Abstract

A compact pulsed mid-IR source with 10-ns pulsewidth, few hundred-microjoule energy, and repetition rate adjustable from 10 through 500 kHz is reported. In order to reach up to 30-% efficiency of down-conversion from 1064 nm to 1500/3500 nm, a 1064-nm narrow-line master oscillator is followed by a two-stage fiber amplifier. In turn, this amplifier is spliced with a large-mode-area photonic crystal fiber to ensure high quality of the beam that pumps a 5-mm thick periodically poled MgO-doped lithium niobate. The spectrum of the device replicates that of a cw 1500-nm seed laser.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Nettleton, B. W. Schilling, D. N. Barr, and J. S. Lei, “Monoblock laser for a low-cost, eyesafe, microlaser range finder,” Appl. Opt.39(15), 2428–2432 (2000).
    [CrossRef] [PubMed]
  2. D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B75(2-3), 281–288 (2002).
    [CrossRef] [PubMed]
  3. D. Richter, B. P. Wert, A. Fried, P. Weibring, J. G. Walega, J. W. C. White, B. H. Vaughn, and F. K. Tittel, “High-precision CO2 isotopologue spectrometer with a difference-frequency-generation laser source,” Opt. Lett.34(2), 172–174 (2009).
    [CrossRef] [PubMed]
  4. G. Fujii, N. Namekata, M. Motoya, S. Kurimura, and S. Inoue, “Broadband source of photon pairs at optical telecommunications wavelengths using a type-II periodically poled lithium niobate,” Opt. Express15, 12769–12776 (2007).
    [CrossRef] [PubMed]
  5. J. A. L’Huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B86, 185–196 (2007).
  6. J. A. L’Huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiment,” Appl. Phys. B86, 197–208 (2007).
  7. P. E. Powers, K. W. Aniolek, T. J. Kulp, B. A. Richman, and S. E. Bisson, “Periodically poled lithium niobate optical parametric amplifier seeded with the narrowband filtered output of an optical parametric generator,” Opt. Lett.23(24), 1886–1888 (1998).
    [CrossRef] [PubMed]
  8. M. J. Missey, V. Dominic, P. E. Powers, and K. L. Schepler, “Periodically poled lithium niobate monolithic nanosecond optical parametric oscillators and generators,” Opt. Lett.24(17), 1227–1229 (1999).
    [CrossRef] [PubMed]
  9. S. T. Yang and S. P. Velsko, “Frequency-agile kilohertz repetition-rate optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett.24(3), 133–135 (1999).
    [CrossRef] [PubMed]
  10. O. Kokabee, A. Esteban-Martin, and M. Ebrahim-Zadeh, “Efficient, high-power, ytterbium-fiber-laser-pumped picosecond optical parametric oscillator,” Opt. Lett.35(19), 3210–3212 (2010).
    [CrossRef] [PubMed]
  11. A. Gaydardzhiev, D. Chuchumishev, I. Buchvarov, D. Shumov, and S. Samuelson, “High Energy, Sub-nanosecond, 0.5-kHz, Mid-IR OPO based on PPSLT Pumped at 1064 nm,” in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD) (Opt. Society of America, 2011), paper CD_P19.
  12. D. Chuchumishev, A. Gaydardzhiev, T. Fiebig, and I. Buchvarov, “Subnanosecond, mid-IR, 0.5 kHz periodically poled stoichiometric LiTaO3 optical parametric oscillator with over 1 W average power,” Opt. Lett.38(17), 3347–3349 (2013).
    [CrossRef] [PubMed]
  13. D. V. Chuchumishev, A. G. Gaydardzhiev, D. Shumov, S. Samuelson, T. Fiebig, C. Richter, and I. Buchvarov, “PPSLT KHz OPO/OPA Tunable in 3-3.5 µm Pumped by 1ns 30mJ Nd-laser System,” in CLEO: 2013, OSA Technical Digest (online) (Opt. Society of America, 2013), paper CW1B.6.
  14. S. M. Klimentov, A. V. Kiryanov, I. V. Mel’nikov, and P. E. Powers, in: International Conference CLEO / Europe IQEC 2007 (Munich, Germany, 2007), Advanced Program, paper # CA9–3-THU; A. V. Kiryanov, S. M. Klimentov, I. V. Mel’nikov, P. E. Powers, and Yu. N. Korkishko, “IR-tunable narrow-band nanosecond converter with a microchip source and periodically poled lithium niobate,” Las. Phys. Lett. 5, 253–258 (2008).
  15. S. Desmoulins and F. Di Teodoro, “Watt-level, high-repetition-rate, mid-infrared pulses generated by wavelength conversion of an eye-safe fiber source,” Opt. Lett.32(1), 56–58 (2007).
    [CrossRef] [PubMed]
  16. A. Henderson and P. EsquinasiK. Tankala, ed., “23-watt 77% efficient CW OPO pumped by a fiber laser”, in Fiber Lasers VII: Technology, Systems, and Applications, K. Tankala, Editors, Proceedings of SPIE 7580 (SPIE, Bellingham, WA 2010), 75800D.
    [CrossRef]

2013 (1)

2010 (1)

2009 (1)

2007 (4)

J. A. L’Huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B86, 185–196 (2007).

J. A. L’Huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiment,” Appl. Phys. B86, 197–208 (2007).

S. Desmoulins and F. Di Teodoro, “Watt-level, high-repetition-rate, mid-infrared pulses generated by wavelength conversion of an eye-safe fiber source,” Opt. Lett.32(1), 56–58 (2007).
[CrossRef] [PubMed]

G. Fujii, N. Namekata, M. Motoya, S. Kurimura, and S. Inoue, “Broadband source of photon pairs at optical telecommunications wavelengths using a type-II periodically poled lithium niobate,” Opt. Express15, 12769–12776 (2007).
[CrossRef] [PubMed]

2002 (1)

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B75(2-3), 281–288 (2002).
[CrossRef] [PubMed]

2000 (1)

1999 (2)

1998 (1)

Aniolek, K. W.

Avetisyan, Y.

J. A. L’Huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B86, 185–196 (2007).

J. A. L’Huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiment,” Appl. Phys. B86, 197–208 (2007).

Barr, D. N.

Beigang, R.

J. A. L’Huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiment,” Appl. Phys. B86, 197–208 (2007).

J. A. L’Huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B86, 185–196 (2007).

Bisson, S. E.

Buchvarov, I.

Chuchumishev, D.

Desmoulins, S.

Di Teodoro, F.

Dominic, V.

Ebrahim-Zadeh, M.

Esteban-Martin, A.

Fiebig, T.

Fried, A.

D. Richter, B. P. Wert, A. Fried, P. Weibring, J. G. Walega, J. W. C. White, B. H. Vaughn, and F. K. Tittel, “High-precision CO2 isotopologue spectrometer with a difference-frequency-generation laser source,” Opt. Lett.34(2), 172–174 (2009).
[CrossRef] [PubMed]

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B75(2-3), 281–288 (2002).
[CrossRef] [PubMed]

Fujii, G.

Gaydardzhiev, A.

Inoue, S.

Kokabee, O.

Kulp, T. J.

Kurimura, S.

L’Huillier, J. A.

J. A. L’Huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B86, 185–196 (2007).

J. A. L’Huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiment,” Appl. Phys. B86, 197–208 (2007).

Lei, J. S.

Missey, M. J.

Motoya, M.

Namekata, N.

Nettleton, J. E.

Powers, P. E.

Rau, C.

J. A. L’Huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiment,” Appl. Phys. B86, 197–208 (2007).

Richman, B. A.

Richter, D.

D. Richter, B. P. Wert, A. Fried, P. Weibring, J. G. Walega, J. W. C. White, B. H. Vaughn, and F. K. Tittel, “High-precision CO2 isotopologue spectrometer with a difference-frequency-generation laser source,” Opt. Lett.34(2), 172–174 (2009).
[CrossRef] [PubMed]

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B75(2-3), 281–288 (2002).
[CrossRef] [PubMed]

Schepler, K. L.

Schilling, B. W.

Theuer, M.

J. A. L’Huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiment,” Appl. Phys. B86, 197–208 (2007).

J. A. L’Huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B86, 185–196 (2007).

Tittel, F. K.

D. Richter, B. P. Wert, A. Fried, P. Weibring, J. G. Walega, J. W. C. White, B. H. Vaughn, and F. K. Tittel, “High-precision CO2 isotopologue spectrometer with a difference-frequency-generation laser source,” Opt. Lett.34(2), 172–174 (2009).
[CrossRef] [PubMed]

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B75(2-3), 281–288 (2002).
[CrossRef] [PubMed]

Torosyan, G.

J. A. L’Huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiment,” Appl. Phys. B86, 197–208 (2007).

J. A. L’Huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B86, 185–196 (2007).

Vaughn, B. H.

Velsko, S. P.

Walega, J. G.

D. Richter, B. P. Wert, A. Fried, P. Weibring, J. G. Walega, J. W. C. White, B. H. Vaughn, and F. K. Tittel, “High-precision CO2 isotopologue spectrometer with a difference-frequency-generation laser source,” Opt. Lett.34(2), 172–174 (2009).
[CrossRef] [PubMed]

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B75(2-3), 281–288 (2002).
[CrossRef] [PubMed]

Weibring, P.

Wert, B. P.

D. Richter, B. P. Wert, A. Fried, P. Weibring, J. G. Walega, J. W. C. White, B. H. Vaughn, and F. K. Tittel, “High-precision CO2 isotopologue spectrometer with a difference-frequency-generation laser source,” Opt. Lett.34(2), 172–174 (2009).
[CrossRef] [PubMed]

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B75(2-3), 281–288 (2002).
[CrossRef] [PubMed]

White, J. W. C.

Yang, S. T.

Appl. Opt. (1)

Appl. Phys. B (3)

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B75(2-3), 281–288 (2002).
[CrossRef] [PubMed]

J. A. L’Huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B86, 185–196 (2007).

J. A. L’Huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiment,” Appl. Phys. B86, 197–208 (2007).

Opt. Express (1)

Opt. Lett. (7)

D. Richter, B. P. Wert, A. Fried, P. Weibring, J. G. Walega, J. W. C. White, B. H. Vaughn, and F. K. Tittel, “High-precision CO2 isotopologue spectrometer with a difference-frequency-generation laser source,” Opt. Lett.34(2), 172–174 (2009).
[CrossRef] [PubMed]

O. Kokabee, A. Esteban-Martin, and M. Ebrahim-Zadeh, “Efficient, high-power, ytterbium-fiber-laser-pumped picosecond optical parametric oscillator,” Opt. Lett.35(19), 3210–3212 (2010).
[CrossRef] [PubMed]

D. Chuchumishev, A. Gaydardzhiev, T. Fiebig, and I. Buchvarov, “Subnanosecond, mid-IR, 0.5 kHz periodically poled stoichiometric LiTaO3 optical parametric oscillator with over 1 W average power,” Opt. Lett.38(17), 3347–3349 (2013).
[CrossRef] [PubMed]

S. Desmoulins and F. Di Teodoro, “Watt-level, high-repetition-rate, mid-infrared pulses generated by wavelength conversion of an eye-safe fiber source,” Opt. Lett.32(1), 56–58 (2007).
[CrossRef] [PubMed]

P. E. Powers, K. W. Aniolek, T. J. Kulp, B. A. Richman, and S. E. Bisson, “Periodically poled lithium niobate optical parametric amplifier seeded with the narrowband filtered output of an optical parametric generator,” Opt. Lett.23(24), 1886–1888 (1998).
[CrossRef] [PubMed]

S. T. Yang and S. P. Velsko, “Frequency-agile kilohertz repetition-rate optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett.24(3), 133–135 (1999).
[CrossRef] [PubMed]

M. J. Missey, V. Dominic, P. E. Powers, and K. L. Schepler, “Periodically poled lithium niobate monolithic nanosecond optical parametric oscillators and generators,” Opt. Lett.24(17), 1227–1229 (1999).
[CrossRef] [PubMed]

Other (4)

A. Gaydardzhiev, D. Chuchumishev, I. Buchvarov, D. Shumov, and S. Samuelson, “High Energy, Sub-nanosecond, 0.5-kHz, Mid-IR OPO based on PPSLT Pumped at 1064 nm,” in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD) (Opt. Society of America, 2011), paper CD_P19.

D. V. Chuchumishev, A. G. Gaydardzhiev, D. Shumov, S. Samuelson, T. Fiebig, C. Richter, and I. Buchvarov, “PPSLT KHz OPO/OPA Tunable in 3-3.5 µm Pumped by 1ns 30mJ Nd-laser System,” in CLEO: 2013, OSA Technical Digest (online) (Opt. Society of America, 2013), paper CW1B.6.

S. M. Klimentov, A. V. Kiryanov, I. V. Mel’nikov, and P. E. Powers, in: International Conference CLEO / Europe IQEC 2007 (Munich, Germany, 2007), Advanced Program, paper # CA9–3-THU; A. V. Kiryanov, S. M. Klimentov, I. V. Mel’nikov, P. E. Powers, and Yu. N. Korkishko, “IR-tunable narrow-band nanosecond converter with a microchip source and periodically poled lithium niobate,” Las. Phys. Lett. 5, 253–258 (2008).

A. Henderson and P. EsquinasiK. Tankala, ed., “23-watt 77% efficient CW OPO pumped by a fiber laser”, in Fiber Lasers VII: Technology, Systems, and Applications, K. Tankala, Editors, Proceedings of SPIE 7580 (SPIE, Bellingham, WA 2010), 75800D.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the tunable narrow-band IR laser system.

Fig. 2
Fig. 2

Spectrum of the output of the FA first stage; fiber length 10 m, MFD 6 μm, and pulse energy 500 nJ.

Fig. 3
Fig. 3

Spectrum of the output of the FA second stage in absence of the inter-stage FBG filter ; GTWave fiber length 2 m, MFD = 12 µm, and pulse energy 450 µJ.

Fig. 4
Fig. 4

Snapshot of the output pulse of the FA first cascade (see parameters on the left).

Fig. 5
Fig. 5

Broadband signal wave (1.5-µm) energy variation of the pump (1.064-µm) energy using 60-mm. long PPLN crystal and measured at room temperature; repetition rate is 100 kHz.

Fig. 6
Fig. 6

OPO signal output vs MgO:PPLN length (pulse energy is 360 μJ, repetition rate 150 kHz, room temperature).

Fig. 7
Fig. 7

OPO output wavelength tuning through near- and mid- IR spectral regions. Pump – train of 1.064-µm ~15-ns pulses sequencing at 100-kHz repetition rate (data for 40-mm long PPLN crystal).

Fig. 8
Fig. 8

OPO spectral width of the signal output versus pump energy for 40-mm long PPLN crystal (room temperature).

Fig. 9
Fig. 9

Output spectra of OPO source at signal wavelength without (a) and with (b) seed. The experimental arrangement is similar the ones as in Figs. 5 and 8; pump (1064-nm, ~15-ns) energy is 360 µJ and cw seed power is 10 mW.

Metrics