Abstract

We review the question on the origin of the differences observed on various properties when we scan the femtosecond laser beam in an isotropic media (i.e. a glass) in two orientations of a given direction. Publications on refractive index changes, birefringence, nanogratings, stress, bubbles formation and on quill writing effects are analyzed. A new interpretation based on space-charge built from ponderomotive force and stored in the dielectric inducing an asymmetric stress field is proposed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express11(9), 1070–1079 (2003).
    [CrossRef] [PubMed]
  2. P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
    [CrossRef]
  3. M. Gecevičius, M. Beresna, J. Zhang, W. Yang, H. Takebe, and P. G. Kazansky, “Extraordinary anisotropy of ultrafast laser writing in glass,” Opt. Express21(4), 3959–3968 (2013).
    [CrossRef] [PubMed]
  4. P. G. Kazansky and M. Beresna, “Quill and Nonreciprocal Ultrafast Laser Writing,” in Femtosecond Laser Micromachining (Springer, 2012), pp. 127–151.
  5. W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett.93(17), 171109 (2008).
    [CrossRef]
  6. Y. Bellouard and M. O. Hongler, “Femtosecond-laser generation of self-organized bubble patterns in fused silica,” Opt. Express19(7), 6807–6821 (2011).
    [CrossRef] [PubMed]
  7. E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett.29(1), 119–121 (2004).
    [CrossRef] [PubMed]
  8. W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics2(2), 99–104 (2008).
    [CrossRef]
  9. M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B84(24), 245103 (2011).
    [CrossRef]
  10. D. N. Vitek, E. Block, Y. Bellouard, D. E. Adams, S. Backus, D. Kleinfeld, C. G. Durfee, and J. A. Squier, “Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials,” Opt. Express18(24), 24673–24678 (2010).
    [CrossRef] [PubMed]
  11. P. Salter and M. Booth, “Dynamic control of directional asymmetry observed in ultrafast laser direct writing,” Appl. Phys. Lett.101(14), 141109 (2012).
    [CrossRef]
  12. P. Salter, R. Simmonds, and M. Booth, “Adaptive control of pulse front tilt, the quill effect, and directional ultrafast laser writing,” in Frontiers in Ultrafast Optics (International Society for Optics and Photonics, 2013), 861111.
  13. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  14. L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun.171(4-6), 279–284 (1999).
    [CrossRef]
  15. B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters [Invited],” Opt. Mater. Express1(4), 766–782 (2011).
    [CrossRef]
  16. J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [Invited],” Opt. Mater. Express1(5), 998–1008 (2011).
    [CrossRef]
  17. M. Lancry, B. Poumellec, J. Canning, K. Cook, J. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser & Photonics Reviews. In Press.
  18. S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Doering, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser‐induced nanogratings,” Laser & Photonics Reviews6(6), 787–792 (2012).
    [CrossRef]
  19. C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process.84(1-2), 47–61 (2006).
    [CrossRef]
  20. M. Beresna and P. G. Kazansky, “Polarization diffraction grating produced by femtosecond laser nanostructuring in glass,” Opt. Lett.35(10), 1662–1664 (2010).
    [CrossRef] [PubMed]
  21. S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl.24(4), 042008 (2012).
    [CrossRef]
  22. B. Poumellec, M. Lancry, J. C. Poulin, and S. Ani-Joseph, “Non reciprocal writing and chirality in femtosecond laser irradiated silica,” Opt. Express16(22), 18354–18361 (2008).
    [CrossRef] [PubMed]
  23. C. Fan, B. Poumellec, H. Zeng, R. Desmarchelier, B. Bourguignon, G. Chen, and M. Lancry, “Gold Nanoparticles Reshaped by Ultrafast Laser Irradiation Inside a Silica-Based Glass, Studied Through Optical Properties,” J. Phys. Chem. C116(4), 2647–2655 (2012).
    [CrossRef]
  24. C. Fan, B. Poumellec, H. Zeng, M. Lancry, W. Yang, B. Bourguignon, and G. Chen, “Directional Writing Dependence of Birefringence in Multicomponent Silica-based Glasses with Ultrashort Laser Irradiation,” J. Laser Micro Nanoen6(2), 158–163 (2011).
    [CrossRef]
  25. P. G. Kazansky, Y. Shimotsuma, M. Sakakura, M. Beresna, M. Gecevičius, Y. Svirko, S. Akturk, J. Qiu, K. Miura, and K. Hirao, “Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front,” Opt. Express19(21), 20657–20664 (2011).
    [CrossRef] [PubMed]
  26. S. Matsuo, Y. Umeda, T. Tomita, and S. Hashimoto, “Laser-Scanning Direction Effect in Femtosecond Laser-Assisted Etching,” Journal of Laser Micro Nanoengineering8(1), 35–38 (2013).
    [CrossRef]
  27. C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem.12(2), 295–298 (2002).
    [CrossRef]
  28. J. Choi, M. Bellec, A. Royon, K. Bourhis, G. Papon, T. Cardinal, L. Canioni, and M. Richardson, “Three-dimensional direct femtosecond laser writing of second-order nonlinearities in glass,” Opt. Lett.37(6), 1029–1031 (2012).
    [CrossRef] [PubMed]
  29. S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
    [CrossRef]
  30. D. Bethune, “Optical second-harmonic generation in atomic vapors with focused beams,” Phys. Rev. A23(6), 3139–3151 (1981).
    [CrossRef]
  31. M. Lancry, E. Régnier, and B. Poumellec, “Fictive temperature in silica-based glasses and its application to optical fiber manufacturing,” Prog. Mater. Sci.57(1), 63–94 (2012).
    [CrossRef]
  32. M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids355(18-21), 1057–1061 (2009).
    [CrossRef]
  33. F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” EPL56(1), 138–144 (2001) (Europhysics Letters).
    [CrossRef]
  34. G. A. Maugin, Continuum Mechanics of Electromagnetic Solids, Applied Mathematics and Mechanics (North-Holland Amsterdam, 1988), Vol. 33.

2013

M. Gecevičius, M. Beresna, J. Zhang, W. Yang, H. Takebe, and P. G. Kazansky, “Extraordinary anisotropy of ultrafast laser writing in glass,” Opt. Express21(4), 3959–3968 (2013).
[CrossRef] [PubMed]

S. Matsuo, Y. Umeda, T. Tomita, and S. Hashimoto, “Laser-Scanning Direction Effect in Femtosecond Laser-Assisted Etching,” Journal of Laser Micro Nanoengineering8(1), 35–38 (2013).
[CrossRef]

2012

J. Choi, M. Bellec, A. Royon, K. Bourhis, G. Papon, T. Cardinal, L. Canioni, and M. Richardson, “Three-dimensional direct femtosecond laser writing of second-order nonlinearities in glass,” Opt. Lett.37(6), 1029–1031 (2012).
[CrossRef] [PubMed]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl.24(4), 042008 (2012).
[CrossRef]

C. Fan, B. Poumellec, H. Zeng, R. Desmarchelier, B. Bourguignon, G. Chen, and M. Lancry, “Gold Nanoparticles Reshaped by Ultrafast Laser Irradiation Inside a Silica-Based Glass, Studied Through Optical Properties,” J. Phys. Chem. C116(4), 2647–2655 (2012).
[CrossRef]

M. Lancry, E. Régnier, and B. Poumellec, “Fictive temperature in silica-based glasses and its application to optical fiber manufacturing,” Prog. Mater. Sci.57(1), 63–94 (2012).
[CrossRef]

P. Salter and M. Booth, “Dynamic control of directional asymmetry observed in ultrafast laser direct writing,” Appl. Phys. Lett.101(14), 141109 (2012).
[CrossRef]

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Doering, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser‐induced nanogratings,” Laser & Photonics Reviews6(6), 787–792 (2012).
[CrossRef]

2011

2010

2009

M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids355(18-21), 1057–1061 (2009).
[CrossRef]

2008

B. Poumellec, M. Lancry, J. C. Poulin, and S. Ani-Joseph, “Non reciprocal writing and chirality in femtosecond laser irradiated silica,” Opt. Express16(22), 18354–18361 (2008).
[CrossRef] [PubMed]

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett.93(17), 171109 (2008).
[CrossRef]

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics2(2), 99–104 (2008).
[CrossRef]

2007

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

2006

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process.84(1-2), 47–61 (2006).
[CrossRef]

2004

E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett.29(1), 119–121 (2004).
[CrossRef] [PubMed]

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

2003

2002

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem.12(2), 295–298 (2002).
[CrossRef]

2001

F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” EPL56(1), 138–144 (2001) (Europhysics Letters).
[CrossRef]

1999

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun.171(4-6), 279–284 (1999).
[CrossRef]

1996

1981

D. Bethune, “Optical second-harmonic generation in atomic vapors with focused beams,” Phys. Rev. A23(6), 3139–3151 (1981).
[CrossRef]

Adams, D. E.

Akturk, S.

Ani-Joseph, S.

Arai, A.

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

Backus, S.

Bellec, M.

Bellouard, Y.

Beresna, M.

Bethune, D.

D. Bethune, “Optical second-harmonic generation in atomic vapors with focused beams,” Phys. Rev. A23(6), 3139–3151 (1981).
[CrossRef]

Bhardwaj, V.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process.84(1-2), 47–61 (2006).
[CrossRef]

Block, E.

Booth, M.

P. Salter and M. Booth, “Dynamic control of directional asymmetry observed in ultrafast laser direct writing,” Appl. Phys. Lett.101(14), 141109 (2012).
[CrossRef]

Bourguignon, B.

C. Fan, B. Poumellec, H. Zeng, R. Desmarchelier, B. Bourguignon, G. Chen, and M. Lancry, “Gold Nanoparticles Reshaped by Ultrafast Laser Irradiation Inside a Silica-Based Glass, Studied Through Optical Properties,” J. Phys. Chem. C116(4), 2647–2655 (2012).
[CrossRef]

C. Fan, B. Poumellec, H. Zeng, M. Lancry, W. Yang, B. Bourguignon, and G. Chen, “Directional Writing Dependence of Birefringence in Multicomponent Silica-based Glasses with Ultrashort Laser Irradiation,” J. Laser Micro Nanoen6(2), 158–163 (2011).
[CrossRef]

Bourhis, K.

Bovatsek, J.

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

Bricchi, E.

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett.29(1), 119–121 (2004).
[CrossRef] [PubMed]

Brisset, F.

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [Invited],” Opt. Mater. Express1(5), 998–1008 (2011).
[CrossRef]

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser & Photonics Reviews. In Press.

Brocklesby, W. S.

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem.12(2), 295–298 (2002).
[CrossRef]

Canioni, L.

Canning, J.

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B84(24), 245103 (2011).
[CrossRef]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [Invited],” Opt. Mater. Express1(5), 998–1008 (2011).
[CrossRef]

M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids355(18-21), 1057–1061 (2009).
[CrossRef]

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser & Photonics Reviews. In Press.

Cardinal, T.

Chahid-Erraji, A.

Chen, G.

C. Fan, B. Poumellec, H. Zeng, R. Desmarchelier, B. Bourguignon, G. Chen, and M. Lancry, “Gold Nanoparticles Reshaped by Ultrafast Laser Irradiation Inside a Silica-Based Glass, Studied Through Optical Properties,” J. Phys. Chem. C116(4), 2647–2655 (2012).
[CrossRef]

C. Fan, B. Poumellec, H. Zeng, M. Lancry, W. Yang, B. Bourguignon, and G. Chen, “Directional Writing Dependence of Birefringence in Multicomponent Silica-based Glasses with Ultrashort Laser Irradiation,” J. Laser Micro Nanoen6(2), 158–163 (2011).
[CrossRef]

Choi, J.

Cook, K.

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [Invited],” Opt. Mater. Express1(5), 998–1008 (2011).
[CrossRef]

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser & Photonics Reviews. In Press.

Corkum, P.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process.84(1-2), 47–61 (2006).
[CrossRef]

Davis, K. M.

Desmarchelier, R.

C. Fan, B. Poumellec, H. Zeng, R. Desmarchelier, B. Bourguignon, G. Chen, and M. Lancry, “Gold Nanoparticles Reshaped by Ultrafast Laser Irradiation Inside a Silica-Based Glass, Studied Through Optical Properties,” J. Phys. Chem. C116(4), 2647–2655 (2012).
[CrossRef]

Doering, S.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Doering, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser‐induced nanogratings,” Laser & Photonics Reviews6(6), 787–792 (2012).
[CrossRef]

Döring, S.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl.24(4), 042008 (2012).
[CrossRef]

Durfee, C. G.

Eason, R. W.

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem.12(2), 295–298 (2002).
[CrossRef]

Fan, C.

C. Fan, B. Poumellec, H. Zeng, R. Desmarchelier, B. Bourguignon, G. Chen, and M. Lancry, “Gold Nanoparticles Reshaped by Ultrafast Laser Irradiation Inside a Silica-Based Glass, Studied Through Optical Properties,” J. Phys. Chem. C116(4), 2647–2655 (2012).
[CrossRef]

C. Fan, B. Poumellec, H. Zeng, M. Lancry, W. Yang, B. Bourguignon, and G. Chen, “Directional Writing Dependence of Birefringence in Multicomponent Silica-based Glasses with Ultrashort Laser Irradiation,” J. Laser Micro Nanoen6(2), 158–163 (2011).
[CrossRef]

Fedorov, N.

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B84(24), 245103 (2011).
[CrossRef]

Franco, M.

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express11(9), 1070–1079 (2003).
[CrossRef] [PubMed]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun.171(4-6), 279–284 (1999).
[CrossRef]

Gecevicius, M.

Groothoff, N.

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B84(24), 245103 (2011).
[CrossRef]

M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids355(18-21), 1057–1061 (2009).
[CrossRef]

Guizard, S.

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B84(24), 245103 (2011).
[CrossRef]

M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids355(18-21), 1057–1061 (2009).
[CrossRef]

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” EPL56(1), 138–144 (2001) (Europhysics Letters).
[CrossRef]

Hashimoto, S.

S. Matsuo, Y. Umeda, T. Tomita, and S. Hashimoto, “Laser-Scanning Direction Effect in Femtosecond Laser-Assisted Etching,” Journal of Laser Micro Nanoengineering8(1), 35–38 (2013).
[CrossRef]

Heinrich, M.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Doering, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser‐induced nanogratings,” Laser & Photonics Reviews6(6), 787–792 (2012).
[CrossRef]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl.24(4), 042008 (2012).
[CrossRef]

Hirao, K.

P. G. Kazansky, Y. Shimotsuma, M. Sakakura, M. Beresna, M. Gecevičius, Y. Svirko, S. Akturk, J. Qiu, K. Miura, and K. Hirao, “Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front,” Opt. Express19(21), 20657–20664 (2011).
[CrossRef] [PubMed]

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett.93(17), 171109 (2008).
[CrossRef]

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Hnatovsky, C.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process.84(1-2), 47–61 (2006).
[CrossRef]

Hongler, M. O.

Kazansky, P.

B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters [Invited],” Opt. Mater. Express1(4), 766–782 (2011).
[CrossRef]

M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids355(18-21), 1057–1061 (2009).
[CrossRef]

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

Kazansky, P. G.

Klappauf, B. G.

Kleinfeld, D.

Kley, E. B.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Doering, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser‐induced nanogratings,” Laser & Photonics Reviews6(6), 787–792 (2012).
[CrossRef]

Lancry, M.

C. Fan, B. Poumellec, H. Zeng, R. Desmarchelier, B. Bourguignon, G. Chen, and M. Lancry, “Gold Nanoparticles Reshaped by Ultrafast Laser Irradiation Inside a Silica-Based Glass, Studied Through Optical Properties,” J. Phys. Chem. C116(4), 2647–2655 (2012).
[CrossRef]

M. Lancry, E. Régnier, and B. Poumellec, “Fictive temperature in silica-based glasses and its application to optical fiber manufacturing,” Prog. Mater. Sci.57(1), 63–94 (2012).
[CrossRef]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [Invited],” Opt. Mater. Express1(5), 998–1008 (2011).
[CrossRef]

B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters [Invited],” Opt. Mater. Express1(4), 766–782 (2011).
[CrossRef]

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B84(24), 245103 (2011).
[CrossRef]

C. Fan, B. Poumellec, H. Zeng, M. Lancry, W. Yang, B. Bourguignon, and G. Chen, “Directional Writing Dependence of Birefringence in Multicomponent Silica-based Glasses with Ultrashort Laser Irradiation,” J. Laser Micro Nanoen6(2), 158–163 (2011).
[CrossRef]

M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids355(18-21), 1057–1061 (2009).
[CrossRef]

B. Poumellec, M. Lancry, J. C. Poulin, and S. Ani-Joseph, “Non reciprocal writing and chirality in femtosecond laser irradiated silica,” Opt. Express16(22), 18354–18361 (2008).
[CrossRef] [PubMed]

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser & Photonics Reviews. In Press.

Mailis, S.

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem.12(2), 295–298 (2002).
[CrossRef]

Mao, S.

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

Mao, X.

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

Martin, P.

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” EPL56(1), 138–144 (2001) (Europhysics Letters).
[CrossRef]

Matsuo, S.

S. Matsuo, Y. Umeda, T. Tomita, and S. Hashimoto, “Laser-Scanning Direction Effect in Femtosecond Laser-Assisted Etching,” Journal of Laser Micro Nanoengineering8(1), 35–38 (2013).
[CrossRef]

Miura, K.

P. G. Kazansky, Y. Shimotsuma, M. Sakakura, M. Beresna, M. Gecevičius, Y. Svirko, S. Akturk, J. Qiu, K. Miura, and K. Hirao, “Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front,” Opt. Express19(21), 20657–20664 (2011).
[CrossRef] [PubMed]

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett.93(17), 171109 (2008).
[CrossRef]

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Mysyrowicz, A.

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express11(9), 1070–1079 (2003).
[CrossRef] [PubMed]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun.171(4-6), 279–284 (1999).
[CrossRef]

Nolte, S.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl.24(4), 042008 (2012).
[CrossRef]

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Doering, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser‐induced nanogratings,” Laser & Photonics Reviews6(6), 787–792 (2012).
[CrossRef]

Owen, J. R.

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem.12(2), 295–298 (2002).
[CrossRef]

Papon, G.

Peschel, U.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Doering, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser‐induced nanogratings,” Laser & Photonics Reviews6(6), 787–792 (2012).
[CrossRef]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl.24(4), 042008 (2012).
[CrossRef]

Petite, G.

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

Plech, A.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Doering, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser‐induced nanogratings,” Laser & Photonics Reviews6(6), 787–792 (2012).
[CrossRef]

Poulin, J.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser & Photonics Reviews. In Press.

Poulin, J. C.

Poumellec, B.

M. Lancry, E. Régnier, and B. Poumellec, “Fictive temperature in silica-based glasses and its application to optical fiber manufacturing,” Prog. Mater. Sci.57(1), 63–94 (2012).
[CrossRef]

C. Fan, B. Poumellec, H. Zeng, R. Desmarchelier, B. Bourguignon, G. Chen, and M. Lancry, “Gold Nanoparticles Reshaped by Ultrafast Laser Irradiation Inside a Silica-Based Glass, Studied Through Optical Properties,” J. Phys. Chem. C116(4), 2647–2655 (2012).
[CrossRef]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [Invited],” Opt. Mater. Express1(5), 998–1008 (2011).
[CrossRef]

B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters [Invited],” Opt. Mater. Express1(4), 766–782 (2011).
[CrossRef]

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B84(24), 245103 (2011).
[CrossRef]

C. Fan, B. Poumellec, H. Zeng, M. Lancry, W. Yang, B. Bourguignon, and G. Chen, “Directional Writing Dependence of Birefringence in Multicomponent Silica-based Glasses with Ultrashort Laser Irradiation,” J. Laser Micro Nanoen6(2), 158–163 (2011).
[CrossRef]

M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids355(18-21), 1057–1061 (2009).
[CrossRef]

B. Poumellec, M. Lancry, J. C. Poulin, and S. Ani-Joseph, “Non reciprocal writing and chirality in femtosecond laser irradiated silica,” Opt. Express16(22), 18354–18361 (2008).
[CrossRef] [PubMed]

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express11(9), 1070–1079 (2003).
[CrossRef] [PubMed]

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser & Photonics Reviews. In Press.

Prade, B.

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express11(9), 1070–1079 (2003).
[CrossRef] [PubMed]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun.171(4-6), 279–284 (1999).
[CrossRef]

Qiu, J.

Quéré, F.

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” EPL56(1), 138–144 (2001) (Europhysics Letters).
[CrossRef]

Rajeev, P.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process.84(1-2), 47–61 (2006).
[CrossRef]

Rayner, D.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process.84(1-2), 47–61 (2006).
[CrossRef]

Régnier, E.

M. Lancry, E. Régnier, and B. Poumellec, “Fictive temperature in silica-based glasses and its application to optical fiber manufacturing,” Prog. Mater. Sci.57(1), 63–94 (2012).
[CrossRef]

Richardson, M.

Richter, S.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Doering, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser‐induced nanogratings,” Laser & Photonics Reviews6(6), 787–792 (2012).
[CrossRef]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl.24(4), 042008 (2012).
[CrossRef]

Royon, A.

Russo, R.

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

Sakakura, M.

Salter, P.

P. Salter and M. Booth, “Dynamic control of directional asymmetry observed in ultrafast laser direct writing,” Appl. Phys. Lett.101(14), 141109 (2012).
[CrossRef]

Shimotsuma, Y.

P. G. Kazansky, Y. Shimotsuma, M. Sakakura, M. Beresna, M. Gecevičius, Y. Svirko, S. Akturk, J. Qiu, K. Miura, and K. Hirao, “Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front,” Opt. Express19(21), 20657–20664 (2011).
[CrossRef] [PubMed]

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett.93(17), 171109 (2008).
[CrossRef]

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

Simova, E.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process.84(1-2), 47–61 (2006).
[CrossRef]

Sones, C. L.

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem.12(2), 295–298 (2002).
[CrossRef]

Squier, J. A.

Steinert, M.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Doering, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser‐induced nanogratings,” Laser & Photonics Reviews6(6), 787–792 (2012).
[CrossRef]

Sudrie, L.

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express11(9), 1070–1079 (2003).
[CrossRef] [PubMed]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun.171(4-6), 279–284 (1999).
[CrossRef]

Sugimoto, N.

Svirko, Y.

Svirko, Y. P.

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics2(2), 99–104 (2008).
[CrossRef]

Takebe, H.

Taylor, R.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process.84(1-2), 47–61 (2006).
[CrossRef]

Tomita, T.

S. Matsuo, Y. Umeda, T. Tomita, and S. Hashimoto, “Laser-Scanning Direction Effect in Femtosecond Laser-Assisted Etching,” Journal of Laser Micro Nanoengineering8(1), 35–38 (2013).
[CrossRef]

Tünnermann, A.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Doering, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser‐induced nanogratings,” Laser & Photonics Reviews6(6), 787–792 (2012).
[CrossRef]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl.24(4), 042008 (2012).
[CrossRef]

Umeda, Y.

S. Matsuo, Y. Umeda, T. Tomita, and S. Hashimoto, “Laser-Scanning Direction Effect in Femtosecond Laser-Assisted Etching,” Journal of Laser Micro Nanoengineering8(1), 35–38 (2013).
[CrossRef]

Vitek, D. N.

Weickman, A.

Yang, W.

M. Gecevičius, M. Beresna, J. Zhang, W. Yang, H. Takebe, and P. G. Kazansky, “Extraordinary anisotropy of ultrafast laser writing in glass,” Opt. Express21(4), 3959–3968 (2013).
[CrossRef] [PubMed]

C. Fan, B. Poumellec, H. Zeng, M. Lancry, W. Yang, B. Bourguignon, and G. Chen, “Directional Writing Dependence of Birefringence in Multicomponent Silica-based Glasses with Ultrashort Laser Irradiation,” J. Laser Micro Nanoen6(2), 158–163 (2011).
[CrossRef]

M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids355(18-21), 1057–1061 (2009).
[CrossRef]

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett.93(17), 171109 (2008).
[CrossRef]

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics2(2), 99–104 (2008).
[CrossRef]

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

Zeng, H.

C. Fan, B. Poumellec, H. Zeng, R. Desmarchelier, B. Bourguignon, G. Chen, and M. Lancry, “Gold Nanoparticles Reshaped by Ultrafast Laser Irradiation Inside a Silica-Based Glass, Studied Through Optical Properties,” J. Phys. Chem. C116(4), 2647–2655 (2012).
[CrossRef]

C. Fan, B. Poumellec, H. Zeng, M. Lancry, W. Yang, B. Bourguignon, and G. Chen, “Directional Writing Dependence of Birefringence in Multicomponent Silica-based Glasses with Ultrashort Laser Irradiation,” J. Laser Micro Nanoen6(2), 158–163 (2011).
[CrossRef]

Zhang, J.

Zimmermann, F.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Doering, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser‐induced nanogratings,” Laser & Photonics Reviews6(6), 787–792 (2012).
[CrossRef]

Appl. Phys. Lett.

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett.93(17), 171109 (2008).
[CrossRef]

P. Salter and M. Booth, “Dynamic control of directional asymmetry observed in ultrafast laser direct writing,” Appl. Phys. Lett.101(14), 141109 (2012).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process.84(1-2), 47–61 (2006).
[CrossRef]

S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

EPL

F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” EPL56(1), 138–144 (2001) (Europhysics Letters).
[CrossRef]

J. Laser Appl.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl.24(4), 042008 (2012).
[CrossRef]

J. Laser Micro Nanoen

C. Fan, B. Poumellec, H. Zeng, M. Lancry, W. Yang, B. Bourguignon, and G. Chen, “Directional Writing Dependence of Birefringence in Multicomponent Silica-based Glasses with Ultrashort Laser Irradiation,” J. Laser Micro Nanoen6(2), 158–163 (2011).
[CrossRef]

J. Mater. Chem.

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem.12(2), 295–298 (2002).
[CrossRef]

J. Non-Cryst. Solids

M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids355(18-21), 1057–1061 (2009).
[CrossRef]

J. Phys. Chem. C

C. Fan, B. Poumellec, H. Zeng, R. Desmarchelier, B. Bourguignon, G. Chen, and M. Lancry, “Gold Nanoparticles Reshaped by Ultrafast Laser Irradiation Inside a Silica-Based Glass, Studied Through Optical Properties,” J. Phys. Chem. C116(4), 2647–2655 (2012).
[CrossRef]

Journal of Laser Micro Nanoengineering

S. Matsuo, Y. Umeda, T. Tomita, and S. Hashimoto, “Laser-Scanning Direction Effect in Femtosecond Laser-Assisted Etching,” Journal of Laser Micro Nanoengineering8(1), 35–38 (2013).
[CrossRef]

Laser & Photonics Reviews

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser & Photonics Reviews. In Press.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Doering, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser‐induced nanogratings,” Laser & Photonics Reviews6(6), 787–792 (2012).
[CrossRef]

Nat. Photonics

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics2(2), 99–104 (2008).
[CrossRef]

Opt. Commun.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun.171(4-6), 279–284 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater. Express

Phys. Rev. A

D. Bethune, “Optical second-harmonic generation in atomic vapors with focused beams,” Phys. Rev. A23(6), 3139–3151 (1981).
[CrossRef]

Phys. Rev. B

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B84(24), 245103 (2011).
[CrossRef]

Prog. Mater. Sci.

M. Lancry, E. Régnier, and B. Poumellec, “Fictive temperature in silica-based glasses and its application to optical fiber manufacturing,” Prog. Mater. Sci.57(1), 63–94 (2012).
[CrossRef]

Other

G. A. Maugin, Continuum Mechanics of Electromagnetic Solids, Applied Mathematics and Mechanics (North-Holland Amsterdam, 1988), Vol. 33.

P. G. Kazansky and M. Beresna, “Quill and Nonreciprocal Ultrafast Laser Writing,” in Femtosecond Laser Micromachining (Springer, 2012), pp. 127–151.

P. Salter, R. Simmonds, and M. Booth, “Adaptive control of pulse front tilt, the quill effect, and directional ultrafast laser writing,” in Frontiers in Ultrafast Optics (International Society for Optics and Photonics, 2013), 861111.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

FEG-SEM, Secondary electrons images of the cross-section of laser tracks written in opposite orientation. The laser parameters were: 0.4 μJ/pulse, 800 nm, 160 fs, 200 kHz, 0.5 NA, 100 μm/s i.e. 2.103 pulses/µm. (b) Cross-section microscope images taken between crossed polarizers with the birefringent lines slow axis oriented at about 30° of the polarizer.

Fig. 2
Fig. 2

Plot of the quantitative phase Δφ (left side) and retardation (right side) with respect to writing velocity in left-to-right ( + X) direction (blue squares) and right-to-left (-X) direction (black squares). The pulse energy was varied from 0.05 up to 1.1 μJ/pulse. (a) parallel polarization quoted Xx; (b) perpendicular polarization quoted Xy. T1 and T2 thresholds are shown by arrows. The other laser parameters were: 800 nm, 160 fs, 200 kHz, 0.5 NA, 100 μm/s i.e. 2.103 pulses/µm.

Fig. 3
Fig. 3

Plot of the retardance profile with respect to writing velocity in left-to-right ( + X) direction (blue squares) and right-to-left (-X) direction (pink squares). (a) Perpendicular configuration quoted Xy, (b) parallel configuration quoted Xx. The laser parameters were: 0.4 μJ/pulse, 800 nm, 160 fs, 200 kHz, 0.5 NA, 100 μm/s i.e. 2.103 pulses/µm.

Fig. 4
Fig. 4

(Left) Plot of retardance according to the laser pulse energy with respect to writing velocity in left-to-right ( + X) direction (blue squares) and right-to-left (-X) direction (pink squares). The pulse energy was varied from 0.025 up to 1 μJ/pulse. The laser polarization was perpendicular Xy. The other laser parameters were: 1030 nm, 300 fs, 100 kHz, 0.5 NA, 500 μm/s i.e. 200 pulses/µm. (Right) FEG-SEM, Secondary electrons images of the cross-section of laser tracks for writing laser polarization perpendicular to the scanning direction.

Fig. 5
Fig. 5

Plot of retardance according to the nanogratings length (in the z propagation direction). The pulse energy was varied from 0.4 up to 1.2 μJ/pulse. The laser polarization was perpendicular Xy. The other laser parameters were: 800 nm, 160 fs, 200 kHz, 0.6 NA, 200 μm/s.

Fig. 6
Fig. 6

(Left) Plot of retardance according to the laser writing speed with respect to writing velocity in left-to-right ( + X) direction (blue squares) and right-to-left (-X) direction (pink squares). The pulse energy was fixed to 0.5 μJ/pulse. The laser polarization was perpendicular Xy. The other laser parameters were: 1030 nm, 300 fs, 100 kHz, 0.5 NA. (Right) FEG-SEM, Secondary electrons images of the cross-section of laser tracks for writing laser polarization perpendicular to the scanning direction.

Fig. 7
Fig. 7

(Left) Plot of the AOW threshold pulse energy according to the pulse to pulse overlap ratio. The overlap ratio between two consecutive pulses is defined by 1-v/(f.D), where v is the scanning speed, f the repetition rate and D the beam diameter at the focus. The repetition rate was varied from 1kHz up to 500kHz and the scanning speed from 10 up to 1500μm/s. The other laser parameters were: 1030 nm, 300 fs, 0.5 NA, parallel polarization Xx. (Right) The laser parameters were 800nm, 130fs, 1kHz, 0.6NA.

Fig. 8
Fig. 8

(Left) Two laser traces written in opposite directions ( + X and –X) seen in AFM after cleaving the sample. The contrast is topographic. The laser is coming from the bottom. The laser parameters were: 0.23 μJ/pulse, 800 nm, 160 fs, 200 kHz, 0.5 NA, 100 μm/s i.e. 2.103 pulses/µm. The laser polarization was perpendicular to the scanning direction. (Right) FEG-SEM, Secondary electrons images of the cross-section of the same laser tracks written in opposite directions.

Fig. 9
Fig. 9

(Upper part) Plot of the retardation with respect to writing velocity in + Y direction (black triangles) and -Y direction (red dots): (a) parallel polarization Yy; (b) perpendicular polarization Yx. (Bottom part) Plot of the retardation with respect to writing velocity in + X direction (red dots) and -X direction (black triangles): (c) perpendicular polarization Xy; (d) parallel polarization Xx. The other laser parameters were: 2.3 μJ/pulse, 800 nm, 120 fs, 10 kHz, 0.5 NA.

Fig. 10
Fig. 10

Tentative mechanism and related phenomena to illustrate the appearance of AOW. The drawing in red symbolizes the laser pulse spatial extent

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f e =( P e ) E + P e t B = ε 0 χ fe ( E 2 2 + ( E B ) t + n e n e t E B ) where P e = ε 0 χ fe E with ε 0 χ fe = n e e 2 m ω 2 .
P NL 3Q = ε 0 χ eff,1 (3q) | E | 2 B t + ε 0 χ eff,2 (3q) ( E ) | E | 2
( P . )( v B )+curl( P v ) B +div( P ). v B +( × B )( v P ).

Metrics