Abstract

Bidirectional two-colored mechanoluminescent light emission has been demonstrated by unifying two polydimethylsiloxane elastomer layers functionalized with zinc sulfide doped with Cu (ZnS:Cu) or Cu and Mn (ZnS:Cu,Mn). The bilayered composite films are simply fabricated by dispensing uncured ZnS:Cu,Mn + PDMS onto previously spin-coated and hardened ZnS:Cu + PDMS film. The robust PDMS-PDMS bonding yields a film which can simultaneously emit light with color coordinates of (0.25, 0.56) and (0.50, 0.48), similar to the intrinsic colors of ZnS:Cu and ZnS:Cu,Mn, respectively. Composite films can emit light in upper and lower directions without fracture when it is stretched.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. P. Chandra, Luminescence of Solids (Plenum, 1998), Chap. 10.
  2. G. Alzetta, G. Chella, and S. Santucci, “Behaviour of light emission in mechanically excited ZnS phosphors,” Phys. Lett. A26(2), 94–95 (1967).
    [CrossRef]
  3. N. A. Atari, “Piezoluminescence phenomenon,” Phys. Lett. A90(1-2), 93–96 (1982).
    [CrossRef]
  4. A. J. Walton, “Triboluminescence,” Adv. Phys.26(6), 887–948 (1977).
    [CrossRef]
  5. L. M. Sweeting, M. L. Cashel, and M. M. Rosenblatt, “Triboluminescence spectra of organic crystals are sensitive to conditions of acquisition,” J. Lumin.52(5-6), 281–291 (1992).
    [CrossRef]
  6. Y. Kawaguchi, “Time-resolved fractoluminescence spectra of silica glass in a vacuum and nitrogen atmosphere,” Phys. Rev. B Condens. Matter52(13), 9224–9228 (1995).
    [CrossRef] [PubMed]
  7. Y. Enomoto and H. Hashimoto, “Emission of charged particles from indentation fracture of rocks,” Nature346(6285), 641–643 (1990).
    [CrossRef]
  8. N. C. Eddingsaas and K. S. Suslick, “Mechanoluminescence: Light from sonication of crystal slurries,” Nature444(7116), 163 (2006).
    [CrossRef] [PubMed]
  9. C. G. Camara, J. V. Escobar, J. R. Hird, and S. J. Putterman, “Correlation between nanosecond X-ray flashes and stick-slip friction in peeling tape,” Nature455(7216), 1089–1092 (2008).
    [CrossRef]
  10. N. Terasaki, H. Zhang, H. Yamada, and C.-N. Xu, “Mechanoluminescent light source for a fluorescent probe molecule,” Chem. Commun. (Camb.)47(28), 8034–8036 (2011).
    [CrossRef] [PubMed]
  11. C.-N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
    [CrossRef]
  12. C.-N. Xu, H. Yamada, X. Wang, and X. G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett.84(16), 3040–3042 (2004).
    [CrossRef]
  13. J.-C. Zhang, C.-N. Xu, and Y.-Z. Long, “Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels,” Opt. Express21(11), 13699–13709 (2013).
    [CrossRef] [PubMed]
  14. J.-C. Zhang, C.-N. Xu, S. Kamimura, Y. Terasawa, H. Yamada, and X. Wang, “An intense elastico-mechanoluminescence material CaZnOS:Mn2+ for sensing and imaging multiple mechanical stresses,” Opt. Express21(11), 12976–12986 (2013).
    [CrossRef] [PubMed]
  15. C.-N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
    [CrossRef]
  16. C.-N. Xu, X.-G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution by mechanoluminescence image,” Appl. Phys. Lett.76(2), 179–181 (2000).
    [CrossRef]
  17. J. S. Kim, Y. N. Kwon, and K.-S. Sohn, “Dynamic visualization of crack propagation and bridging stress using the mechano-luminescence of SrAl2O4:(Eu,Dy,Nd),” Acta Mater.51(20), 6437–6442 (2003).
    [CrossRef]
  18. J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Visualization of fractures in alumina ceramics by mechanoluminescence,” Acta Mater.53(16), 4337–4343 (2005).
    [CrossRef]
  19. J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Mechanoluminescent SrAl2O4:Eu,Dy phosphor for use in visualization of quasidynamic crack propagation,” Appl. Phys. Lett.90(24), 241916 (2007).
    [CrossRef]
  20. S. M. Jeong, S. Song, S.-K. Lee, and B. Choi, “Mechanically driven light-generator with high durability,” Appl. Phys. Lett.102(5), 051110 (2013).
    [CrossRef]
  21. S. M. Jeong, S. Song, S.-K. Lee, and N. Y. Ha, “Colour manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater., doi:.
    [CrossRef]
  22. D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
    [CrossRef] [PubMed]
  23. D. C. Duffy, O. J. A. Schueller, S. T. Brittain, and G. M. Whitesides, “Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow,” J. Micromech. Microeng.9(3), 211–217 (1999).
    [CrossRef]
  24. M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science288(5463), 113–116 (2000).
    [CrossRef] [PubMed]
  25. K. Haubert, T. Drier, and D. Beebe, “PDMS bonding by means of a portable, low-cost corona system,” Lab Chip6(12), 1548–1549 (2006).
    [CrossRef] [PubMed]
  26. H. Hillborg and U. W. Gedde, “Hydrophobicity recovery of polydimethylsiloxane after exposure to corona discharges,” Polymer (Guildf.)39(10), 1991–1998 (1998).
    [CrossRef]
  27. H. Hillborg, J. F. Ankner, U. W. Gedde, G. D. Smith, H. K. Yasuda, and K. Wikstrom, “Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques,” Polymer (Guildf.)41(18), 6851–6863 (2000).
    [CrossRef]
  28. M. Ouyang, C. Yuan, R. J. Muisener, A. Boulares, and J. T. Koberstein, “Conversion of some siloxane polymers to silicon oxide by UV/ozone photochemical processes,” Chem. Mater.12(6), 1591–1596 (2000).
    [CrossRef]
  29. T. S. Phely-Bobin, R. J. Muisener, J. T. Koberstein, and F. Papadimitrakopoulos, “Preferential self-assembly of surface-modified Si/SiOx nanoparticles on UV/ozone micropatterned poly(dimethylsiloxane) films,” Adv. Mater.12(17), 1257–1261 (2000).
    [CrossRef]
  30. H. Hillborg, N. Tomczak, A. Olàh, H. Schönherr, and G. J. Vancso, “Nanoscale hydrophobic recovery: A chemical force microscopy study of UV/ozone-treated cross-linked poly(dimethylsiloxane),” Langmuir20(3), 785–794 (2004).
    [CrossRef] [PubMed]
  31. S. Satyanarayana, R. N. Karnik, and A. Majumdar, “Stamp-and-stick room-temperature bonding technique for microdevices,” J. Microelectromech. Syst.14(2), 392–399 (2005).
    [CrossRef]
  32. M. A. Eddings, M. A. Johnson, and B. K. Gale, “Determining the optimal PDMS-PDMS bonding technique for microfluidic devices,” J. Micromech. Microeng.18(6), 067001 (2008).
    [CrossRef]

2013

2011

N. Terasaki, H. Zhang, H. Yamada, and C.-N. Xu, “Mechanoluminescent light source for a fluorescent probe molecule,” Chem. Commun. (Camb.)47(28), 8034–8036 (2011).
[CrossRef] [PubMed]

2008

C. G. Camara, J. V. Escobar, J. R. Hird, and S. J. Putterman, “Correlation between nanosecond X-ray flashes and stick-slip friction in peeling tape,” Nature455(7216), 1089–1092 (2008).
[CrossRef]

M. A. Eddings, M. A. Johnson, and B. K. Gale, “Determining the optimal PDMS-PDMS bonding technique for microfluidic devices,” J. Micromech. Microeng.18(6), 067001 (2008).
[CrossRef]

2007

J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Mechanoluminescent SrAl2O4:Eu,Dy phosphor for use in visualization of quasidynamic crack propagation,” Appl. Phys. Lett.90(24), 241916 (2007).
[CrossRef]

2006

K. Haubert, T. Drier, and D. Beebe, “PDMS bonding by means of a portable, low-cost corona system,” Lab Chip6(12), 1548–1549 (2006).
[CrossRef] [PubMed]

N. C. Eddingsaas and K. S. Suslick, “Mechanoluminescence: Light from sonication of crystal slurries,” Nature444(7116), 163 (2006).
[CrossRef] [PubMed]

2005

S. Satyanarayana, R. N. Karnik, and A. Majumdar, “Stamp-and-stick room-temperature bonding technique for microdevices,” J. Microelectromech. Syst.14(2), 392–399 (2005).
[CrossRef]

J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Visualization of fractures in alumina ceramics by mechanoluminescence,” Acta Mater.53(16), 4337–4343 (2005).
[CrossRef]

2004

H. Hillborg, N. Tomczak, A. Olàh, H. Schönherr, and G. J. Vancso, “Nanoscale hydrophobic recovery: A chemical force microscopy study of UV/ozone-treated cross-linked poly(dimethylsiloxane),” Langmuir20(3), 785–794 (2004).
[CrossRef] [PubMed]

C.-N. Xu, H. Yamada, X. Wang, and X. G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett.84(16), 3040–3042 (2004).
[CrossRef]

2003

J. S. Kim, Y. N. Kwon, and K.-S. Sohn, “Dynamic visualization of crack propagation and bridging stress using the mechano-luminescence of SrAl2O4:(Eu,Dy,Nd),” Acta Mater.51(20), 6437–6442 (2003).
[CrossRef]

2000

C.-N. Xu, X.-G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution by mechanoluminescence image,” Appl. Phys. Lett.76(2), 179–181 (2000).
[CrossRef]

M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science288(5463), 113–116 (2000).
[CrossRef] [PubMed]

H. Hillborg, J. F. Ankner, U. W. Gedde, G. D. Smith, H. K. Yasuda, and K. Wikstrom, “Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques,” Polymer (Guildf.)41(18), 6851–6863 (2000).
[CrossRef]

M. Ouyang, C. Yuan, R. J. Muisener, A. Boulares, and J. T. Koberstein, “Conversion of some siloxane polymers to silicon oxide by UV/ozone photochemical processes,” Chem. Mater.12(6), 1591–1596 (2000).
[CrossRef]

T. S. Phely-Bobin, R. J. Muisener, J. T. Koberstein, and F. Papadimitrakopoulos, “Preferential self-assembly of surface-modified Si/SiOx nanoparticles on UV/ozone micropatterned poly(dimethylsiloxane) films,” Adv. Mater.12(17), 1257–1261 (2000).
[CrossRef]

1999

C.-N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
[CrossRef]

D. C. Duffy, O. J. A. Schueller, S. T. Brittain, and G. M. Whitesides, “Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow,” J. Micromech. Microeng.9(3), 211–217 (1999).
[CrossRef]

C.-N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
[CrossRef]

1998

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

H. Hillborg and U. W. Gedde, “Hydrophobicity recovery of polydimethylsiloxane after exposure to corona discharges,” Polymer (Guildf.)39(10), 1991–1998 (1998).
[CrossRef]

1995

Y. Kawaguchi, “Time-resolved fractoluminescence spectra of silica glass in a vacuum and nitrogen atmosphere,” Phys. Rev. B Condens. Matter52(13), 9224–9228 (1995).
[CrossRef] [PubMed]

1992

L. M. Sweeting, M. L. Cashel, and M. M. Rosenblatt, “Triboluminescence spectra of organic crystals are sensitive to conditions of acquisition,” J. Lumin.52(5-6), 281–291 (1992).
[CrossRef]

1990

Y. Enomoto and H. Hashimoto, “Emission of charged particles from indentation fracture of rocks,” Nature346(6285), 641–643 (1990).
[CrossRef]

1982

N. A. Atari, “Piezoluminescence phenomenon,” Phys. Lett. A90(1-2), 93–96 (1982).
[CrossRef]

1977

A. J. Walton, “Triboluminescence,” Adv. Phys.26(6), 887–948 (1977).
[CrossRef]

1967

G. Alzetta, G. Chella, and S. Santucci, “Behaviour of light emission in mechanically excited ZnS phosphors,” Phys. Lett. A26(2), 94–95 (1967).
[CrossRef]

Akiyama, M.

C.-N. Xu, X.-G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution by mechanoluminescence image,” Appl. Phys. Lett.76(2), 179–181 (2000).
[CrossRef]

C.-N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
[CrossRef]

C.-N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
[CrossRef]

Alzetta, G.

G. Alzetta, G. Chella, and S. Santucci, “Behaviour of light emission in mechanically excited ZnS phosphors,” Phys. Lett. A26(2), 94–95 (1967).
[CrossRef]

Ankner, J. F.

H. Hillborg, J. F. Ankner, U. W. Gedde, G. D. Smith, H. K. Yasuda, and K. Wikstrom, “Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques,” Polymer (Guildf.)41(18), 6851–6863 (2000).
[CrossRef]

Atari, N. A.

N. A. Atari, “Piezoluminescence phenomenon,” Phys. Lett. A90(1-2), 93–96 (1982).
[CrossRef]

Beebe, D.

K. Haubert, T. Drier, and D. Beebe, “PDMS bonding by means of a portable, low-cost corona system,” Lab Chip6(12), 1548–1549 (2006).
[CrossRef] [PubMed]

Boulares, A.

M. Ouyang, C. Yuan, R. J. Muisener, A. Boulares, and J. T. Koberstein, “Conversion of some siloxane polymers to silicon oxide by UV/ozone photochemical processes,” Chem. Mater.12(6), 1591–1596 (2000).
[CrossRef]

Brittain, S. T.

D. C. Duffy, O. J. A. Schueller, S. T. Brittain, and G. M. Whitesides, “Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow,” J. Micromech. Microeng.9(3), 211–217 (1999).
[CrossRef]

Camara, C. G.

C. G. Camara, J. V. Escobar, J. R. Hird, and S. J. Putterman, “Correlation between nanosecond X-ray flashes and stick-slip friction in peeling tape,” Nature455(7216), 1089–1092 (2008).
[CrossRef]

Cashel, M. L.

L. M. Sweeting, M. L. Cashel, and M. M. Rosenblatt, “Triboluminescence spectra of organic crystals are sensitive to conditions of acquisition,” J. Lumin.52(5-6), 281–291 (1992).
[CrossRef]

Chella, G.

G. Alzetta, G. Chella, and S. Santucci, “Behaviour of light emission in mechanically excited ZnS phosphors,” Phys. Lett. A26(2), 94–95 (1967).
[CrossRef]

Choi, B.

S. M. Jeong, S. Song, S.-K. Lee, and B. Choi, “Mechanically driven light-generator with high durability,” Appl. Phys. Lett.102(5), 051110 (2013).
[CrossRef]

Chou, H.-P.

M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science288(5463), 113–116 (2000).
[CrossRef] [PubMed]

Drier, T.

K. Haubert, T. Drier, and D. Beebe, “PDMS bonding by means of a portable, low-cost corona system,” Lab Chip6(12), 1548–1549 (2006).
[CrossRef] [PubMed]

Duffy, D. C.

D. C. Duffy, O. J. A. Schueller, S. T. Brittain, and G. M. Whitesides, “Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow,” J. Micromech. Microeng.9(3), 211–217 (1999).
[CrossRef]

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Eddings, M. A.

M. A. Eddings, M. A. Johnson, and B. K. Gale, “Determining the optimal PDMS-PDMS bonding technique for microfluidic devices,” J. Micromech. Microeng.18(6), 067001 (2008).
[CrossRef]

Eddingsaas, N. C.

N. C. Eddingsaas and K. S. Suslick, “Mechanoluminescence: Light from sonication of crystal slurries,” Nature444(7116), 163 (2006).
[CrossRef] [PubMed]

Enomoto, Y.

Y. Enomoto and H. Hashimoto, “Emission of charged particles from indentation fracture of rocks,” Nature346(6285), 641–643 (1990).
[CrossRef]

Escobar, J. V.

C. G. Camara, J. V. Escobar, J. R. Hird, and S. J. Putterman, “Correlation between nanosecond X-ray flashes and stick-slip friction in peeling tape,” Nature455(7216), 1089–1092 (2008).
[CrossRef]

Gale, B. K.

M. A. Eddings, M. A. Johnson, and B. K. Gale, “Determining the optimal PDMS-PDMS bonding technique for microfluidic devices,” J. Micromech. Microeng.18(6), 067001 (2008).
[CrossRef]

Gedde, U. W.

H. Hillborg, J. F. Ankner, U. W. Gedde, G. D. Smith, H. K. Yasuda, and K. Wikstrom, “Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques,” Polymer (Guildf.)41(18), 6851–6863 (2000).
[CrossRef]

H. Hillborg and U. W. Gedde, “Hydrophobicity recovery of polydimethylsiloxane after exposure to corona discharges,” Polymer (Guildf.)39(10), 1991–1998 (1998).
[CrossRef]

Ha, N. Y.

S. M. Jeong, S. Song, S.-K. Lee, and N. Y. Ha, “Colour manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater., doi:.
[CrossRef]

Hashimoto, H.

Y. Enomoto and H. Hashimoto, “Emission of charged particles from indentation fracture of rocks,” Nature346(6285), 641–643 (1990).
[CrossRef]

Haubert, K.

K. Haubert, T. Drier, and D. Beebe, “PDMS bonding by means of a portable, low-cost corona system,” Lab Chip6(12), 1548–1549 (2006).
[CrossRef] [PubMed]

Hillborg, H.

H. Hillborg, N. Tomczak, A. Olàh, H. Schönherr, and G. J. Vancso, “Nanoscale hydrophobic recovery: A chemical force microscopy study of UV/ozone-treated cross-linked poly(dimethylsiloxane),” Langmuir20(3), 785–794 (2004).
[CrossRef] [PubMed]

H. Hillborg, J. F. Ankner, U. W. Gedde, G. D. Smith, H. K. Yasuda, and K. Wikstrom, “Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques,” Polymer (Guildf.)41(18), 6851–6863 (2000).
[CrossRef]

H. Hillborg and U. W. Gedde, “Hydrophobicity recovery of polydimethylsiloxane after exposure to corona discharges,” Polymer (Guildf.)39(10), 1991–1998 (1998).
[CrossRef]

Hird, J. R.

C. G. Camara, J. V. Escobar, J. R. Hird, and S. J. Putterman, “Correlation between nanosecond X-ray flashes and stick-slip friction in peeling tape,” Nature455(7216), 1089–1092 (2008).
[CrossRef]

Jeong, S. M.

S. M. Jeong, S. Song, S.-K. Lee, and B. Choi, “Mechanically driven light-generator with high durability,” Appl. Phys. Lett.102(5), 051110 (2013).
[CrossRef]

S. M. Jeong, S. Song, S.-K. Lee, and N. Y. Ha, “Colour manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater., doi:.
[CrossRef]

Johnson, M. A.

M. A. Eddings, M. A. Johnson, and B. K. Gale, “Determining the optimal PDMS-PDMS bonding technique for microfluidic devices,” J. Micromech. Microeng.18(6), 067001 (2008).
[CrossRef]

Kamimura, S.

Karnik, R. N.

S. Satyanarayana, R. N. Karnik, and A. Majumdar, “Stamp-and-stick room-temperature bonding technique for microdevices,” J. Microelectromech. Syst.14(2), 392–399 (2005).
[CrossRef]

Kawaguchi, Y.

Y. Kawaguchi, “Time-resolved fractoluminescence spectra of silica glass in a vacuum and nitrogen atmosphere,” Phys. Rev. B Condens. Matter52(13), 9224–9228 (1995).
[CrossRef] [PubMed]

Kim, J. S.

J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Mechanoluminescent SrAl2O4:Eu,Dy phosphor for use in visualization of quasidynamic crack propagation,” Appl. Phys. Lett.90(24), 241916 (2007).
[CrossRef]

J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Visualization of fractures in alumina ceramics by mechanoluminescence,” Acta Mater.53(16), 4337–4343 (2005).
[CrossRef]

J. S. Kim, Y. N. Kwon, and K.-S. Sohn, “Dynamic visualization of crack propagation and bridging stress using the mechano-luminescence of SrAl2O4:(Eu,Dy,Nd),” Acta Mater.51(20), 6437–6442 (2003).
[CrossRef]

Koberstein, J. T.

M. Ouyang, C. Yuan, R. J. Muisener, A. Boulares, and J. T. Koberstein, “Conversion of some siloxane polymers to silicon oxide by UV/ozone photochemical processes,” Chem. Mater.12(6), 1591–1596 (2000).
[CrossRef]

T. S. Phely-Bobin, R. J. Muisener, J. T. Koberstein, and F. Papadimitrakopoulos, “Preferential self-assembly of surface-modified Si/SiOx nanoparticles on UV/ozone micropatterned poly(dimethylsiloxane) films,” Adv. Mater.12(17), 1257–1261 (2000).
[CrossRef]

Kwon, Y. N.

J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Mechanoluminescent SrAl2O4:Eu,Dy phosphor for use in visualization of quasidynamic crack propagation,” Appl. Phys. Lett.90(24), 241916 (2007).
[CrossRef]

J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Visualization of fractures in alumina ceramics by mechanoluminescence,” Acta Mater.53(16), 4337–4343 (2005).
[CrossRef]

J. S. Kim, Y. N. Kwon, and K.-S. Sohn, “Dynamic visualization of crack propagation and bridging stress using the mechano-luminescence of SrAl2O4:(Eu,Dy,Nd),” Acta Mater.51(20), 6437–6442 (2003).
[CrossRef]

Lee, S.-K.

S. M. Jeong, S. Song, S.-K. Lee, and B. Choi, “Mechanically driven light-generator with high durability,” Appl. Phys. Lett.102(5), 051110 (2013).
[CrossRef]

S. M. Jeong, S. Song, S.-K. Lee, and N. Y. Ha, “Colour manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater., doi:.
[CrossRef]

Long, Y.-Z.

Majumdar, A.

S. Satyanarayana, R. N. Karnik, and A. Majumdar, “Stamp-and-stick room-temperature bonding technique for microdevices,” J. Microelectromech. Syst.14(2), 392–399 (2005).
[CrossRef]

McDonald, J. C.

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Muisener, R. J.

T. S. Phely-Bobin, R. J. Muisener, J. T. Koberstein, and F. Papadimitrakopoulos, “Preferential self-assembly of surface-modified Si/SiOx nanoparticles on UV/ozone micropatterned poly(dimethylsiloxane) films,” Adv. Mater.12(17), 1257–1261 (2000).
[CrossRef]

M. Ouyang, C. Yuan, R. J. Muisener, A. Boulares, and J. T. Koberstein, “Conversion of some siloxane polymers to silicon oxide by UV/ozone photochemical processes,” Chem. Mater.12(6), 1591–1596 (2000).
[CrossRef]

Nonaka, K.

C.-N. Xu, X.-G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution by mechanoluminescence image,” Appl. Phys. Lett.76(2), 179–181 (2000).
[CrossRef]

Olàh, A.

H. Hillborg, N. Tomczak, A. Olàh, H. Schönherr, and G. J. Vancso, “Nanoscale hydrophobic recovery: A chemical force microscopy study of UV/ozone-treated cross-linked poly(dimethylsiloxane),” Langmuir20(3), 785–794 (2004).
[CrossRef] [PubMed]

Ouyang, M.

M. Ouyang, C. Yuan, R. J. Muisener, A. Boulares, and J. T. Koberstein, “Conversion of some siloxane polymers to silicon oxide by UV/ozone photochemical processes,” Chem. Mater.12(6), 1591–1596 (2000).
[CrossRef]

Papadimitrakopoulos, F.

T. S. Phely-Bobin, R. J. Muisener, J. T. Koberstein, and F. Papadimitrakopoulos, “Preferential self-assembly of surface-modified Si/SiOx nanoparticles on UV/ozone micropatterned poly(dimethylsiloxane) films,” Adv. Mater.12(17), 1257–1261 (2000).
[CrossRef]

Phely-Bobin, T. S.

T. S. Phely-Bobin, R. J. Muisener, J. T. Koberstein, and F. Papadimitrakopoulos, “Preferential self-assembly of surface-modified Si/SiOx nanoparticles on UV/ozone micropatterned poly(dimethylsiloxane) films,” Adv. Mater.12(17), 1257–1261 (2000).
[CrossRef]

Putterman, S. J.

C. G. Camara, J. V. Escobar, J. R. Hird, and S. J. Putterman, “Correlation between nanosecond X-ray flashes and stick-slip friction in peeling tape,” Nature455(7216), 1089–1092 (2008).
[CrossRef]

Quake, S. R.

M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science288(5463), 113–116 (2000).
[CrossRef] [PubMed]

Rosenblatt, M. M.

L. M. Sweeting, M. L. Cashel, and M. M. Rosenblatt, “Triboluminescence spectra of organic crystals are sensitive to conditions of acquisition,” J. Lumin.52(5-6), 281–291 (1992).
[CrossRef]

Santucci, S.

G. Alzetta, G. Chella, and S. Santucci, “Behaviour of light emission in mechanically excited ZnS phosphors,” Phys. Lett. A26(2), 94–95 (1967).
[CrossRef]

Satyanarayana, S.

S. Satyanarayana, R. N. Karnik, and A. Majumdar, “Stamp-and-stick room-temperature bonding technique for microdevices,” J. Microelectromech. Syst.14(2), 392–399 (2005).
[CrossRef]

Scherer, A.

M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science288(5463), 113–116 (2000).
[CrossRef] [PubMed]

Schönherr, H.

H. Hillborg, N. Tomczak, A. Olàh, H. Schönherr, and G. J. Vancso, “Nanoscale hydrophobic recovery: A chemical force microscopy study of UV/ozone-treated cross-linked poly(dimethylsiloxane),” Langmuir20(3), 785–794 (2004).
[CrossRef] [PubMed]

Schueller, O. J. A.

D. C. Duffy, O. J. A. Schueller, S. T. Brittain, and G. M. Whitesides, “Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow,” J. Micromech. Microeng.9(3), 211–217 (1999).
[CrossRef]

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Shin, N.

J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Mechanoluminescent SrAl2O4:Eu,Dy phosphor for use in visualization of quasidynamic crack propagation,” Appl. Phys. Lett.90(24), 241916 (2007).
[CrossRef]

J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Visualization of fractures in alumina ceramics by mechanoluminescence,” Acta Mater.53(16), 4337–4343 (2005).
[CrossRef]

Smith, G. D.

H. Hillborg, J. F. Ankner, U. W. Gedde, G. D. Smith, H. K. Yasuda, and K. Wikstrom, “Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques,” Polymer (Guildf.)41(18), 6851–6863 (2000).
[CrossRef]

Sohn, K.-S.

J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Mechanoluminescent SrAl2O4:Eu,Dy phosphor for use in visualization of quasidynamic crack propagation,” Appl. Phys. Lett.90(24), 241916 (2007).
[CrossRef]

J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Visualization of fractures in alumina ceramics by mechanoluminescence,” Acta Mater.53(16), 4337–4343 (2005).
[CrossRef]

J. S. Kim, Y. N. Kwon, and K.-S. Sohn, “Dynamic visualization of crack propagation and bridging stress using the mechano-luminescence of SrAl2O4:(Eu,Dy,Nd),” Acta Mater.51(20), 6437–6442 (2003).
[CrossRef]

Song, S.

S. M. Jeong, S. Song, S.-K. Lee, and B. Choi, “Mechanically driven light-generator with high durability,” Appl. Phys. Lett.102(5), 051110 (2013).
[CrossRef]

S. M. Jeong, S. Song, S.-K. Lee, and N. Y. Ha, “Colour manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater., doi:.
[CrossRef]

Suslick, K. S.

N. C. Eddingsaas and K. S. Suslick, “Mechanoluminescence: Light from sonication of crystal slurries,” Nature444(7116), 163 (2006).
[CrossRef] [PubMed]

Sweeting, L. M.

L. M. Sweeting, M. L. Cashel, and M. M. Rosenblatt, “Triboluminescence spectra of organic crystals are sensitive to conditions of acquisition,” J. Lumin.52(5-6), 281–291 (1992).
[CrossRef]

Terasaki, N.

N. Terasaki, H. Zhang, H. Yamada, and C.-N. Xu, “Mechanoluminescent light source for a fluorescent probe molecule,” Chem. Commun. (Camb.)47(28), 8034–8036 (2011).
[CrossRef] [PubMed]

Terasawa, Y.

Thorsen, T.

M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science288(5463), 113–116 (2000).
[CrossRef] [PubMed]

Tomczak, N.

H. Hillborg, N. Tomczak, A. Olàh, H. Schönherr, and G. J. Vancso, “Nanoscale hydrophobic recovery: A chemical force microscopy study of UV/ozone-treated cross-linked poly(dimethylsiloxane),” Langmuir20(3), 785–794 (2004).
[CrossRef] [PubMed]

Unger, M. A.

M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science288(5463), 113–116 (2000).
[CrossRef] [PubMed]

Vancso, G. J.

H. Hillborg, N. Tomczak, A. Olàh, H. Schönherr, and G. J. Vancso, “Nanoscale hydrophobic recovery: A chemical force microscopy study of UV/ozone-treated cross-linked poly(dimethylsiloxane),” Langmuir20(3), 785–794 (2004).
[CrossRef] [PubMed]

Walton, A. J.

A. J. Walton, “Triboluminescence,” Adv. Phys.26(6), 887–948 (1977).
[CrossRef]

Wang, X.

Watanabe, T.

C.-N. Xu, X.-G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution by mechanoluminescence image,” Appl. Phys. Lett.76(2), 179–181 (2000).
[CrossRef]

C.-N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
[CrossRef]

C.-N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
[CrossRef]

Whitesides, G. M.

D. C. Duffy, O. J. A. Schueller, S. T. Brittain, and G. M. Whitesides, “Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow,” J. Micromech. Microeng.9(3), 211–217 (1999).
[CrossRef]

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Wikstrom, K.

H. Hillborg, J. F. Ankner, U. W. Gedde, G. D. Smith, H. K. Yasuda, and K. Wikstrom, “Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques,” Polymer (Guildf.)41(18), 6851–6863 (2000).
[CrossRef]

Xu, C.-N.

J.-C. Zhang, C.-N. Xu, S. Kamimura, Y. Terasawa, H. Yamada, and X. Wang, “An intense elastico-mechanoluminescence material CaZnOS:Mn2+ for sensing and imaging multiple mechanical stresses,” Opt. Express21(11), 12976–12986 (2013).
[CrossRef] [PubMed]

J.-C. Zhang, C.-N. Xu, and Y.-Z. Long, “Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels,” Opt. Express21(11), 13699–13709 (2013).
[CrossRef] [PubMed]

N. Terasaki, H. Zhang, H. Yamada, and C.-N. Xu, “Mechanoluminescent light source for a fluorescent probe molecule,” Chem. Commun. (Camb.)47(28), 8034–8036 (2011).
[CrossRef] [PubMed]

C.-N. Xu, H. Yamada, X. Wang, and X. G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett.84(16), 3040–3042 (2004).
[CrossRef]

C.-N. Xu, X.-G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution by mechanoluminescence image,” Appl. Phys. Lett.76(2), 179–181 (2000).
[CrossRef]

C.-N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
[CrossRef]

C.-N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
[CrossRef]

Yamada, H.

J.-C. Zhang, C.-N. Xu, S. Kamimura, Y. Terasawa, H. Yamada, and X. Wang, “An intense elastico-mechanoluminescence material CaZnOS:Mn2+ for sensing and imaging multiple mechanical stresses,” Opt. Express21(11), 12976–12986 (2013).
[CrossRef] [PubMed]

N. Terasaki, H. Zhang, H. Yamada, and C.-N. Xu, “Mechanoluminescent light source for a fluorescent probe molecule,” Chem. Commun. (Camb.)47(28), 8034–8036 (2011).
[CrossRef] [PubMed]

C.-N. Xu, H. Yamada, X. Wang, and X. G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett.84(16), 3040–3042 (2004).
[CrossRef]

Yasuda, H. K.

H. Hillborg, J. F. Ankner, U. W. Gedde, G. D. Smith, H. K. Yasuda, and K. Wikstrom, “Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques,” Polymer (Guildf.)41(18), 6851–6863 (2000).
[CrossRef]

Yuan, C.

M. Ouyang, C. Yuan, R. J. Muisener, A. Boulares, and J. T. Koberstein, “Conversion of some siloxane polymers to silicon oxide by UV/ozone photochemical processes,” Chem. Mater.12(6), 1591–1596 (2000).
[CrossRef]

Zhang, H.

N. Terasaki, H. Zhang, H. Yamada, and C.-N. Xu, “Mechanoluminescent light source for a fluorescent probe molecule,” Chem. Commun. (Camb.)47(28), 8034–8036 (2011).
[CrossRef] [PubMed]

Zhang, J.-C.

Zheng, X. G.

C.-N. Xu, H. Yamada, X. Wang, and X. G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett.84(16), 3040–3042 (2004).
[CrossRef]

C.-N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
[CrossRef]

C.-N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
[CrossRef]

Zheng, X.-G.

C.-N. Xu, X.-G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution by mechanoluminescence image,” Appl. Phys. Lett.76(2), 179–181 (2000).
[CrossRef]

Acta Mater.

J. S. Kim, Y. N. Kwon, and K.-S. Sohn, “Dynamic visualization of crack propagation and bridging stress using the mechano-luminescence of SrAl2O4:(Eu,Dy,Nd),” Acta Mater.51(20), 6437–6442 (2003).
[CrossRef]

J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Visualization of fractures in alumina ceramics by mechanoluminescence,” Acta Mater.53(16), 4337–4343 (2005).
[CrossRef]

Adv. Mater.

S. M. Jeong, S. Song, S.-K. Lee, and N. Y. Ha, “Colour manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater., doi:.
[CrossRef]

T. S. Phely-Bobin, R. J. Muisener, J. T. Koberstein, and F. Papadimitrakopoulos, “Preferential self-assembly of surface-modified Si/SiOx nanoparticles on UV/ozone micropatterned poly(dimethylsiloxane) films,” Adv. Mater.12(17), 1257–1261 (2000).
[CrossRef]

Adv. Phys.

A. J. Walton, “Triboluminescence,” Adv. Phys.26(6), 887–948 (1977).
[CrossRef]

Anal. Chem.

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Appl. Phys. Lett.

J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Mechanoluminescent SrAl2O4:Eu,Dy phosphor for use in visualization of quasidynamic crack propagation,” Appl. Phys. Lett.90(24), 241916 (2007).
[CrossRef]

S. M. Jeong, S. Song, S.-K. Lee, and B. Choi, “Mechanically driven light-generator with high durability,” Appl. Phys. Lett.102(5), 051110 (2013).
[CrossRef]

C.-N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
[CrossRef]

C.-N. Xu, X.-G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution by mechanoluminescence image,” Appl. Phys. Lett.76(2), 179–181 (2000).
[CrossRef]

C.-N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
[CrossRef]

C.-N. Xu, H. Yamada, X. Wang, and X. G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett.84(16), 3040–3042 (2004).
[CrossRef]

Chem. Commun. (Camb.)

N. Terasaki, H. Zhang, H. Yamada, and C.-N. Xu, “Mechanoluminescent light source for a fluorescent probe molecule,” Chem. Commun. (Camb.)47(28), 8034–8036 (2011).
[CrossRef] [PubMed]

Chem. Mater.

M. Ouyang, C. Yuan, R. J. Muisener, A. Boulares, and J. T. Koberstein, “Conversion of some siloxane polymers to silicon oxide by UV/ozone photochemical processes,” Chem. Mater.12(6), 1591–1596 (2000).
[CrossRef]

J. Lumin.

L. M. Sweeting, M. L. Cashel, and M. M. Rosenblatt, “Triboluminescence spectra of organic crystals are sensitive to conditions of acquisition,” J. Lumin.52(5-6), 281–291 (1992).
[CrossRef]

J. Microelectromech. Syst.

S. Satyanarayana, R. N. Karnik, and A. Majumdar, “Stamp-and-stick room-temperature bonding technique for microdevices,” J. Microelectromech. Syst.14(2), 392–399 (2005).
[CrossRef]

J. Micromech. Microeng.

M. A. Eddings, M. A. Johnson, and B. K. Gale, “Determining the optimal PDMS-PDMS bonding technique for microfluidic devices,” J. Micromech. Microeng.18(6), 067001 (2008).
[CrossRef]

D. C. Duffy, O. J. A. Schueller, S. T. Brittain, and G. M. Whitesides, “Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow,” J. Micromech. Microeng.9(3), 211–217 (1999).
[CrossRef]

Lab Chip

K. Haubert, T. Drier, and D. Beebe, “PDMS bonding by means of a portable, low-cost corona system,” Lab Chip6(12), 1548–1549 (2006).
[CrossRef] [PubMed]

Langmuir

H. Hillborg, N. Tomczak, A. Olàh, H. Schönherr, and G. J. Vancso, “Nanoscale hydrophobic recovery: A chemical force microscopy study of UV/ozone-treated cross-linked poly(dimethylsiloxane),” Langmuir20(3), 785–794 (2004).
[CrossRef] [PubMed]

Nature

Y. Enomoto and H. Hashimoto, “Emission of charged particles from indentation fracture of rocks,” Nature346(6285), 641–643 (1990).
[CrossRef]

N. C. Eddingsaas and K. S. Suslick, “Mechanoluminescence: Light from sonication of crystal slurries,” Nature444(7116), 163 (2006).
[CrossRef] [PubMed]

C. G. Camara, J. V. Escobar, J. R. Hird, and S. J. Putterman, “Correlation between nanosecond X-ray flashes and stick-slip friction in peeling tape,” Nature455(7216), 1089–1092 (2008).
[CrossRef]

Opt. Express

Phys. Lett. A

G. Alzetta, G. Chella, and S. Santucci, “Behaviour of light emission in mechanically excited ZnS phosphors,” Phys. Lett. A26(2), 94–95 (1967).
[CrossRef]

N. A. Atari, “Piezoluminescence phenomenon,” Phys. Lett. A90(1-2), 93–96 (1982).
[CrossRef]

Phys. Rev. B Condens. Matter

Y. Kawaguchi, “Time-resolved fractoluminescence spectra of silica glass in a vacuum and nitrogen atmosphere,” Phys. Rev. B Condens. Matter52(13), 9224–9228 (1995).
[CrossRef] [PubMed]

Polymer (Guildf.)

H. Hillborg and U. W. Gedde, “Hydrophobicity recovery of polydimethylsiloxane after exposure to corona discharges,” Polymer (Guildf.)39(10), 1991–1998 (1998).
[CrossRef]

H. Hillborg, J. F. Ankner, U. W. Gedde, G. D. Smith, H. K. Yasuda, and K. Wikstrom, “Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques,” Polymer (Guildf.)41(18), 6851–6863 (2000).
[CrossRef]

Science

M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science288(5463), 113–116 (2000).
[CrossRef] [PubMed]

Other

B. P. Chandra, Luminescence of Solids (Plenum, 1998), Chap. 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics