CrossRef]

Vurgaftman, I.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR Type-II interband cascade lasers,” IEEE J. Sel. Topics Quantum Electron., 17, 1435 (2011).
[CrossRef]

D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous-wave compact widely tunable external cavity interband cascade lasers,” Optics Letters, 18, 15691 (2010).

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93and Al0.9Ga0.1As0.07Sb0.93alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys., 92, 4994 (2002).
[CrossRef]

Whitman, L. J.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93and Al0.9Ga0.1As0.07Sb0.93alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys., 92, 4994 (2002).
[CrossRef]

Yang, M.-J.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93and Al0.9Ga0.1As0.07Sb0.93alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys., 92, 4994 (2002).
[CrossRef]

Yang, Tang

C. Zhou, S. Birner, Tang Yang, K. Heinselman, and M. Grayson, “Driving perpendicular heat flow: p× n type transverse thermoelectrics for microscale and cryogenic peltier cooling,” Phys. Rev. Lett.110, 227701 (2013).
[CrossRef]

Zhou, C.

C. Zhou, S. Birner, Tang Yang, K. Heinselman, and M. Grayson, “Driving perpendicular heat flow: p× n type transverse thermoelectrics for microscale and cryogenic peltier cooling,” Phys. Rev. Lett.110, 227701 (2013).
[CrossRef]

C. Zhou, G. Koblmuller, M. Bichler, G. Abstreiter, and M. Grayson, “Thermal conductivity tensor of semiconductor layers using two-wire 3ω method,” Proc. of SPIE, 8631, 863129 (2013).
[CrossRef]

C. Zhou, B.-M. Nguyen, M. Razeghi, and M. Grayson, “Thermal conductivity of InAs/GaSb Superlattice,” J. Elect. Mat., 41, 2322 (2012).
[CrossRef]

Appl. Phys. Lett.,

S. Abdollahi Pour, E.K. Huang, G. Chen, A. Haddadi, B.M. Nguyen, and M. Razeghi, “High operating temperature midwave infrared photodiodes and focal plane arrays based on Type-II InAs/GaSb superlattices,” Appl. Phys. Lett.,98, 143501 (2011).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR Type-II interband cascade lasers,” IEEE J. Sel. Topics Quantum Electron., 17, 1435 (2011).
[CrossRef]

J. Appl. Phys.

T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93and Al0.9Ga0.1As0.07Sb0.93alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys., 92, 4994 (2002).
[CrossRef]

J. Elect. Mat.

C. Zhou, B.-M. Nguyen, M. Razeghi, and M. Grayson, “Thermal conductivity of InAs/GaSb Superlattice,” J. Elect. Mat., 41, 2322 (2012).
[CrossRef]

Microscale Thermophysical Engineering

T. Borca-Tasciuc, D. Achimov, W. L. Liu, G. Chen, H.-W. Ren, C.-H. Lin, and S. S. Pei, “Thermal conductivity of InAs/AlSb superlattices,” Microscale Thermophysical Engineering5225 (2001).
[CrossRef]

Nano Lett.

J. Garg, N. Bonini, and N. Marzari, “High thermal conductivity in short-period superlattices,” Nano Lett., 11, 5135 (2011).
[CrossRef] [PubMed]

Optics Letters

E.K. Huang, M.A. Hoang, G. Chen, S.R. Darvish, A. Haddadi, and M. Razeghi, “Highly selective two-color mid-wave and long-wave infrared detector hybrid based on Type-II superlattices,” Optics Letters, 37, 4744 (2012).
[CrossRef] [PubMed]

D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous-wave compact widely tunable external cavity interband cascade lasers,” Optics Letters, 18, 15691 (2010).

Phys. Rev. Lett.

C. Zhou, S. Birner, Tang Yang, K. Heinselman, and M. Grayson, “Driving perpendicular heat flow: p× n type transverse thermoelectrics for microscale and cryogenic peltier cooling,” Phys. Rev. Lett.110, 227701 (2013).
[CrossRef]

Proc. of SPIE

C. Zhou, G. Koblmuller, M. Bichler, G. Abstreiter, and M. Grayson, “Thermal conductivity tensor of semiconductor layers using two-wire 3ω method,” Proc. of SPIE, 8631, 863129 (2013).
[CrossRef]

Rev. Sci. Instrum.

T. Borca-Tasciuc, A.R. Kumar, and G. Chen, “Data reduction in 3ω method for thin-film thermal conductivity determination,” Rev. Sci. Instrum., 72, 2139 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Measured frequency-dependent temperature rise ΔT of the narrow filaments on the thin film (solid circles) and on the substrate (open circles) of Samples A (thin cladding) and B (thick cladding). The fitted ΔT of the filaments on the thin film and substrate are shown in solid lines and dashed lines, respectively. The insets show the cross-sectional layer structures of the samples. (a) For Sample A, the wide filaments on the buffer layer and the substrate were used to measure the cross-plane thermal conductivity of the buffer layer, while the narrow filaments on the buffer layer and the SL were used to measure the in-plane and cross-plane thermal conductivity of the InAs/AlSb superlattice. (b) For Sample B, the narrow filaments on the substrate and the SL were used to measure the in-plane and cross-plane thermal conductivities of the InAs/AlSb superlattice. Samples C and D were measured in a similar manner, using multiple etch steps with Au filaments at each step for each individual layer.

Fig. 2
Fig. 2

Following the error analysis method of Ref. [10], plot of the mean-squared fitting error ε for the narrow filament data calculated from Eq. (6) when the value of each fit parameter is varied by 20% around the global minimum error. Only the parameters with errors greater than 0.01 K2 mean-squared error are plotted for the error analysis. Thermal conductivities for the layers of interest are plotted in solid lines and other fit parameters are plotted in dashed lines. The parameters’ names are listed on the right of each plot in the same sequence as the curves. (a) 2 μm Au filament on Sample A (thin cladding). (b) 4 μm Ni filament on the superlattice of Sample B (thick cladding). (c) 2 μm Au filament on the superlattice of Sample C (W-active). (d) 2 μm Au filament on the superlattice of Sample D (T2SL).

Fig. 3
Fig. 3

In-plane (solid circles) and cross-plane (crosses X) thermal conductivities for the T2SL, M-structure, 1-μm InAs/AlSb SL, 7-μm InAs/AlSb SL, AlAsSb digital alloy, and InAs/GaInSb/InAs/AlSb W QWs, compared to previously published values in grey (reference numbers indicated next to the data points).

Tables (1)

Tables Icon

Table 1 Thermal conductivity tensor components at 300 K. The data from the present study are listed without references (black). Literature values are cited with references numbers in brackets (grey).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

κ GaSb , sub = P 2 π l d ( ln ω ) d ( Δ T ) ,
κ y y f = P d f 2 b l Δ T f
Δ T = P π l κ y y 1 0 1 A 1 B 1 sin 2 ( b λ ) ( b 2 λ 2 ) d λ ,
A i 1 = A i κ y y i B i κ y y i 1 B i 1 tanh ( ϕ i 1 ) 1 A i κ y y i B i κ y y i 1 B i 1 tanh ( ϕ i 1 ) , i = 2 n
B i = ( κ x x κ y y λ 2 + i 2 ω α y y i ) 1 / 2
ε = j Δ ( ln ω j ) [ Δ T fit ( ω j ) Δ T ( ω j ) ] 2 , Δ ( ln ω j ) = ln ( ω j / ω j 1 )

Metrics