Abstract

Interband cascade lasers are promising candidates to cover a wide spectral range in the mid infrared spectral region with high performance devices. In this paper, we report on lasers where the cladding layers consist of quaternary bulk material (AlGaAsSb) instead of InAs/AlSb superlattices. The bulk claddings provide efficient mode confinement due to their low refractive index, comparable heat conductivity and a reduced current spreading. Broad area devices fabricated from laser layers with 5 cascades showed threshold current densities of 220 A/cm2 and narrow ridges operated up to 45 °C in continuous wave mode.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and type-I interband cascade lasers,” Electron. Lett.32(1), 45–46 (1996).
    [CrossRef]
  2. C.-H. Lin, S. J. Murry, D. Zhang, P. C. Chang, Y. Zhou, S. S. Pei, J. I. Malin, C. L. Felix, J. R. Meyer, C. A. Hoffman, and J. F. Pinto, “MBE grown mid-infrared type-II quantum-well lasers,” J. Cryst. Growth175-176, 955–959 (1997).
    [CrossRef]
  3. C. Sirtori, P. Kruck, S. Barbieri, H. Page, J. Nagle, M. Beck, J. Faist, and U. Oesterle, “Low-loss Al-free waveguides for unipolar semiconductor lasers,” Appl. Phys. Lett.75(25), 3911 (1999).
    [CrossRef]
  4. K. Ohtani and H. Ohno, “An InAs-based intersubband quantum cascade laser,” Jpn. J. Appl. Phys.41(Part 2, No. 11B), L1279–L1280 (2002).
    [CrossRef]
  5. Z. Tian, R. Q. Yang, T. D. Mishima, M. B. Santos, R. T. Hinkey, M. E. Curtis, and M. B. Johnson, “InAs-based interband cascade lasers near 6 µm,” Electron. Lett.45(1), 48–49 (2009).
    [CrossRef]
  6. H. K. Choi and S. J. Eglash, “Room-temperature cw operation at 2.2 µm of GalnAsSb/AIGaAsSb diode lasers grown by molecular beam epitaxy,” Appl. Phys. Lett.59(10), 1165 (1991).
    [CrossRef]
  7. N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ3.4μm and λ3.55μm InP-based quantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
    [CrossRef]
  8. K. Vizbaras, A. Vizbaras, A. Andrejew, C. Grasse, S. Sprengel, and M.-C. Amann, “Room-temperature type-I GaSb-based lasers in the 3.0 - 3.7 μm wavelength range,” Proc. SPIE8277, 82771B, 82771B-7 (2012).
    [CrossRef]
  9. I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “InP-based dilute-nitride mid-infrared type-II “W” quantum-well lasers,” J. Appl. Phys.96(8), 4653 (2004).
    [CrossRef]
  10. C. H. Pan and C. P. Lee, “Design and modeling of InP-based InGaAs/GaAsSb type-II “W” type quantum wells for mid-Infrared laser applications,” J. Appl. Phys.113(4), 043112 (2013).
    [CrossRef]
  11. S. Adachi, “Band gaps and refractive indices of AlGaAsSb, GaInAsSb, and InPAsSb: Key properties for a variety of the 2–4μm optoelectronic device applications,” J. Appl. Phys.61(10), 4869 (1987).
    [CrossRef]
  12. I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nature Communications2, 585 (2011).
  13. W. W. Bewley, C. D. Merritt, C. S. Kim, M. Kim, C. L. Canedy, I. Vurgaftman, J. Abell, and J. R. Meyer, “Mid-IR Interband Cascade Lasers Operating with <30 mW of Input Power,” Proc. of SPIEVol. 8374, 83740H.
    [CrossRef]
  14. I. Vurgaftman, W. W. Bewley, C. L. Canedy, J. R. Lindle, C. S. Kim, M. Kim, and J. R. Meyer, “High-temperature interband cascade lasers,” U.S. Patent Application 12/402, 627, filed Mar. 12, 2009.

2013 (1)

C. H. Pan and C. P. Lee, “Design and modeling of InP-based InGaAs/GaAsSb type-II “W” type quantum wells for mid-Infrared laser applications,” J. Appl. Phys.113(4), 043112 (2013).
[CrossRef]

2012 (2)

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ3.4μm and λ3.55μm InP-based quantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
[CrossRef]

K. Vizbaras, A. Vizbaras, A. Andrejew, C. Grasse, S. Sprengel, and M.-C. Amann, “Room-temperature type-I GaSb-based lasers in the 3.0 - 3.7 μm wavelength range,” Proc. SPIE8277, 82771B, 82771B-7 (2012).
[CrossRef]

2009 (1)

Z. Tian, R. Q. Yang, T. D. Mishima, M. B. Santos, R. T. Hinkey, M. E. Curtis, and M. B. Johnson, “InAs-based interband cascade lasers near 6 µm,” Electron. Lett.45(1), 48–49 (2009).
[CrossRef]

2004 (1)

I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “InP-based dilute-nitride mid-infrared type-II “W” quantum-well lasers,” J. Appl. Phys.96(8), 4653 (2004).
[CrossRef]

2002 (1)

K. Ohtani and H. Ohno, “An InAs-based intersubband quantum cascade laser,” Jpn. J. Appl. Phys.41(Part 2, No. 11B), L1279–L1280 (2002).
[CrossRef]

1999 (1)

C. Sirtori, P. Kruck, S. Barbieri, H. Page, J. Nagle, M. Beck, J. Faist, and U. Oesterle, “Low-loss Al-free waveguides for unipolar semiconductor lasers,” Appl. Phys. Lett.75(25), 3911 (1999).
[CrossRef]

1997 (1)

C.-H. Lin, S. J. Murry, D. Zhang, P. C. Chang, Y. Zhou, S. S. Pei, J. I. Malin, C. L. Felix, J. R. Meyer, C. A. Hoffman, and J. F. Pinto, “MBE grown mid-infrared type-II quantum-well lasers,” J. Cryst. Growth175-176, 955–959 (1997).
[CrossRef]

1996 (1)

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and type-I interband cascade lasers,” Electron. Lett.32(1), 45–46 (1996).
[CrossRef]

1991 (1)

H. K. Choi and S. J. Eglash, “Room-temperature cw operation at 2.2 µm of GalnAsSb/AIGaAsSb diode lasers grown by molecular beam epitaxy,” Appl. Phys. Lett.59(10), 1165 (1991).
[CrossRef]

1987 (1)

S. Adachi, “Band gaps and refractive indices of AlGaAsSb, GaInAsSb, and InPAsSb: Key properties for a variety of the 2–4μm optoelectronic device applications,” J. Appl. Phys.61(10), 4869 (1987).
[CrossRef]

Abell, J.

W. W. Bewley, C. D. Merritt, C. S. Kim, M. Kim, C. L. Canedy, I. Vurgaftman, J. Abell, and J. R. Meyer, “Mid-IR Interband Cascade Lasers Operating with <30 mW of Input Power,” Proc. of SPIEVol. 8374, 83740H.
[CrossRef]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nature Communications2, 585 (2011).

Adachi, S.

S. Adachi, “Band gaps and refractive indices of AlGaAsSb, GaInAsSb, and InPAsSb: Key properties for a variety of the 2–4μm optoelectronic device applications,” J. Appl. Phys.61(10), 4869 (1987).
[CrossRef]

Amann, M.-C.

K. Vizbaras, A. Vizbaras, A. Andrejew, C. Grasse, S. Sprengel, and M.-C. Amann, “Room-temperature type-I GaSb-based lasers in the 3.0 - 3.7 μm wavelength range,” Proc. SPIE8277, 82771B, 82771B-7 (2012).
[CrossRef]

Andrejew, A.

K. Vizbaras, A. Vizbaras, A. Andrejew, C. Grasse, S. Sprengel, and M.-C. Amann, “Room-temperature type-I GaSb-based lasers in the 3.0 - 3.7 μm wavelength range,” Proc. SPIE8277, 82771B, 82771B-7 (2012).
[CrossRef]

Bai, Y.

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ3.4μm and λ3.55μm InP-based quantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
[CrossRef]

Bandyopadhyay, N.

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ3.4μm and λ3.55μm InP-based quantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
[CrossRef]

Barbieri, S.

C. Sirtori, P. Kruck, S. Barbieri, H. Page, J. Nagle, M. Beck, J. Faist, and U. Oesterle, “Low-loss Al-free waveguides for unipolar semiconductor lasers,” Appl. Phys. Lett.75(25), 3911 (1999).
[CrossRef]

Beck, M.

C. Sirtori, P. Kruck, S. Barbieri, H. Page, J. Nagle, M. Beck, J. Faist, and U. Oesterle, “Low-loss Al-free waveguides for unipolar semiconductor lasers,” Appl. Phys. Lett.75(25), 3911 (1999).
[CrossRef]

Bewley, W. W.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nature Communications2, 585 (2011).

W. W. Bewley, C. D. Merritt, C. S. Kim, M. Kim, C. L. Canedy, I. Vurgaftman, J. Abell, and J. R. Meyer, “Mid-IR Interband Cascade Lasers Operating with <30 mW of Input Power,” Proc. of SPIEVol. 8374, 83740H.
[CrossRef]

Canedy, C. L.

W. W. Bewley, C. D. Merritt, C. S. Kim, M. Kim, C. L. Canedy, I. Vurgaftman, J. Abell, and J. R. Meyer, “Mid-IR Interband Cascade Lasers Operating with <30 mW of Input Power,” Proc. of SPIEVol. 8374, 83740H.
[CrossRef]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nature Communications2, 585 (2011).

Chang, P. C.

C.-H. Lin, S. J. Murry, D. Zhang, P. C. Chang, Y. Zhou, S. S. Pei, J. I. Malin, C. L. Felix, J. R. Meyer, C. A. Hoffman, and J. F. Pinto, “MBE grown mid-infrared type-II quantum-well lasers,” J. Cryst. Growth175-176, 955–959 (1997).
[CrossRef]

Choi, H. K.

H. K. Choi and S. J. Eglash, “Room-temperature cw operation at 2.2 µm of GalnAsSb/AIGaAsSb diode lasers grown by molecular beam epitaxy,” Appl. Phys. Lett.59(10), 1165 (1991).
[CrossRef]

Curtis, M. E.

Z. Tian, R. Q. Yang, T. D. Mishima, M. B. Santos, R. T. Hinkey, M. E. Curtis, and M. B. Johnson, “InAs-based interband cascade lasers near 6 µm,” Electron. Lett.45(1), 48–49 (2009).
[CrossRef]

Eglash, S. J.

H. K. Choi and S. J. Eglash, “Room-temperature cw operation at 2.2 µm of GalnAsSb/AIGaAsSb diode lasers grown by molecular beam epitaxy,” Appl. Phys. Lett.59(10), 1165 (1991).
[CrossRef]

Faist, J.

C. Sirtori, P. Kruck, S. Barbieri, H. Page, J. Nagle, M. Beck, J. Faist, and U. Oesterle, “Low-loss Al-free waveguides for unipolar semiconductor lasers,” Appl. Phys. Lett.75(25), 3911 (1999).
[CrossRef]

Felix, C. L.

C.-H. Lin, S. J. Murry, D. Zhang, P. C. Chang, Y. Zhou, S. S. Pei, J. I. Malin, C. L. Felix, J. R. Meyer, C. A. Hoffman, and J. F. Pinto, “MBE grown mid-infrared type-II quantum-well lasers,” J. Cryst. Growth175-176, 955–959 (1997).
[CrossRef]

Grasse, C.

K. Vizbaras, A. Vizbaras, A. Andrejew, C. Grasse, S. Sprengel, and M.-C. Amann, “Room-temperature type-I GaSb-based lasers in the 3.0 - 3.7 μm wavelength range,” Proc. SPIE8277, 82771B, 82771B-7 (2012).
[CrossRef]

Hinkey, R. T.

Z. Tian, R. Q. Yang, T. D. Mishima, M. B. Santos, R. T. Hinkey, M. E. Curtis, and M. B. Johnson, “InAs-based interband cascade lasers near 6 µm,” Electron. Lett.45(1), 48–49 (2009).
[CrossRef]

Hoffman, C. A.

C.-H. Lin, S. J. Murry, D. Zhang, P. C. Chang, Y. Zhou, S. S. Pei, J. I. Malin, C. L. Felix, J. R. Meyer, C. A. Hoffman, and J. F. Pinto, “MBE grown mid-infrared type-II quantum-well lasers,” J. Cryst. Growth175-176, 955–959 (1997).
[CrossRef]

Johnson, M. B.

Z. Tian, R. Q. Yang, T. D. Mishima, M. B. Santos, R. T. Hinkey, M. E. Curtis, and M. B. Johnson, “InAs-based interband cascade lasers near 6 µm,” Electron. Lett.45(1), 48–49 (2009).
[CrossRef]

Kim, C. S.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nature Communications2, 585 (2011).

W. W. Bewley, C. D. Merritt, C. S. Kim, M. Kim, C. L. Canedy, I. Vurgaftman, J. Abell, and J. R. Meyer, “Mid-IR Interband Cascade Lasers Operating with <30 mW of Input Power,” Proc. of SPIEVol. 8374, 83740H.
[CrossRef]

Kim, M.

W. W. Bewley, C. D. Merritt, C. S. Kim, M. Kim, C. L. Canedy, I. Vurgaftman, J. Abell, and J. R. Meyer, “Mid-IR Interband Cascade Lasers Operating with <30 mW of Input Power,” Proc. of SPIEVol. 8374, 83740H.
[CrossRef]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nature Communications2, 585 (2011).

Kruck, P.

C. Sirtori, P. Kruck, S. Barbieri, H. Page, J. Nagle, M. Beck, J. Faist, and U. Oesterle, “Low-loss Al-free waveguides for unipolar semiconductor lasers,” Appl. Phys. Lett.75(25), 3911 (1999).
[CrossRef]

Lee, C. P.

C. H. Pan and C. P. Lee, “Design and modeling of InP-based InGaAs/GaAsSb type-II “W” type quantum wells for mid-Infrared laser applications,” J. Appl. Phys.113(4), 043112 (2013).
[CrossRef]

Lin, C.-H.

C.-H. Lin, S. J. Murry, D. Zhang, P. C. Chang, Y. Zhou, S. S. Pei, J. I. Malin, C. L. Felix, J. R. Meyer, C. A. Hoffman, and J. F. Pinto, “MBE grown mid-infrared type-II quantum-well lasers,” J. Cryst. Growth175-176, 955–959 (1997).
[CrossRef]

Lindle, J. R.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nature Communications2, 585 (2011).

Malin, J. I.

C.-H. Lin, S. J. Murry, D. Zhang, P. C. Chang, Y. Zhou, S. S. Pei, J. I. Malin, C. L. Felix, J. R. Meyer, C. A. Hoffman, and J. F. Pinto, “MBE grown mid-infrared type-II quantum-well lasers,” J. Cryst. Growth175-176, 955–959 (1997).
[CrossRef]

Mawst, L. J.

I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “InP-based dilute-nitride mid-infrared type-II “W” quantum-well lasers,” J. Appl. Phys.96(8), 4653 (2004).
[CrossRef]

Merritt, C. D.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nature Communications2, 585 (2011).

W. W. Bewley, C. D. Merritt, C. S. Kim, M. Kim, C. L. Canedy, I. Vurgaftman, J. Abell, and J. R. Meyer, “Mid-IR Interband Cascade Lasers Operating with <30 mW of Input Power,” Proc. of SPIEVol. 8374, 83740H.
[CrossRef]

Meyer, J. R.

I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “InP-based dilute-nitride mid-infrared type-II “W” quantum-well lasers,” J. Appl. Phys.96(8), 4653 (2004).
[CrossRef]

C.-H. Lin, S. J. Murry, D. Zhang, P. C. Chang, Y. Zhou, S. S. Pei, J. I. Malin, C. L. Felix, J. R. Meyer, C. A. Hoffman, and J. F. Pinto, “MBE grown mid-infrared type-II quantum-well lasers,” J. Cryst. Growth175-176, 955–959 (1997).
[CrossRef]

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and type-I interband cascade lasers,” Electron. Lett.32(1), 45–46 (1996).
[CrossRef]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nature Communications2, 585 (2011).

W. W. Bewley, C. D. Merritt, C. S. Kim, M. Kim, C. L. Canedy, I. Vurgaftman, J. Abell, and J. R. Meyer, “Mid-IR Interband Cascade Lasers Operating with <30 mW of Input Power,” Proc. of SPIEVol. 8374, 83740H.
[CrossRef]

Mishima, T. D.

Z. Tian, R. Q. Yang, T. D. Mishima, M. B. Santos, R. T. Hinkey, M. E. Curtis, and M. B. Johnson, “InAs-based interband cascade lasers near 6 µm,” Electron. Lett.45(1), 48–49 (2009).
[CrossRef]

Murry, S. J.

C.-H. Lin, S. J. Murry, D. Zhang, P. C. Chang, Y. Zhou, S. S. Pei, J. I. Malin, C. L. Felix, J. R. Meyer, C. A. Hoffman, and J. F. Pinto, “MBE grown mid-infrared type-II quantum-well lasers,” J. Cryst. Growth175-176, 955–959 (1997).
[CrossRef]

Nagle, J.

C. Sirtori, P. Kruck, S. Barbieri, H. Page, J. Nagle, M. Beck, J. Faist, and U. Oesterle, “Low-loss Al-free waveguides for unipolar semiconductor lasers,” Appl. Phys. Lett.75(25), 3911 (1999).
[CrossRef]

Oesterle, U.

C. Sirtori, P. Kruck, S. Barbieri, H. Page, J. Nagle, M. Beck, J. Faist, and U. Oesterle, “Low-loss Al-free waveguides for unipolar semiconductor lasers,” Appl. Phys. Lett.75(25), 3911 (1999).
[CrossRef]

Ohno, H.

K. Ohtani and H. Ohno, “An InAs-based intersubband quantum cascade laser,” Jpn. J. Appl. Phys.41(Part 2, No. 11B), L1279–L1280 (2002).
[CrossRef]

Ohtani, K.

K. Ohtani and H. Ohno, “An InAs-based intersubband quantum cascade laser,” Jpn. J. Appl. Phys.41(Part 2, No. 11B), L1279–L1280 (2002).
[CrossRef]

Page, H.

C. Sirtori, P. Kruck, S. Barbieri, H. Page, J. Nagle, M. Beck, J. Faist, and U. Oesterle, “Low-loss Al-free waveguides for unipolar semiconductor lasers,” Appl. Phys. Lett.75(25), 3911 (1999).
[CrossRef]

Pan, C. H.

C. H. Pan and C. P. Lee, “Design and modeling of InP-based InGaAs/GaAsSb type-II “W” type quantum wells for mid-Infrared laser applications,” J. Appl. Phys.113(4), 043112 (2013).
[CrossRef]

Pei, S. S.

C.-H. Lin, S. J. Murry, D. Zhang, P. C. Chang, Y. Zhou, S. S. Pei, J. I. Malin, C. L. Felix, J. R. Meyer, C. A. Hoffman, and J. F. Pinto, “MBE grown mid-infrared type-II quantum-well lasers,” J. Cryst. Growth175-176, 955–959 (1997).
[CrossRef]

Pinto, J. F.

C.-H. Lin, S. J. Murry, D. Zhang, P. C. Chang, Y. Zhou, S. S. Pei, J. I. Malin, C. L. Felix, J. R. Meyer, C. A. Hoffman, and J. F. Pinto, “MBE grown mid-infrared type-II quantum-well lasers,” J. Cryst. Growth175-176, 955–959 (1997).
[CrossRef]

Ram-Mohan, L. R.

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and type-I interband cascade lasers,” Electron. Lett.32(1), 45–46 (1996).
[CrossRef]

Razeghi, M.

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ3.4μm and λ3.55μm InP-based quantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
[CrossRef]

Santos, M. B.

Z. Tian, R. Q. Yang, T. D. Mishima, M. B. Santos, R. T. Hinkey, M. E. Curtis, and M. B. Johnson, “InAs-based interband cascade lasers near 6 µm,” Electron. Lett.45(1), 48–49 (2009).
[CrossRef]

Sirtori, C.

C. Sirtori, P. Kruck, S. Barbieri, H. Page, J. Nagle, M. Beck, J. Faist, and U. Oesterle, “Low-loss Al-free waveguides for unipolar semiconductor lasers,” Appl. Phys. Lett.75(25), 3911 (1999).
[CrossRef]

Slivken, S.

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ3.4μm and λ3.55μm InP-based quantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
[CrossRef]

Sprengel, S.

K. Vizbaras, A. Vizbaras, A. Andrejew, C. Grasse, S. Sprengel, and M.-C. Amann, “Room-temperature type-I GaSb-based lasers in the 3.0 - 3.7 μm wavelength range,” Proc. SPIE8277, 82771B, 82771B-7 (2012).
[CrossRef]

Tansu, N.

I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “InP-based dilute-nitride mid-infrared type-II “W” quantum-well lasers,” J. Appl. Phys.96(8), 4653 (2004).
[CrossRef]

Tian, Z.

Z. Tian, R. Q. Yang, T. D. Mishima, M. B. Santos, R. T. Hinkey, M. E. Curtis, and M. B. Johnson, “InAs-based interband cascade lasers near 6 µm,” Electron. Lett.45(1), 48–49 (2009).
[CrossRef]

Vizbaras, A.

K. Vizbaras, A. Vizbaras, A. Andrejew, C. Grasse, S. Sprengel, and M.-C. Amann, “Room-temperature type-I GaSb-based lasers in the 3.0 - 3.7 μm wavelength range,” Proc. SPIE8277, 82771B, 82771B-7 (2012).
[CrossRef]

Vizbaras, K.

K. Vizbaras, A. Vizbaras, A. Andrejew, C. Grasse, S. Sprengel, and M.-C. Amann, “Room-temperature type-I GaSb-based lasers in the 3.0 - 3.7 μm wavelength range,” Proc. SPIE8277, 82771B, 82771B-7 (2012).
[CrossRef]

Vurgaftman, I.

I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “InP-based dilute-nitride mid-infrared type-II “W” quantum-well lasers,” J. Appl. Phys.96(8), 4653 (2004).
[CrossRef]

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and type-I interband cascade lasers,” Electron. Lett.32(1), 45–46 (1996).
[CrossRef]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nature Communications2, 585 (2011).

W. W. Bewley, C. D. Merritt, C. S. Kim, M. Kim, C. L. Canedy, I. Vurgaftman, J. Abell, and J. R. Meyer, “Mid-IR Interband Cascade Lasers Operating with <30 mW of Input Power,” Proc. of SPIEVol. 8374, 83740H.
[CrossRef]

Yang, R. Q.

Z. Tian, R. Q. Yang, T. D. Mishima, M. B. Santos, R. T. Hinkey, M. E. Curtis, and M. B. Johnson, “InAs-based interband cascade lasers near 6 µm,” Electron. Lett.45(1), 48–49 (2009).
[CrossRef]

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and type-I interband cascade lasers,” Electron. Lett.32(1), 45–46 (1996).
[CrossRef]

Zhang, D.

C.-H. Lin, S. J. Murry, D. Zhang, P. C. Chang, Y. Zhou, S. S. Pei, J. I. Malin, C. L. Felix, J. R. Meyer, C. A. Hoffman, and J. F. Pinto, “MBE grown mid-infrared type-II quantum-well lasers,” J. Cryst. Growth175-176, 955–959 (1997).
[CrossRef]

Zhou, Y.

C.-H. Lin, S. J. Murry, D. Zhang, P. C. Chang, Y. Zhou, S. S. Pei, J. I. Malin, C. L. Felix, J. R. Meyer, C. A. Hoffman, and J. F. Pinto, “MBE grown mid-infrared type-II quantum-well lasers,” J. Cryst. Growth175-176, 955–959 (1997).
[CrossRef]

Appl. Phys. Lett. (3)

C. Sirtori, P. Kruck, S. Barbieri, H. Page, J. Nagle, M. Beck, J. Faist, and U. Oesterle, “Low-loss Al-free waveguides for unipolar semiconductor lasers,” Appl. Phys. Lett.75(25), 3911 (1999).
[CrossRef]

H. K. Choi and S. J. Eglash, “Room-temperature cw operation at 2.2 µm of GalnAsSb/AIGaAsSb diode lasers grown by molecular beam epitaxy,” Appl. Phys. Lett.59(10), 1165 (1991).
[CrossRef]

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ3.4μm and λ3.55μm InP-based quantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
[CrossRef]

Electron. Lett. (2)

Z. Tian, R. Q. Yang, T. D. Mishima, M. B. Santos, R. T. Hinkey, M. E. Curtis, and M. B. Johnson, “InAs-based interband cascade lasers near 6 µm,” Electron. Lett.45(1), 48–49 (2009).
[CrossRef]

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and type-I interband cascade lasers,” Electron. Lett.32(1), 45–46 (1996).
[CrossRef]

J. Appl. Phys. (3)

I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “InP-based dilute-nitride mid-infrared type-II “W” quantum-well lasers,” J. Appl. Phys.96(8), 4653 (2004).
[CrossRef]

C. H. Pan and C. P. Lee, “Design and modeling of InP-based InGaAs/GaAsSb type-II “W” type quantum wells for mid-Infrared laser applications,” J. Appl. Phys.113(4), 043112 (2013).
[CrossRef]

S. Adachi, “Band gaps and refractive indices of AlGaAsSb, GaInAsSb, and InPAsSb: Key properties for a variety of the 2–4μm optoelectronic device applications,” J. Appl. Phys.61(10), 4869 (1987).
[CrossRef]

J. Cryst. Growth (1)

C.-H. Lin, S. J. Murry, D. Zhang, P. C. Chang, Y. Zhou, S. S. Pei, J. I. Malin, C. L. Felix, J. R. Meyer, C. A. Hoffman, and J. F. Pinto, “MBE grown mid-infrared type-II quantum-well lasers,” J. Cryst. Growth175-176, 955–959 (1997).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Ohtani and H. Ohno, “An InAs-based intersubband quantum cascade laser,” Jpn. J. Appl. Phys.41(Part 2, No. 11B), L1279–L1280 (2002).
[CrossRef]

Proc. SPIE (1)

K. Vizbaras, A. Vizbaras, A. Andrejew, C. Grasse, S. Sprengel, and M.-C. Amann, “Room-temperature type-I GaSb-based lasers in the 3.0 - 3.7 μm wavelength range,” Proc. SPIE8277, 82771B, 82771B-7 (2012).
[CrossRef]

Other (3)

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nature Communications2, 585 (2011).

W. W. Bewley, C. D. Merritt, C. S. Kim, M. Kim, C. L. Canedy, I. Vurgaftman, J. Abell, and J. R. Meyer, “Mid-IR Interband Cascade Lasers Operating with <30 mW of Input Power,” Proc. of SPIEVol. 8374, 83740H.
[CrossRef]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, J. R. Lindle, C. S. Kim, M. Kim, and J. R. Meyer, “High-temperature interband cascade lasers,” U.S. Patent Application 12/402, 627, filed Mar. 12, 2009.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Refractive index and optical mode profile for an ICL with InAs/AlSb-Cladding (black line) and quaternary Al0.85Ga0.15As0.07Sb0.93 Cladding (red line). The structure incorporates 5 active cascades and two 220 nm thick GaSb separate confinement layers.

Fig. 2
Fig. 2

Band structure of one cascade in the active region. The structure was optimized for an electrical field of 90 kV/cm and five InAs injector quantum wells.

Fig. 3
Fig. 3

HR-XRD spectrum ([004] direction) of the grown structure. The peak corresponding to the quaternary cladding layer is located on the left of the GaSb substrate peak. The close spacing indicates almost perfect lattice matching. Satellite peaks on both sides of the substrate peak are associated with the periodicity of the cascaded active region and correspond to a cascade length of 40 nm.

Fig. 4
Fig. 4

I-V-P characteristics of a 5 stage broad area ICL with a threshold current density of 220 A/cm2. The emission wavelength centers around 3.40 µm as illustrated in the inset of the figure.

Fig. 5
Fig. 5

I-V-P characteristics of a narrow ridge device operated in cw-mode. The maximum cw-operation temperature was 45 °C. At room temperature the device emitted up to 18 mW of optical power from one facet. AC: as cleaved. HR: high reflection coated.

Fig. 6
Fig. 6

Spectra of a narrow ridge laser operated at different temperatures with a driving current of 300 mA. The temperature induced shift of the wavelength is approximately 1.5 nm/K.

Metrics