S. M. Jeong, S. Song, S.-K. Lee, and B. Choi, “Mechanically driven light-generator with high durability,” Appl. Phys. Lett.102(5), 051110 (2013).
[Crossref]
J.-C. Zhang, C.-N. Xu, S. Kamimura, Y. Terasawa, H. Yamada, and X. Wang, “An intense elastico-mechanoluminescence material CaZnOS:Mn2+ for sensing and imaging multiple mechanical stresses,” Opt. Express21(11), 12976–12986 (2013).
[Crossref]
[PubMed]
J.-C. Zhang, C.-N. Xu, and Y.-Z. Long, “Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels,” Opt. Express21(11), 13699–13709 (2013).
[Crossref]
[PubMed]
N. Terasaki, H. Zhang, H. Yamada, and C.-N. Xu, “Mechanoluminescent light source for a fluorescent probe molecule,” Chem. Commun. (Camb.)47(28), 8034–8036 (2011).
[Crossref]
[PubMed]
C. G. Camara, J. V. Escobar, J. R. Hird, and S. J. Putterman, “Correlation between nanosecond X-ray flashes and stick-slip friction in peeling tape,” Nature455(7216), 1089–1092 (2008).
[Crossref]
M. A. Eddings, M. A. Johnson, and B. K. Gale, “Determining the optimal PDMS-PDMS bonding technique for microfluidic devices,” J. Micromech. Microeng.18(6), 067001 (2008).
[Crossref]
J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Mechanoluminescent SrAl2O4:Eu,Dy phosphor for use in visualization of quasidynamic crack propagation,” Appl. Phys. Lett.90(24), 241916 (2007).
[Crossref]
K. Haubert, T. Drier, and D. Beebe, “PDMS bonding by means of a portable, low-cost corona system,” Lab Chip6(12), 1548–1549 (2006).
[Crossref]
[PubMed]
N. C. Eddingsaas and K. S. Suslick, “Mechanoluminescence: Light from sonication of crystal slurries,” Nature444(7116), 163 (2006).
[Crossref]
[PubMed]
S. Satyanarayana, R. N. Karnik, and A. Majumdar, “Stamp-and-stick room-temperature bonding technique for microdevices,” J. Microelectromech. Syst.14(2), 392–399 (2005).
[Crossref]
J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Visualization of fractures in alumina ceramics by mechanoluminescence,” Acta Mater.53(16), 4337–4343 (2005).
[Crossref]
H. Hillborg, N. Tomczak, A. Olàh, H. Schönherr, and G. J. Vancso, “Nanoscale hydrophobic recovery: A chemical force microscopy study of UV/ozone-treated cross-linked poly(dimethylsiloxane),” Langmuir20(3), 785–794 (2004).
[Crossref]
[PubMed]
C.-N. Xu, H. Yamada, X. Wang, and X. G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett.84(16), 3040–3042 (2004).
[Crossref]
J. S. Kim, Y. N. Kwon, and K.-S. Sohn, “Dynamic visualization of crack propagation and bridging stress using the mechano-luminescence of SrAl2O4:(Eu,Dy,Nd),” Acta Mater.51(20), 6437–6442 (2003).
[Crossref]
C.-N. Xu, X.-G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution by mechanoluminescence image,” Appl. Phys. Lett.76(2), 179–181 (2000).
[Crossref]
M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science288(5463), 113–116 (2000).
[Crossref]
[PubMed]
H. Hillborg, J. F. Ankner, U. W. Gedde, G. D. Smith, H. K. Yasuda, and K. Wikstrom, “Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques,” Polymer (Guildf.)41(18), 6851–6863 (2000).
[Crossref]
M. Ouyang, C. Yuan, R. J. Muisener, A. Boulares, and J. T. Koberstein, “Conversion of some siloxane polymers to silicon oxide by UV/ozone photochemical processes,” Chem. Mater.12(6), 1591–1596 (2000).
[Crossref]
T. S. Phely-Bobin, R. J. Muisener, J. T. Koberstein, and F. Papadimitrakopoulos, “Preferential self-assembly of surface-modified Si/SiOx nanoparticles on UV/ozone micropatterned poly(dimethylsiloxane) films,” Adv. Mater.12(17), 1257–1261 (2000).
[Crossref]
C.-N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
[Crossref]
D. C. Duffy, O. J. A. Schueller, S. T. Brittain, and G. M. Whitesides, “Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow,” J. Micromech. Microeng.9(3), 211–217 (1999).
[Crossref]
C.-N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
[Crossref]
D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[Crossref]
[PubMed]
H. Hillborg and U. W. Gedde, “Hydrophobicity recovery of polydimethylsiloxane after exposure to corona discharges,” Polymer (Guildf.)39(10), 1991–1998 (1998).
[Crossref]
Y. Kawaguchi, “Time-resolved fractoluminescence spectra of silica glass in a vacuum and nitrogen atmosphere,” Phys. Rev. B Condens. Matter52(13), 9224–9228 (1995).
[Crossref]
[PubMed]
L. M. Sweeting, M. L. Cashel, and M. M. Rosenblatt, “Triboluminescence spectra of organic crystals are sensitive to conditions of acquisition,” J. Lumin.52(5-6), 281–291 (1992).
[Crossref]
Y. Enomoto and H. Hashimoto, “Emission of charged particles from indentation fracture of rocks,” Nature346(6285), 641–643 (1990).
[Crossref]
N. A. Atari, “Piezoluminescence phenomenon,” Phys. Lett. A90(1-2), 93–96 (1982).
[Crossref]
A. J. Walton, “Triboluminescence,” Adv. Phys.26(6), 887–948 (1977).
[Crossref]
G. Alzetta, G. Chella, and S. Santucci, “Behaviour of light emission in mechanically excited ZnS phosphors,” Phys. Lett. A26(2), 94–95 (1967).
[Crossref]
C.-N. Xu, X.-G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution by mechanoluminescence image,” Appl. Phys. Lett.76(2), 179–181 (2000).
[Crossref]
C.-N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
[Crossref]
C.-N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
[Crossref]
G. Alzetta, G. Chella, and S. Santucci, “Behaviour of light emission in mechanically excited ZnS phosphors,” Phys. Lett. A26(2), 94–95 (1967).
[Crossref]
H. Hillborg, J. F. Ankner, U. W. Gedde, G. D. Smith, H. K. Yasuda, and K. Wikstrom, “Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques,” Polymer (Guildf.)41(18), 6851–6863 (2000).
[Crossref]
N. A. Atari, “Piezoluminescence phenomenon,” Phys. Lett. A90(1-2), 93–96 (1982).
[Crossref]
K. Haubert, T. Drier, and D. Beebe, “PDMS bonding by means of a portable, low-cost corona system,” Lab Chip6(12), 1548–1549 (2006).
[Crossref]
[PubMed]
M. Ouyang, C. Yuan, R. J. Muisener, A. Boulares, and J. T. Koberstein, “Conversion of some siloxane polymers to silicon oxide by UV/ozone photochemical processes,” Chem. Mater.12(6), 1591–1596 (2000).
[Crossref]
D. C. Duffy, O. J. A. Schueller, S. T. Brittain, and G. M. Whitesides, “Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow,” J. Micromech. Microeng.9(3), 211–217 (1999).
[Crossref]
C. G. Camara, J. V. Escobar, J. R. Hird, and S. J. Putterman, “Correlation between nanosecond X-ray flashes and stick-slip friction in peeling tape,” Nature455(7216), 1089–1092 (2008).
[Crossref]
L. M. Sweeting, M. L. Cashel, and M. M. Rosenblatt, “Triboluminescence spectra of organic crystals are sensitive to conditions of acquisition,” J. Lumin.52(5-6), 281–291 (1992).
[Crossref]
G. Alzetta, G. Chella, and S. Santucci, “Behaviour of light emission in mechanically excited ZnS phosphors,” Phys. Lett. A26(2), 94–95 (1967).
[Crossref]
S. M. Jeong, S. Song, S.-K. Lee, and B. Choi, “Mechanically driven light-generator with high durability,” Appl. Phys. Lett.102(5), 051110 (2013).
[Crossref]
M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science288(5463), 113–116 (2000).
[Crossref]
[PubMed]
K. Haubert, T. Drier, and D. Beebe, “PDMS bonding by means of a portable, low-cost corona system,” Lab Chip6(12), 1548–1549 (2006).
[Crossref]
[PubMed]
D. C. Duffy, O. J. A. Schueller, S. T. Brittain, and G. M. Whitesides, “Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow,” J. Micromech. Microeng.9(3), 211–217 (1999).
[Crossref]
D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[Crossref]
[PubMed]
M. A. Eddings, M. A. Johnson, and B. K. Gale, “Determining the optimal PDMS-PDMS bonding technique for microfluidic devices,” J. Micromech. Microeng.18(6), 067001 (2008).
[Crossref]
N. C. Eddingsaas and K. S. Suslick, “Mechanoluminescence: Light from sonication of crystal slurries,” Nature444(7116), 163 (2006).
[Crossref]
[PubMed]
Y. Enomoto and H. Hashimoto, “Emission of charged particles from indentation fracture of rocks,” Nature346(6285), 641–643 (1990).
[Crossref]
C. G. Camara, J. V. Escobar, J. R. Hird, and S. J. Putterman, “Correlation between nanosecond X-ray flashes and stick-slip friction in peeling tape,” Nature455(7216), 1089–1092 (2008).
[Crossref]
M. A. Eddings, M. A. Johnson, and B. K. Gale, “Determining the optimal PDMS-PDMS bonding technique for microfluidic devices,” J. Micromech. Microeng.18(6), 067001 (2008).
[Crossref]
H. Hillborg, J. F. Ankner, U. W. Gedde, G. D. Smith, H. K. Yasuda, and K. Wikstrom, “Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques,” Polymer (Guildf.)41(18), 6851–6863 (2000).
[Crossref]
H. Hillborg and U. W. Gedde, “Hydrophobicity recovery of polydimethylsiloxane after exposure to corona discharges,” Polymer (Guildf.)39(10), 1991–1998 (1998).
[Crossref]
S. M. Jeong, S. Song, S.-K. Lee, and N. Y. Ha, “Colour manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater., doi:.
[Crossref]
Y. Enomoto and H. Hashimoto, “Emission of charged particles from indentation fracture of rocks,” Nature346(6285), 641–643 (1990).
[Crossref]
K. Haubert, T. Drier, and D. Beebe, “PDMS bonding by means of a portable, low-cost corona system,” Lab Chip6(12), 1548–1549 (2006).
[Crossref]
[PubMed]
H. Hillborg, N. Tomczak, A. Olàh, H. Schönherr, and G. J. Vancso, “Nanoscale hydrophobic recovery: A chemical force microscopy study of UV/ozone-treated cross-linked poly(dimethylsiloxane),” Langmuir20(3), 785–794 (2004).
[Crossref]
[PubMed]
H. Hillborg, J. F. Ankner, U. W. Gedde, G. D. Smith, H. K. Yasuda, and K. Wikstrom, “Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques,” Polymer (Guildf.)41(18), 6851–6863 (2000).
[Crossref]
H. Hillborg and U. W. Gedde, “Hydrophobicity recovery of polydimethylsiloxane after exposure to corona discharges,” Polymer (Guildf.)39(10), 1991–1998 (1998).
[Crossref]
C. G. Camara, J. V. Escobar, J. R. Hird, and S. J. Putterman, “Correlation between nanosecond X-ray flashes and stick-slip friction in peeling tape,” Nature455(7216), 1089–1092 (2008).
[Crossref]
S. M. Jeong, S. Song, S.-K. Lee, and B. Choi, “Mechanically driven light-generator with high durability,” Appl. Phys. Lett.102(5), 051110 (2013).
[Crossref]
S. M. Jeong, S. Song, S.-K. Lee, and N. Y. Ha, “Colour manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater., doi:.
[Crossref]
M. A. Eddings, M. A. Johnson, and B. K. Gale, “Determining the optimal PDMS-PDMS bonding technique for microfluidic devices,” J. Micromech. Microeng.18(6), 067001 (2008).
[Crossref]
S. Satyanarayana, R. N. Karnik, and A. Majumdar, “Stamp-and-stick room-temperature bonding technique for microdevices,” J. Microelectromech. Syst.14(2), 392–399 (2005).
[Crossref]
Y. Kawaguchi, “Time-resolved fractoluminescence spectra of silica glass in a vacuum and nitrogen atmosphere,” Phys. Rev. B Condens. Matter52(13), 9224–9228 (1995).
[Crossref]
[PubMed]
J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Mechanoluminescent SrAl2O4:Eu,Dy phosphor for use in visualization of quasidynamic crack propagation,” Appl. Phys. Lett.90(24), 241916 (2007).
[Crossref]
J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Visualization of fractures in alumina ceramics by mechanoluminescence,” Acta Mater.53(16), 4337–4343 (2005).
[Crossref]
J. S. Kim, Y. N. Kwon, and K.-S. Sohn, “Dynamic visualization of crack propagation and bridging stress using the mechano-luminescence of SrAl2O4:(Eu,Dy,Nd),” Acta Mater.51(20), 6437–6442 (2003).
[Crossref]
M. Ouyang, C. Yuan, R. J. Muisener, A. Boulares, and J. T. Koberstein, “Conversion of some siloxane polymers to silicon oxide by UV/ozone photochemical processes,” Chem. Mater.12(6), 1591–1596 (2000).
[Crossref]
T. S. Phely-Bobin, R. J. Muisener, J. T. Koberstein, and F. Papadimitrakopoulos, “Preferential self-assembly of surface-modified Si/SiOx nanoparticles on UV/ozone micropatterned poly(dimethylsiloxane) films,” Adv. Mater.12(17), 1257–1261 (2000).
[Crossref]
J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Mechanoluminescent SrAl2O4:Eu,Dy phosphor for use in visualization of quasidynamic crack propagation,” Appl. Phys. Lett.90(24), 241916 (2007).
[Crossref]
J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Visualization of fractures in alumina ceramics by mechanoluminescence,” Acta Mater.53(16), 4337–4343 (2005).
[Crossref]
J. S. Kim, Y. N. Kwon, and K.-S. Sohn, “Dynamic visualization of crack propagation and bridging stress using the mechano-luminescence of SrAl2O4:(Eu,Dy,Nd),” Acta Mater.51(20), 6437–6442 (2003).
[Crossref]
S. M. Jeong, S. Song, S.-K. Lee, and B. Choi, “Mechanically driven light-generator with high durability,” Appl. Phys. Lett.102(5), 051110 (2013).
[Crossref]
S. M. Jeong, S. Song, S.-K. Lee, and N. Y. Ha, “Colour manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater., doi:.
[Crossref]
S. Satyanarayana, R. N. Karnik, and A. Majumdar, “Stamp-and-stick room-temperature bonding technique for microdevices,” J. Microelectromech. Syst.14(2), 392–399 (2005).
[Crossref]
D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[Crossref]
[PubMed]
T. S. Phely-Bobin, R. J. Muisener, J. T. Koberstein, and F. Papadimitrakopoulos, “Preferential self-assembly of surface-modified Si/SiOx nanoparticles on UV/ozone micropatterned poly(dimethylsiloxane) films,” Adv. Mater.12(17), 1257–1261 (2000).
[Crossref]
M. Ouyang, C. Yuan, R. J. Muisener, A. Boulares, and J. T. Koberstein, “Conversion of some siloxane polymers to silicon oxide by UV/ozone photochemical processes,” Chem. Mater.12(6), 1591–1596 (2000).
[Crossref]
C.-N. Xu, X.-G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution by mechanoluminescence image,” Appl. Phys. Lett.76(2), 179–181 (2000).
[Crossref]
H. Hillborg, N. Tomczak, A. Olàh, H. Schönherr, and G. J. Vancso, “Nanoscale hydrophobic recovery: A chemical force microscopy study of UV/ozone-treated cross-linked poly(dimethylsiloxane),” Langmuir20(3), 785–794 (2004).
[Crossref]
[PubMed]
M. Ouyang, C. Yuan, R. J. Muisener, A. Boulares, and J. T. Koberstein, “Conversion of some siloxane polymers to silicon oxide by UV/ozone photochemical processes,” Chem. Mater.12(6), 1591–1596 (2000).
[Crossref]
T. S. Phely-Bobin, R. J. Muisener, J. T. Koberstein, and F. Papadimitrakopoulos, “Preferential self-assembly of surface-modified Si/SiOx nanoparticles on UV/ozone micropatterned poly(dimethylsiloxane) films,” Adv. Mater.12(17), 1257–1261 (2000).
[Crossref]
T. S. Phely-Bobin, R. J. Muisener, J. T. Koberstein, and F. Papadimitrakopoulos, “Preferential self-assembly of surface-modified Si/SiOx nanoparticles on UV/ozone micropatterned poly(dimethylsiloxane) films,” Adv. Mater.12(17), 1257–1261 (2000).
[Crossref]
C. G. Camara, J. V. Escobar, J. R. Hird, and S. J. Putterman, “Correlation between nanosecond X-ray flashes and stick-slip friction in peeling tape,” Nature455(7216), 1089–1092 (2008).
[Crossref]
M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science288(5463), 113–116 (2000).
[Crossref]
[PubMed]
L. M. Sweeting, M. L. Cashel, and M. M. Rosenblatt, “Triboluminescence spectra of organic crystals are sensitive to conditions of acquisition,” J. Lumin.52(5-6), 281–291 (1992).
[Crossref]
G. Alzetta, G. Chella, and S. Santucci, “Behaviour of light emission in mechanically excited ZnS phosphors,” Phys. Lett. A26(2), 94–95 (1967).
[Crossref]
S. Satyanarayana, R. N. Karnik, and A. Majumdar, “Stamp-and-stick room-temperature bonding technique for microdevices,” J. Microelectromech. Syst.14(2), 392–399 (2005).
[Crossref]
M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science288(5463), 113–116 (2000).
[Crossref]
[PubMed]
H. Hillborg, N. Tomczak, A. Olàh, H. Schönherr, and G. J. Vancso, “Nanoscale hydrophobic recovery: A chemical force microscopy study of UV/ozone-treated cross-linked poly(dimethylsiloxane),” Langmuir20(3), 785–794 (2004).
[Crossref]
[PubMed]
D. C. Duffy, O. J. A. Schueller, S. T. Brittain, and G. M. Whitesides, “Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow,” J. Micromech. Microeng.9(3), 211–217 (1999).
[Crossref]
D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[Crossref]
[PubMed]
J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Mechanoluminescent SrAl2O4:Eu,Dy phosphor for use in visualization of quasidynamic crack propagation,” Appl. Phys. Lett.90(24), 241916 (2007).
[Crossref]
J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Visualization of fractures in alumina ceramics by mechanoluminescence,” Acta Mater.53(16), 4337–4343 (2005).
[Crossref]
H. Hillborg, J. F. Ankner, U. W. Gedde, G. D. Smith, H. K. Yasuda, and K. Wikstrom, “Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques,” Polymer (Guildf.)41(18), 6851–6863 (2000).
[Crossref]
J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Mechanoluminescent SrAl2O4:Eu,Dy phosphor for use in visualization of quasidynamic crack propagation,” Appl. Phys. Lett.90(24), 241916 (2007).
[Crossref]
J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Visualization of fractures in alumina ceramics by mechanoluminescence,” Acta Mater.53(16), 4337–4343 (2005).
[Crossref]
J. S. Kim, Y. N. Kwon, and K.-S. Sohn, “Dynamic visualization of crack propagation and bridging stress using the mechano-luminescence of SrAl2O4:(Eu,Dy,Nd),” Acta Mater.51(20), 6437–6442 (2003).
[Crossref]
S. M. Jeong, S. Song, S.-K. Lee, and B. Choi, “Mechanically driven light-generator with high durability,” Appl. Phys. Lett.102(5), 051110 (2013).
[Crossref]
S. M. Jeong, S. Song, S.-K. Lee, and N. Y. Ha, “Colour manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater., doi:.
[Crossref]
N. C. Eddingsaas and K. S. Suslick, “Mechanoluminescence: Light from sonication of crystal slurries,” Nature444(7116), 163 (2006).
[Crossref]
[PubMed]
L. M. Sweeting, M. L. Cashel, and M. M. Rosenblatt, “Triboluminescence spectra of organic crystals are sensitive to conditions of acquisition,” J. Lumin.52(5-6), 281–291 (1992).
[Crossref]
N. Terasaki, H. Zhang, H. Yamada, and C.-N. Xu, “Mechanoluminescent light source for a fluorescent probe molecule,” Chem. Commun. (Camb.)47(28), 8034–8036 (2011).
[Crossref]
[PubMed]
M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science288(5463), 113–116 (2000).
[Crossref]
[PubMed]
H. Hillborg, N. Tomczak, A. Olàh, H. Schönherr, and G. J. Vancso, “Nanoscale hydrophobic recovery: A chemical force microscopy study of UV/ozone-treated cross-linked poly(dimethylsiloxane),” Langmuir20(3), 785–794 (2004).
[Crossref]
[PubMed]
M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science288(5463), 113–116 (2000).
[Crossref]
[PubMed]
H. Hillborg, N. Tomczak, A. Olàh, H. Schönherr, and G. J. Vancso, “Nanoscale hydrophobic recovery: A chemical force microscopy study of UV/ozone-treated cross-linked poly(dimethylsiloxane),” Langmuir20(3), 785–794 (2004).
[Crossref]
[PubMed]
A. J. Walton, “Triboluminescence,” Adv. Phys.26(6), 887–948 (1977).
[Crossref]
J.-C. Zhang, C.-N. Xu, S. Kamimura, Y. Terasawa, H. Yamada, and X. Wang, “An intense elastico-mechanoluminescence material CaZnOS:Mn2+ for sensing and imaging multiple mechanical stresses,” Opt. Express21(11), 12976–12986 (2013).
[Crossref]
[PubMed]
C.-N. Xu, H. Yamada, X. Wang, and X. G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett.84(16), 3040–3042 (2004).
[Crossref]
C.-N. Xu, X.-G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution by mechanoluminescence image,” Appl. Phys. Lett.76(2), 179–181 (2000).
[Crossref]
C.-N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
[Crossref]
C.-N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
[Crossref]
D. C. Duffy, O. J. A. Schueller, S. T. Brittain, and G. M. Whitesides, “Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow,” J. Micromech. Microeng.9(3), 211–217 (1999).
[Crossref]
D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[Crossref]
[PubMed]
H. Hillborg, J. F. Ankner, U. W. Gedde, G. D. Smith, H. K. Yasuda, and K. Wikstrom, “Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques,” Polymer (Guildf.)41(18), 6851–6863 (2000).
[Crossref]
J.-C. Zhang, C.-N. Xu, S. Kamimura, Y. Terasawa, H. Yamada, and X. Wang, “An intense elastico-mechanoluminescence material CaZnOS:Mn2+ for sensing and imaging multiple mechanical stresses,” Opt. Express21(11), 12976–12986 (2013).
[Crossref]
[PubMed]
J.-C. Zhang, C.-N. Xu, and Y.-Z. Long, “Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels,” Opt. Express21(11), 13699–13709 (2013).
[Crossref]
[PubMed]
N. Terasaki, H. Zhang, H. Yamada, and C.-N. Xu, “Mechanoluminescent light source for a fluorescent probe molecule,” Chem. Commun. (Camb.)47(28), 8034–8036 (2011).
[Crossref]
[PubMed]
C.-N. Xu, H. Yamada, X. Wang, and X. G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett.84(16), 3040–3042 (2004).
[Crossref]
C.-N. Xu, X.-G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution by mechanoluminescence image,” Appl. Phys. Lett.76(2), 179–181 (2000).
[Crossref]
C.-N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
[Crossref]
C.-N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
[Crossref]
J.-C. Zhang, C.-N. Xu, S. Kamimura, Y. Terasawa, H. Yamada, and X. Wang, “An intense elastico-mechanoluminescence material CaZnOS:Mn2+ for sensing and imaging multiple mechanical stresses,” Opt. Express21(11), 12976–12986 (2013).
[Crossref]
[PubMed]
N. Terasaki, H. Zhang, H. Yamada, and C.-N. Xu, “Mechanoluminescent light source for a fluorescent probe molecule,” Chem. Commun. (Camb.)47(28), 8034–8036 (2011).
[Crossref]
[PubMed]
C.-N. Xu, H. Yamada, X. Wang, and X. G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett.84(16), 3040–3042 (2004).
[Crossref]
H. Hillborg, J. F. Ankner, U. W. Gedde, G. D. Smith, H. K. Yasuda, and K. Wikstrom, “Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques,” Polymer (Guildf.)41(18), 6851–6863 (2000).
[Crossref]
M. Ouyang, C. Yuan, R. J. Muisener, A. Boulares, and J. T. Koberstein, “Conversion of some siloxane polymers to silicon oxide by UV/ozone photochemical processes,” Chem. Mater.12(6), 1591–1596 (2000).
[Crossref]
N. Terasaki, H. Zhang, H. Yamada, and C.-N. Xu, “Mechanoluminescent light source for a fluorescent probe molecule,” Chem. Commun. (Camb.)47(28), 8034–8036 (2011).
[Crossref]
[PubMed]
J.-C. Zhang, C.-N. Xu, S. Kamimura, Y. Terasawa, H. Yamada, and X. Wang, “An intense elastico-mechanoluminescence material CaZnOS:Mn2+ for sensing and imaging multiple mechanical stresses,” Opt. Express21(11), 12976–12986 (2013).
[Crossref]
[PubMed]
J.-C. Zhang, C.-N. Xu, and Y.-Z. Long, “Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels,” Opt. Express21(11), 13699–13709 (2013).
[Crossref]
[PubMed]
C.-N. Xu, H. Yamada, X. Wang, and X. G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett.84(16), 3040–3042 (2004).
[Crossref]
C.-N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
[Crossref]
C.-N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
[Crossref]
C.-N. Xu, X.-G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution by mechanoluminescence image,” Appl. Phys. Lett.76(2), 179–181 (2000).
[Crossref]
J. S. Kim, Y. N. Kwon, and K.-S. Sohn, “Dynamic visualization of crack propagation and bridging stress using the mechano-luminescence of SrAl2O4:(Eu,Dy,Nd),” Acta Mater.51(20), 6437–6442 (2003).
[Crossref]
J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Visualization of fractures in alumina ceramics by mechanoluminescence,” Acta Mater.53(16), 4337–4343 (2005).
[Crossref]
S. M. Jeong, S. Song, S.-K. Lee, and N. Y. Ha, “Colour manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater., doi:.
[Crossref]
T. S. Phely-Bobin, R. J. Muisener, J. T. Koberstein, and F. Papadimitrakopoulos, “Preferential self-assembly of surface-modified Si/SiOx nanoparticles on UV/ozone micropatterned poly(dimethylsiloxane) films,” Adv. Mater.12(17), 1257–1261 (2000).
[Crossref]
A. J. Walton, “Triboluminescence,” Adv. Phys.26(6), 887–948 (1977).
[Crossref]
D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[Crossref]
[PubMed]
J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Mechanoluminescent SrAl2O4:Eu,Dy phosphor for use in visualization of quasidynamic crack propagation,” Appl. Phys. Lett.90(24), 241916 (2007).
[Crossref]
S. M. Jeong, S. Song, S.-K. Lee, and B. Choi, “Mechanically driven light-generator with high durability,” Appl. Phys. Lett.102(5), 051110 (2013).
[Crossref]
C.-N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
[Crossref]
C.-N. Xu, X.-G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution by mechanoluminescence image,” Appl. Phys. Lett.76(2), 179–181 (2000).
[Crossref]
C.-N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
[Crossref]
C.-N. Xu, H. Yamada, X. Wang, and X. G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett.84(16), 3040–3042 (2004).
[Crossref]
N. Terasaki, H. Zhang, H. Yamada, and C.-N. Xu, “Mechanoluminescent light source for a fluorescent probe molecule,” Chem. Commun. (Camb.)47(28), 8034–8036 (2011).
[Crossref]
[PubMed]
M. Ouyang, C. Yuan, R. J. Muisener, A. Boulares, and J. T. Koberstein, “Conversion of some siloxane polymers to silicon oxide by UV/ozone photochemical processes,” Chem. Mater.12(6), 1591–1596 (2000).
[Crossref]
L. M. Sweeting, M. L. Cashel, and M. M. Rosenblatt, “Triboluminescence spectra of organic crystals are sensitive to conditions of acquisition,” J. Lumin.52(5-6), 281–291 (1992).
[Crossref]
S. Satyanarayana, R. N. Karnik, and A. Majumdar, “Stamp-and-stick room-temperature bonding technique for microdevices,” J. Microelectromech. Syst.14(2), 392–399 (2005).
[Crossref]
M. A. Eddings, M. A. Johnson, and B. K. Gale, “Determining the optimal PDMS-PDMS bonding technique for microfluidic devices,” J. Micromech. Microeng.18(6), 067001 (2008).
[Crossref]
D. C. Duffy, O. J. A. Schueller, S. T. Brittain, and G. M. Whitesides, “Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow,” J. Micromech. Microeng.9(3), 211–217 (1999).
[Crossref]
K. Haubert, T. Drier, and D. Beebe, “PDMS bonding by means of a portable, low-cost corona system,” Lab Chip6(12), 1548–1549 (2006).
[Crossref]
[PubMed]
H. Hillborg, N. Tomczak, A. Olàh, H. Schönherr, and G. J. Vancso, “Nanoscale hydrophobic recovery: A chemical force microscopy study of UV/ozone-treated cross-linked poly(dimethylsiloxane),” Langmuir20(3), 785–794 (2004).
[Crossref]
[PubMed]
Y. Enomoto and H. Hashimoto, “Emission of charged particles from indentation fracture of rocks,” Nature346(6285), 641–643 (1990).
[Crossref]
N. C. Eddingsaas and K. S. Suslick, “Mechanoluminescence: Light from sonication of crystal slurries,” Nature444(7116), 163 (2006).
[Crossref]
[PubMed]
C. G. Camara, J. V. Escobar, J. R. Hird, and S. J. Putterman, “Correlation between nanosecond X-ray flashes and stick-slip friction in peeling tape,” Nature455(7216), 1089–1092 (2008).
[Crossref]
J.-C. Zhang, C.-N. Xu, S. Kamimura, Y. Terasawa, H. Yamada, and X. Wang, “An intense elastico-mechanoluminescence material CaZnOS:Mn2+ for sensing and imaging multiple mechanical stresses,” Opt. Express21(11), 12976–12986 (2013).
[Crossref]
[PubMed]
J.-C. Zhang, C.-N. Xu, and Y.-Z. Long, “Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels,” Opt. Express21(11), 13699–13709 (2013).
[Crossref]
[PubMed]
G. Alzetta, G. Chella, and S. Santucci, “Behaviour of light emission in mechanically excited ZnS phosphors,” Phys. Lett. A26(2), 94–95 (1967).
[Crossref]
N. A. Atari, “Piezoluminescence phenomenon,” Phys. Lett. A90(1-2), 93–96 (1982).
[Crossref]
Y. Kawaguchi, “Time-resolved fractoluminescence spectra of silica glass in a vacuum and nitrogen atmosphere,” Phys. Rev. B Condens. Matter52(13), 9224–9228 (1995).
[Crossref]
[PubMed]
H. Hillborg and U. W. Gedde, “Hydrophobicity recovery of polydimethylsiloxane after exposure to corona discharges,” Polymer (Guildf.)39(10), 1991–1998 (1998).
[Crossref]
H. Hillborg, J. F. Ankner, U. W. Gedde, G. D. Smith, H. K. Yasuda, and K. Wikstrom, “Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques,” Polymer (Guildf.)41(18), 6851–6863 (2000).
[Crossref]
M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science288(5463), 113–116 (2000).
[Crossref]
[PubMed]
B. P. Chandra, Luminescence of Solids (Plenum, 1998), Chap. 10.