Abstract

A new mid-infrared (MIR) Vertical Cavity Surface Emitting Laser (VCSEL) structure is proposed. We have integrated to the VCSEL structure both an oxide aperture for lateral confinement, and a sub-wavelength high-contrast-grating top mirror. Upon the GaSb-based half-VCSEL, we have grown a metamorphic AlGaAs heterostructure to enable thermal oxidation and grating mirror fabrication steps. A methodology based on optimization and anti-optimization methods has been used to design the optical grating, with improved parameter tolerances regarding processing errors. Finally, we show the complete fabrication of an electrically-pumped MIR monolithic VCSEL structure implementing both oxide confinement and a subwavelength grating top mirror.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically pumped continuous-wave vertical-cavity surface-emitting lasers at ~2.6 µm,” Appl. Phys. Lett.95(13), 131120 (2009).
    [CrossRef]
  2. A. Ducanchez, L. Cerutti, P. Grech, F. Genty, and E. Tournié, “Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 µm,” Electron. Lett.45(5), 265–266 (2009).
    [CrossRef]
  3. R. Hanfoug, A. Salesse, D. A. Yarekha, A. N. Baranov, and C. Alibert, “Use of AlOx in cladding layers of an antimonide laser structure emitting at 2.3 µm,” Semicond. Sci. Technol.16(11), 936–938 (2001).
    [CrossRef]
  4. Y. Laaroussi and ., “Oxide-confined mid-infrared VCSELs,” Electron. Lett.48(25), 1616–1618 (2012).
    [CrossRef]
  5. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE International Conference on Neural Networks (IEEE 1995) 4, pp. 1942–1948.
    [CrossRef]
  6. I. Elishakoff, R. Haftka, and J. Fang, “Structural design under bounded uncertainty– Optimization with anti-optimization,” Comput. Struc.53(6), 1401–1405 (1994).
    [CrossRef]
  7. P. Lalanne, J. P. Hugonin, and P. Chavel, “Optical properties of deep lamellar gratings: A coupled bloch-mode insight,” J. Lightwave Technol.24(6), 2442–2449 (2006).
    [CrossRef]
  8. V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express18(16), 16973–16988 (2010).
    [CrossRef] [PubMed]
  9. S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett.10(9), 1205–1207 (1998).
    [CrossRef]
  10. C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 µm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16(7), 1676–1678 (2004).
    [CrossRef]
  11. L. Cerutti, A. Ducanchez, G. Narcy, P. Grech, G. Boissier, A. Garnache, E. Tournié, and F. Genty, “GaSb-based VCSELs emitting in the mid-infrared wavelength range (2-3 µm) grown by MBE,” J. Cryst. Growth311(7), 1912–1916 (2009).
    [CrossRef]
  12. S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 µm vertical-cavity surface-emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett.91(7), 071105 (2007).
    [CrossRef]
  13. M. C. Huang, Y. Zhou, and C. J. Chang-Hasnain, “Polarization mode control in high contrast subwavelength grating VCSEL,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2008), paper CMGG5.
    [CrossRef]
  14. H. Sano, J. Kashino, A. Gerke, A. Imamura, F. Koyama, and C. J. Chang-Hasnain, “Transverse mode control of VCSELS with high contrast sub-wavelength grating functioning as angular filter,” in CLEO: Science and Innovations (Optical Society of America 2012), paper CW3N.5.
  15. G. Almuneau, M. Condé, O. Gauthier-Lafaye, V. Bardinal, and C. Fontaine, “High reflectivity monolithic sub-wavelength diffraction grating with GaAs/AlOx stack,” J. Opt.13(1), 015505 (2011).
    [CrossRef]
  16. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A12(5), 1077–1086 (1995).
    [CrossRef]
  17. C. Chevallier, N. Fressengeas, F. Genty, and J. Jacquet, “Optimized sub-wavelength grating mirror design for mid-infrared wavelength range,” Appl. Phys. A-Mater.103(4), 1139–1144 (2011).
    [CrossRef]
  18. H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, and W. Wu and Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12, 065703 (2010).
    [CrossRef]
  19. Y. Zhou, M. Huang, and C. Chang-Hasnain, “Large fabrication tolerance for VCSELs using high-contrast grating,” IEEE Photon. Technol. Lett.20(6), 434–436 (2008).
    [CrossRef]
  20. C. Chevallier, N. Fressengeas, F. Genty, and J. Jacquet, “Robust design of Si/Si3N4 high contrast grating mirror for mid-infrared vcsel application,” Opt. Quantum Electron.44(3-5), 169–174 (2012).
    [CrossRef]
  21. C. Chevallier, N. Fressengeas, F. Genty, and J. Jacquet, “Mid-infrared sub-wavelength grating mirror design: tolerance and influence of technological constraints,” J. Opt.13(12), 125502 (2011).
    [CrossRef]
  22. S. Huang, G. Balakrishnan, and D. Huffaker, “Interfacial misfit array formation for GaSb growth on GaAs,” J. Appl. Phys.105(10), 103104 (2009).
    [CrossRef]
  23. J. B. Rodriguez, L. Cerutti, and E. Tournié, “GaSb-based, 2.2 µm type-I laser fabricated on GaAs substrate operating continuous wave at room temperature,” Appl. Phys. Lett.94(2), 023506 (2009).
    [CrossRef]
  24. J. R. Reboul, L. Cerutti, J. B. Rodriguez, P. Grech, and E. Tournié, “Continuous)wave operation above room temperature of GaSb-based lasers diodes grown on Si,” Appl. Phys. Lett.99(12), 121113 (2011).
    [CrossRef]
  25. S. H. Huang, G. Balakrishnan, M. Metha, A. Koshakhlagh, L. R. Dawson, and D. L. Huffaker, “Epitaxial growth and formation of interfacial misfit array for tensile GaAs on GaSb,” Appl. Phys. Lett.90(16), 161902 (2007).
    [CrossRef]
  26. C. Raisin, A. Rocher, G. Landa, R. Carles, and L. Lassabatère, “GaSb/GaAs heteroepitaxy characterized as a stress-free system,” Appl. Surf. Sci.50(1-4), 434–439 (1991).
    [CrossRef]
  27. G. Almuneau and ., “Real-time in situ monitoring of wet thermal oxidation for precise confinement in VCSELs,” Sep. Sci. Technol.23, 105021 (2008).
  28. Y. Laaroussi, G. Almuneau, D. Sanchez, and L. Cerutti, “Efficient lateral confinement by an oxide aperture in a mid-infrared GaSb-based vertical light-emitting source,” J. Phys. D44(14), 142001 (2011).
    [CrossRef]
  29. R. Hanfoug, A. Salesse, D. A. Yarekha, A. N. Baranov, and C. Alibert, “Use of AlOx in cladding layers of an antimonide laser structure emitting at 2.3 µm,” Semicond. Sci. Technol.16(11), 936–938 (2001).
    [CrossRef]

2012 (2)

Y. Laaroussi and ., “Oxide-confined mid-infrared VCSELs,” Electron. Lett.48(25), 1616–1618 (2012).
[CrossRef]

C. Chevallier, N. Fressengeas, F. Genty, and J. Jacquet, “Robust design of Si/Si3N4 high contrast grating mirror for mid-infrared vcsel application,” Opt. Quantum Electron.44(3-5), 169–174 (2012).
[CrossRef]

2011 (5)

C. Chevallier, N. Fressengeas, F. Genty, and J. Jacquet, “Mid-infrared sub-wavelength grating mirror design: tolerance and influence of technological constraints,” J. Opt.13(12), 125502 (2011).
[CrossRef]

G. Almuneau, M. Condé, O. Gauthier-Lafaye, V. Bardinal, and C. Fontaine, “High reflectivity monolithic sub-wavelength diffraction grating with GaAs/AlOx stack,” J. Opt.13(1), 015505 (2011).
[CrossRef]

C. Chevallier, N. Fressengeas, F. Genty, and J. Jacquet, “Optimized sub-wavelength grating mirror design for mid-infrared wavelength range,” Appl. Phys. A-Mater.103(4), 1139–1144 (2011).
[CrossRef]

J. R. Reboul, L. Cerutti, J. B. Rodriguez, P. Grech, and E. Tournié, “Continuous)wave operation above room temperature of GaSb-based lasers diodes grown on Si,” Appl. Phys. Lett.99(12), 121113 (2011).
[CrossRef]

Y. Laaroussi, G. Almuneau, D. Sanchez, and L. Cerutti, “Efficient lateral confinement by an oxide aperture in a mid-infrared GaSb-based vertical light-emitting source,” J. Phys. D44(14), 142001 (2011).
[CrossRef]

2010 (2)

V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express18(16), 16973–16988 (2010).
[CrossRef] [PubMed]

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, and W. Wu and Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12, 065703 (2010).
[CrossRef]

2009 (5)

S. Huang, G. Balakrishnan, and D. Huffaker, “Interfacial misfit array formation for GaSb growth on GaAs,” J. Appl. Phys.105(10), 103104 (2009).
[CrossRef]

J. B. Rodriguez, L. Cerutti, and E. Tournié, “GaSb-based, 2.2 µm type-I laser fabricated on GaAs substrate operating continuous wave at room temperature,” Appl. Phys. Lett.94(2), 023506 (2009).
[CrossRef]

S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically pumped continuous-wave vertical-cavity surface-emitting lasers at ~2.6 µm,” Appl. Phys. Lett.95(13), 131120 (2009).
[CrossRef]

A. Ducanchez, L. Cerutti, P. Grech, F. Genty, and E. Tournié, “Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 µm,” Electron. Lett.45(5), 265–266 (2009).
[CrossRef]

L. Cerutti, A. Ducanchez, G. Narcy, P. Grech, G. Boissier, A. Garnache, E. Tournié, and F. Genty, “GaSb-based VCSELs emitting in the mid-infrared wavelength range (2-3 µm) grown by MBE,” J. Cryst. Growth311(7), 1912–1916 (2009).
[CrossRef]

2008 (2)

Y. Zhou, M. Huang, and C. Chang-Hasnain, “Large fabrication tolerance for VCSELs using high-contrast grating,” IEEE Photon. Technol. Lett.20(6), 434–436 (2008).
[CrossRef]

G. Almuneau and ., “Real-time in situ monitoring of wet thermal oxidation for precise confinement in VCSELs,” Sep. Sci. Technol.23, 105021 (2008).

2007 (2)

S. H. Huang, G. Balakrishnan, M. Metha, A. Koshakhlagh, L. R. Dawson, and D. L. Huffaker, “Epitaxial growth and formation of interfacial misfit array for tensile GaAs on GaSb,” Appl. Phys. Lett.90(16), 161902 (2007).
[CrossRef]

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 µm vertical-cavity surface-emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett.91(7), 071105 (2007).
[CrossRef]

2006 (1)

2004 (1)

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 µm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16(7), 1676–1678 (2004).
[CrossRef]

2001 (2)

R. Hanfoug, A. Salesse, D. A. Yarekha, A. N. Baranov, and C. Alibert, “Use of AlOx in cladding layers of an antimonide laser structure emitting at 2.3 µm,” Semicond. Sci. Technol.16(11), 936–938 (2001).
[CrossRef]

R. Hanfoug, A. Salesse, D. A. Yarekha, A. N. Baranov, and C. Alibert, “Use of AlOx in cladding layers of an antimonide laser structure emitting at 2.3 µm,” Semicond. Sci. Technol.16(11), 936–938 (2001).
[CrossRef]

1998 (1)

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett.10(9), 1205–1207 (1998).
[CrossRef]

1995 (1)

1994 (1)

I. Elishakoff, R. Haftka, and J. Fang, “Structural design under bounded uncertainty– Optimization with anti-optimization,” Comput. Struc.53(6), 1401–1405 (1994).
[CrossRef]

1991 (1)

C. Raisin, A. Rocher, G. Landa, R. Carles, and L. Lassabatère, “GaSb/GaAs heteroepitaxy characterized as a stress-free system,” Appl. Surf. Sci.50(1-4), 434–439 (1991).
[CrossRef]

Alibert, C.

R. Hanfoug, A. Salesse, D. A. Yarekha, A. N. Baranov, and C. Alibert, “Use of AlOx in cladding layers of an antimonide laser structure emitting at 2.3 µm,” Semicond. Sci. Technol.16(11), 936–938 (2001).
[CrossRef]

R. Hanfoug, A. Salesse, D. A. Yarekha, A. N. Baranov, and C. Alibert, “Use of AlOx in cladding layers of an antimonide laser structure emitting at 2.3 µm,” Semicond. Sci. Technol.16(11), 936–938 (2001).
[CrossRef]

Almuneau, G.

Y. Laaroussi, G. Almuneau, D. Sanchez, and L. Cerutti, “Efficient lateral confinement by an oxide aperture in a mid-infrared GaSb-based vertical light-emitting source,” J. Phys. D44(14), 142001 (2011).
[CrossRef]

G. Almuneau, M. Condé, O. Gauthier-Lafaye, V. Bardinal, and C. Fontaine, “High reflectivity monolithic sub-wavelength diffraction grating with GaAs/AlOx stack,” J. Opt.13(1), 015505 (2011).
[CrossRef]

G. Almuneau and ., “Real-time in situ monitoring of wet thermal oxidation for precise confinement in VCSELs,” Sep. Sci. Technol.23, 105021 (2008).

Amann, M.-C.

S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically pumped continuous-wave vertical-cavity surface-emitting lasers at ~2.6 µm,” Appl. Phys. Lett.95(13), 131120 (2009).
[CrossRef]

Arafin, S.

S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically pumped continuous-wave vertical-cavity surface-emitting lasers at ~2.6 µm,” Appl. Phys. Lett.95(13), 131120 (2009).
[CrossRef]

Bachmann, A.

S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically pumped continuous-wave vertical-cavity surface-emitting lasers at ~2.6 µm,” Appl. Phys. Lett.95(13), 131120 (2009).
[CrossRef]

Baets, R.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett.10(9), 1205–1207 (1998).
[CrossRef]

Balakrishnan, G.

S. Huang, G. Balakrishnan, and D. Huffaker, “Interfacial misfit array formation for GaSb growth on GaAs,” J. Appl. Phys.105(10), 103104 (2009).
[CrossRef]

S. H. Huang, G. Balakrishnan, M. Metha, A. Koshakhlagh, L. R. Dawson, and D. L. Huffaker, “Epitaxial growth and formation of interfacial misfit array for tensile GaAs on GaSb,” Appl. Phys. Lett.90(16), 161902 (2007).
[CrossRef]

Baranov, A. N.

R. Hanfoug, A. Salesse, D. A. Yarekha, A. N. Baranov, and C. Alibert, “Use of AlOx in cladding layers of an antimonide laser structure emitting at 2.3 µm,” Semicond. Sci. Technol.16(11), 936–938 (2001).
[CrossRef]

R. Hanfoug, A. Salesse, D. A. Yarekha, A. N. Baranov, and C. Alibert, “Use of AlOx in cladding layers of an antimonide laser structure emitting at 2.3 µm,” Semicond. Sci. Technol.16(11), 936–938 (2001).
[CrossRef]

Bardinal, V.

G. Almuneau, M. Condé, O. Gauthier-Lafaye, V. Bardinal, and C. Fontaine, “High reflectivity monolithic sub-wavelength diffraction grating with GaAs/AlOx stack,” J. Opt.13(1), 015505 (2011).
[CrossRef]

Benbakir, B.

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 µm vertical-cavity surface-emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett.91(7), 071105 (2007).
[CrossRef]

Boissier, G.

L. Cerutti, A. Ducanchez, G. Narcy, P. Grech, G. Boissier, A. Garnache, E. Tournié, and F. Genty, “GaSb-based VCSELs emitting in the mid-infrared wavelength range (2-3 µm) grown by MBE,” J. Cryst. Growth311(7), 1912–1916 (2009).
[CrossRef]

Boons, S.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett.10(9), 1205–1207 (1998).
[CrossRef]

Boutami, S.

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 µm vertical-cavity surface-emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett.91(7), 071105 (2007).
[CrossRef]

Caekebeke, K.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett.10(9), 1205–1207 (1998).
[CrossRef]

Carles, R.

C. Raisin, A. Rocher, G. Landa, R. Carles, and L. Lassabatère, “GaSb/GaAs heteroepitaxy characterized as a stress-free system,” Appl. Surf. Sci.50(1-4), 434–439 (1991).
[CrossRef]

Cerutti, L.

Y. Laaroussi, G. Almuneau, D. Sanchez, and L. Cerutti, “Efficient lateral confinement by an oxide aperture in a mid-infrared GaSb-based vertical light-emitting source,” J. Phys. D44(14), 142001 (2011).
[CrossRef]

J. R. Reboul, L. Cerutti, J. B. Rodriguez, P. Grech, and E. Tournié, “Continuous)wave operation above room temperature of GaSb-based lasers diodes grown on Si,” Appl. Phys. Lett.99(12), 121113 (2011).
[CrossRef]

L. Cerutti, A. Ducanchez, G. Narcy, P. Grech, G. Boissier, A. Garnache, E. Tournié, and F. Genty, “GaSb-based VCSELs emitting in the mid-infrared wavelength range (2-3 µm) grown by MBE,” J. Cryst. Growth311(7), 1912–1916 (2009).
[CrossRef]

A. Ducanchez, L. Cerutti, P. Grech, F. Genty, and E. Tournié, “Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 µm,” Electron. Lett.45(5), 265–266 (2009).
[CrossRef]

J. B. Rodriguez, L. Cerutti, and E. Tournié, “GaSb-based, 2.2 µm type-I laser fabricated on GaAs substrate operating continuous wave at room temperature,” Appl. Phys. Lett.94(2), 023506 (2009).
[CrossRef]

Chang-Hasnain, C.

Y. Zhou, M. Huang, and C. Chang-Hasnain, “Large fabrication tolerance for VCSELs using high-contrast grating,” IEEE Photon. Technol. Lett.20(6), 434–436 (2008).
[CrossRef]

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 µm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16(7), 1676–1678 (2004).
[CrossRef]

Chang-Hasnain, C. J.

Chavel, P.

Chen, L.

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 µm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16(7), 1676–1678 (2004).
[CrossRef]

Chevallier, C.

C. Chevallier, N. Fressengeas, F. Genty, and J. Jacquet, “Robust design of Si/Si3N4 high contrast grating mirror for mid-infrared vcsel application,” Opt. Quantum Electron.44(3-5), 169–174 (2012).
[CrossRef]

C. Chevallier, N. Fressengeas, F. Genty, and J. Jacquet, “Optimized sub-wavelength grating mirror design for mid-infrared wavelength range,” Appl. Phys. A-Mater.103(4), 1139–1144 (2011).
[CrossRef]

C. Chevallier, N. Fressengeas, F. Genty, and J. Jacquet, “Mid-infrared sub-wavelength grating mirror design: tolerance and influence of technological constraints,” J. Opt.13(12), 125502 (2011).
[CrossRef]

Condé, M.

G. Almuneau, M. Condé, O. Gauthier-Lafaye, V. Bardinal, and C. Fontaine, “High reflectivity monolithic sub-wavelength diffraction grating with GaAs/AlOx stack,” J. Opt.13(1), 015505 (2011).
[CrossRef]

Dawson, L. R.

S. H. Huang, G. Balakrishnan, M. Metha, A. Koshakhlagh, L. R. Dawson, and D. L. Huffaker, “Epitaxial growth and formation of interfacial misfit array for tensile GaAs on GaSb,” Appl. Phys. Lett.90(16), 161902 (2007).
[CrossRef]

Dhoedt, B.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett.10(9), 1205–1207 (1998).
[CrossRef]

Ducanchez, A.

L. Cerutti, A. Ducanchez, G. Narcy, P. Grech, G. Boissier, A. Garnache, E. Tournié, and F. Genty, “GaSb-based VCSELs emitting in the mid-infrared wavelength range (2-3 µm) grown by MBE,” J. Cryst. Growth311(7), 1912–1916 (2009).
[CrossRef]

A. Ducanchez, L. Cerutti, P. Grech, F. Genty, and E. Tournié, “Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 µm,” Electron. Lett.45(5), 265–266 (2009).
[CrossRef]

Eberhart, R.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE International Conference on Neural Networks (IEEE 1995) 4, pp. 1942–1948.
[CrossRef]

Elishakoff, I.

I. Elishakoff, R. Haftka, and J. Fang, “Structural design under bounded uncertainty– Optimization with anti-optimization,” Comput. Struc.53(6), 1401–1405 (1994).
[CrossRef]

Fang, J.

I. Elishakoff, R. Haftka, and J. Fang, “Structural design under bounded uncertainty– Optimization with anti-optimization,” Comput. Struc.53(6), 1401–1405 (1994).
[CrossRef]

Fontaine, C.

G. Almuneau, M. Condé, O. Gauthier-Lafaye, V. Bardinal, and C. Fontaine, “High reflectivity monolithic sub-wavelength diffraction grating with GaAs/AlOx stack,” J. Opt.13(1), 015505 (2011).
[CrossRef]

Fressengeas, N.

C. Chevallier, N. Fressengeas, F. Genty, and J. Jacquet, “Robust design of Si/Si3N4 high contrast grating mirror for mid-infrared vcsel application,” Opt. Quantum Electron.44(3-5), 169–174 (2012).
[CrossRef]

C. Chevallier, N. Fressengeas, F. Genty, and J. Jacquet, “Optimized sub-wavelength grating mirror design for mid-infrared wavelength range,” Appl. Phys. A-Mater.103(4), 1139–1144 (2011).
[CrossRef]

C. Chevallier, N. Fressengeas, F. Genty, and J. Jacquet, “Mid-infrared sub-wavelength grating mirror design: tolerance and influence of technological constraints,” J. Opt.13(12), 125502 (2011).
[CrossRef]

Gao, D.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, and W. Wu and Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12, 065703 (2010).
[CrossRef]

Garnache, A.

L. Cerutti, A. Ducanchez, G. Narcy, P. Grech, G. Boissier, A. Garnache, E. Tournié, and F. Genty, “GaSb-based VCSELs emitting in the mid-infrared wavelength range (2-3 µm) grown by MBE,” J. Cryst. Growth311(7), 1912–1916 (2009).
[CrossRef]

Gauthier-Lafaye, O.

G. Almuneau, M. Condé, O. Gauthier-Lafaye, V. Bardinal, and C. Fontaine, “High reflectivity monolithic sub-wavelength diffraction grating with GaAs/AlOx stack,” J. Opt.13(1), 015505 (2011).
[CrossRef]

Gaylord, T. K.

Genty, F.

C. Chevallier, N. Fressengeas, F. Genty, and J. Jacquet, “Robust design of Si/Si3N4 high contrast grating mirror for mid-infrared vcsel application,” Opt. Quantum Electron.44(3-5), 169–174 (2012).
[CrossRef]

C. Chevallier, N. Fressengeas, F. Genty, and J. Jacquet, “Optimized sub-wavelength grating mirror design for mid-infrared wavelength range,” Appl. Phys. A-Mater.103(4), 1139–1144 (2011).
[CrossRef]

C. Chevallier, N. Fressengeas, F. Genty, and J. Jacquet, “Mid-infrared sub-wavelength grating mirror design: tolerance and influence of technological constraints,” J. Opt.13(12), 125502 (2011).
[CrossRef]

A. Ducanchez, L. Cerutti, P. Grech, F. Genty, and E. Tournié, “Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 µm,” Electron. Lett.45(5), 265–266 (2009).
[CrossRef]

L. Cerutti, A. Ducanchez, G. Narcy, P. Grech, G. Boissier, A. Garnache, E. Tournié, and F. Genty, “GaSb-based VCSELs emitting in the mid-infrared wavelength range (2-3 µm) grown by MBE,” J. Cryst. Growth311(7), 1912–1916 (2009).
[CrossRef]

Goeman, S.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett.10(9), 1205–1207 (1998).
[CrossRef]

Grann, E. B.

Grech, P.

J. R. Reboul, L. Cerutti, J. B. Rodriguez, P. Grech, and E. Tournié, “Continuous)wave operation above room temperature of GaSb-based lasers diodes grown on Si,” Appl. Phys. Lett.99(12), 121113 (2011).
[CrossRef]

L. Cerutti, A. Ducanchez, G. Narcy, P. Grech, G. Boissier, A. Garnache, E. Tournié, and F. Genty, “GaSb-based VCSELs emitting in the mid-infrared wavelength range (2-3 µm) grown by MBE,” J. Cryst. Growth311(7), 1912–1916 (2009).
[CrossRef]

A. Ducanchez, L. Cerutti, P. Grech, F. Genty, and E. Tournié, “Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 µm,” Electron. Lett.45(5), 265–266 (2009).
[CrossRef]

Guo, R.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, and W. Wu and Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12, 065703 (2010).
[CrossRef]

Haftka, R.

I. Elishakoff, R. Haftka, and J. Fang, “Structural design under bounded uncertainty– Optimization with anti-optimization,” Comput. Struc.53(6), 1401–1405 (1994).
[CrossRef]

Hanfoug, R.

R. Hanfoug, A. Salesse, D. A. Yarekha, A. N. Baranov, and C. Alibert, “Use of AlOx in cladding layers of an antimonide laser structure emitting at 2.3 µm,” Semicond. Sci. Technol.16(11), 936–938 (2001).
[CrossRef]

R. Hanfoug, A. Salesse, D. A. Yarekha, A. N. Baranov, and C. Alibert, “Use of AlOx in cladding layers of an antimonide laser structure emitting at 2.3 µm,” Semicond. Sci. Technol.16(11), 936–938 (2001).
[CrossRef]

Hao, R.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, and W. Wu and Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12, 065703 (2010).
[CrossRef]

Hou, J.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, and W. Wu and Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12, 065703 (2010).
[CrossRef]

Huang, M.

Y. Zhou, M. Huang, and C. Chang-Hasnain, “Large fabrication tolerance for VCSELs using high-contrast grating,” IEEE Photon. Technol. Lett.20(6), 434–436 (2008).
[CrossRef]

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 µm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16(7), 1676–1678 (2004).
[CrossRef]

Huang, S.

S. Huang, G. Balakrishnan, and D. Huffaker, “Interfacial misfit array formation for GaSb growth on GaAs,” J. Appl. Phys.105(10), 103104 (2009).
[CrossRef]

Huang, S. H.

S. H. Huang, G. Balakrishnan, M. Metha, A. Koshakhlagh, L. R. Dawson, and D. L. Huffaker, “Epitaxial growth and formation of interfacial misfit array for tensile GaAs on GaSb,” Appl. Phys. Lett.90(16), 161902 (2007).
[CrossRef]

Huffaker, D.

S. Huang, G. Balakrishnan, and D. Huffaker, “Interfacial misfit array formation for GaSb growth on GaAs,” J. Appl. Phys.105(10), 103104 (2009).
[CrossRef]

Huffaker, D. L.

S. H. Huang, G. Balakrishnan, M. Metha, A. Koshakhlagh, L. R. Dawson, and D. L. Huffaker, “Epitaxial growth and formation of interfacial misfit array for tensile GaAs on GaSb,” Appl. Phys. Lett.90(16), 161902 (2007).
[CrossRef]

Hugonin, J. P.

Jacquet, J.

C. Chevallier, N. Fressengeas, F. Genty, and J. Jacquet, “Robust design of Si/Si3N4 high contrast grating mirror for mid-infrared vcsel application,” Opt. Quantum Electron.44(3-5), 169–174 (2012).
[CrossRef]

C. Chevallier, N. Fressengeas, F. Genty, and J. Jacquet, “Optimized sub-wavelength grating mirror design for mid-infrared wavelength range,” Appl. Phys. A-Mater.103(4), 1139–1144 (2011).
[CrossRef]

C. Chevallier, N. Fressengeas, F. Genty, and J. Jacquet, “Mid-infrared sub-wavelength grating mirror design: tolerance and influence of technological constraints,” J. Opt.13(12), 125502 (2011).
[CrossRef]

Jiang, H.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, and W. Wu and Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12, 065703 (2010).
[CrossRef]

Karagodsky, V.

Kashani-Shirazi, K.

S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically pumped continuous-wave vertical-cavity surface-emitting lasers at ~2.6 µm,” Appl. Phys. Lett.95(13), 131120 (2009).
[CrossRef]

Kennedy, J.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE International Conference on Neural Networks (IEEE 1995) 4, pp. 1942–1948.
[CrossRef]

Koshakhlagh, A.

S. H. Huang, G. Balakrishnan, M. Metha, A. Koshakhlagh, L. R. Dawson, and D. L. Huffaker, “Epitaxial growth and formation of interfacial misfit array for tensile GaAs on GaSb,” Appl. Phys. Lett.90(16), 161902 (2007).
[CrossRef]

Laaroussi, Y.

Y. Laaroussi and ., “Oxide-confined mid-infrared VCSELs,” Electron. Lett.48(25), 1616–1618 (2012).
[CrossRef]

Y. Laaroussi, G. Almuneau, D. Sanchez, and L. Cerutti, “Efficient lateral confinement by an oxide aperture in a mid-infrared GaSb-based vertical light-emitting source,” J. Phys. D44(14), 142001 (2011).
[CrossRef]

Lalanne, P.

Landa, G.

C. Raisin, A. Rocher, G. Landa, R. Carles, and L. Lassabatère, “GaSb/GaAs heteroepitaxy characterized as a stress-free system,” Appl. Surf. Sci.50(1-4), 434–439 (1991).
[CrossRef]

Lassabatère, L.

C. Raisin, A. Rocher, G. Landa, R. Carles, and L. Lassabatère, “GaSb/GaAs heteroepitaxy characterized as a stress-free system,” Appl. Surf. Sci.50(1-4), 434–439 (1991).
[CrossRef]

Leclercq, J.-L.

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 µm vertical-cavity surface-emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett.91(7), 071105 (2007).
[CrossRef]

Mateus, C.

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 µm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16(7), 1676–1678 (2004).
[CrossRef]

Metha, M.

S. H. Huang, G. Balakrishnan, M. Metha, A. Koshakhlagh, L. R. Dawson, and D. L. Huffaker, “Epitaxial growth and formation of interfacial misfit array for tensile GaAs on GaSb,” Appl. Phys. Lett.90(16), 161902 (2007).
[CrossRef]

Mo, W.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, and W. Wu and Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12, 065703 (2010).
[CrossRef]

Moharam, M. G.

Narcy, G.

L. Cerutti, A. Ducanchez, G. Narcy, P. Grech, G. Boissier, A. Garnache, E. Tournié, and F. Genty, “GaSb-based VCSELs emitting in the mid-infrared wavelength range (2-3 µm) grown by MBE,” J. Cryst. Growth311(7), 1912–1916 (2009).
[CrossRef]

Pommet, D. A.

Raisin, C.

C. Raisin, A. Rocher, G. Landa, R. Carles, and L. Lassabatère, “GaSb/GaAs heteroepitaxy characterized as a stress-free system,” Appl. Surf. Sci.50(1-4), 434–439 (1991).
[CrossRef]

Reboul, J. R.

J. R. Reboul, L. Cerutti, J. B. Rodriguez, P. Grech, and E. Tournié, “Continuous)wave operation above room temperature of GaSb-based lasers diodes grown on Si,” Appl. Phys. Lett.99(12), 121113 (2011).
[CrossRef]

Rocher, A.

C. Raisin, A. Rocher, G. Landa, R. Carles, and L. Lassabatère, “GaSb/GaAs heteroepitaxy characterized as a stress-free system,” Appl. Surf. Sci.50(1-4), 434–439 (1991).
[CrossRef]

Rodriguez, J. B.

J. R. Reboul, L. Cerutti, J. B. Rodriguez, P. Grech, and E. Tournié, “Continuous)wave operation above room temperature of GaSb-based lasers diodes grown on Si,” Appl. Phys. Lett.99(12), 121113 (2011).
[CrossRef]

J. B. Rodriguez, L. Cerutti, and E. Tournié, “GaSb-based, 2.2 µm type-I laser fabricated on GaAs substrate operating continuous wave at room temperature,” Appl. Phys. Lett.94(2), 023506 (2009).
[CrossRef]

Salesse, A.

R. Hanfoug, A. Salesse, D. A. Yarekha, A. N. Baranov, and C. Alibert, “Use of AlOx in cladding layers of an antimonide laser structure emitting at 2.3 µm,” Semicond. Sci. Technol.16(11), 936–938 (2001).
[CrossRef]

R. Hanfoug, A. Salesse, D. A. Yarekha, A. N. Baranov, and C. Alibert, “Use of AlOx in cladding layers of an antimonide laser structure emitting at 2.3 µm,” Semicond. Sci. Technol.16(11), 936–938 (2001).
[CrossRef]

Sanchez, D.

Y. Laaroussi, G. Almuneau, D. Sanchez, and L. Cerutti, “Efficient lateral confinement by an oxide aperture in a mid-infrared GaSb-based vertical light-emitting source,” J. Phys. D44(14), 142001 (2011).
[CrossRef]

Sedgwick, F. G.

Suzuki, Y.

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 µm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16(7), 1676–1678 (2004).
[CrossRef]

Tournié, E.

J. R. Reboul, L. Cerutti, J. B. Rodriguez, P. Grech, and E. Tournié, “Continuous)wave operation above room temperature of GaSb-based lasers diodes grown on Si,” Appl. Phys. Lett.99(12), 121113 (2011).
[CrossRef]

L. Cerutti, A. Ducanchez, G. Narcy, P. Grech, G. Boissier, A. Garnache, E. Tournié, and F. Genty, “GaSb-based VCSELs emitting in the mid-infrared wavelength range (2-3 µm) grown by MBE,” J. Cryst. Growth311(7), 1912–1916 (2009).
[CrossRef]

J. B. Rodriguez, L. Cerutti, and E. Tournié, “GaSb-based, 2.2 µm type-I laser fabricated on GaAs substrate operating continuous wave at room temperature,” Appl. Phys. Lett.94(2), 023506 (2009).
[CrossRef]

A. Ducanchez, L. Cerutti, P. Grech, F. Genty, and E. Tournié, “Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 µm,” Electron. Lett.45(5), 265–266 (2009).
[CrossRef]

Van Daele, P.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett.10(9), 1205–1207 (1998).
[CrossRef]

Vandeputte, K.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett.10(9), 1205–1207 (1998).
[CrossRef]

Viktorovitch, P.

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 µm vertical-cavity surface-emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett.91(7), 071105 (2007).
[CrossRef]

Wu, H.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, and W. Wu and Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12, 065703 (2010).
[CrossRef]

Wu, W.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, and W. Wu and Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12, 065703 (2010).
[CrossRef]

Yarekha, D. A.

R. Hanfoug, A. Salesse, D. A. Yarekha, A. N. Baranov, and C. Alibert, “Use of AlOx in cladding layers of an antimonide laser structure emitting at 2.3 µm,” Semicond. Sci. Technol.16(11), 936–938 (2001).
[CrossRef]

R. Hanfoug, A. Salesse, D. A. Yarekha, A. N. Baranov, and C. Alibert, “Use of AlOx in cladding layers of an antimonide laser structure emitting at 2.3 µm,” Semicond. Sci. Technol.16(11), 936–938 (2001).
[CrossRef]

Zhou, Y.

Y. Zhou, M. Huang, and C. Chang-Hasnain, “Large fabrication tolerance for VCSELs using high-contrast grating,” IEEE Photon. Technol. Lett.20(6), 434–436 (2008).
[CrossRef]

Appl. Phys. A-Mater. (1)

C. Chevallier, N. Fressengeas, F. Genty, and J. Jacquet, “Optimized sub-wavelength grating mirror design for mid-infrared wavelength range,” Appl. Phys. A-Mater.103(4), 1139–1144 (2011).
[CrossRef]

Appl. Phys. Lett. (5)

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 µm vertical-cavity surface-emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett.91(7), 071105 (2007).
[CrossRef]

S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically pumped continuous-wave vertical-cavity surface-emitting lasers at ~2.6 µm,” Appl. Phys. Lett.95(13), 131120 (2009).
[CrossRef]

J. B. Rodriguez, L. Cerutti, and E. Tournié, “GaSb-based, 2.2 µm type-I laser fabricated on GaAs substrate operating continuous wave at room temperature,” Appl. Phys. Lett.94(2), 023506 (2009).
[CrossRef]

J. R. Reboul, L. Cerutti, J. B. Rodriguez, P. Grech, and E. Tournié, “Continuous)wave operation above room temperature of GaSb-based lasers diodes grown on Si,” Appl. Phys. Lett.99(12), 121113 (2011).
[CrossRef]

S. H. Huang, G. Balakrishnan, M. Metha, A. Koshakhlagh, L. R. Dawson, and D. L. Huffaker, “Epitaxial growth and formation of interfacial misfit array for tensile GaAs on GaSb,” Appl. Phys. Lett.90(16), 161902 (2007).
[CrossRef]

Appl. Surf. Sci. (1)

C. Raisin, A. Rocher, G. Landa, R. Carles, and L. Lassabatère, “GaSb/GaAs heteroepitaxy characterized as a stress-free system,” Appl. Surf. Sci.50(1-4), 434–439 (1991).
[CrossRef]

Comput. Struc. (1)

I. Elishakoff, R. Haftka, and J. Fang, “Structural design under bounded uncertainty– Optimization with anti-optimization,” Comput. Struc.53(6), 1401–1405 (1994).
[CrossRef]

Electron. Lett. (2)

A. Ducanchez, L. Cerutti, P. Grech, F. Genty, and E. Tournié, “Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 µm,” Electron. Lett.45(5), 265–266 (2009).
[CrossRef]

Y. Laaroussi and ., “Oxide-confined mid-infrared VCSELs,” Electron. Lett.48(25), 1616–1618 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett.10(9), 1205–1207 (1998).
[CrossRef]

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 µm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16(7), 1676–1678 (2004).
[CrossRef]

Y. Zhou, M. Huang, and C. Chang-Hasnain, “Large fabrication tolerance for VCSELs using high-contrast grating,” IEEE Photon. Technol. Lett.20(6), 434–436 (2008).
[CrossRef]

J. Appl. Phys. (1)

S. Huang, G. Balakrishnan, and D. Huffaker, “Interfacial misfit array formation for GaSb growth on GaAs,” J. Appl. Phys.105(10), 103104 (2009).
[CrossRef]

J. Cryst. Growth (1)

L. Cerutti, A. Ducanchez, G. Narcy, P. Grech, G. Boissier, A. Garnache, E. Tournié, and F. Genty, “GaSb-based VCSELs emitting in the mid-infrared wavelength range (2-3 µm) grown by MBE,” J. Cryst. Growth311(7), 1912–1916 (2009).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. (3)

G. Almuneau, M. Condé, O. Gauthier-Lafaye, V. Bardinal, and C. Fontaine, “High reflectivity monolithic sub-wavelength diffraction grating with GaAs/AlOx stack,” J. Opt.13(1), 015505 (2011).
[CrossRef]

C. Chevallier, N. Fressengeas, F. Genty, and J. Jacquet, “Mid-infrared sub-wavelength grating mirror design: tolerance and influence of technological constraints,” J. Opt.13(12), 125502 (2011).
[CrossRef]

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, and W. Wu and Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12, 065703 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. D (1)

Y. Laaroussi, G. Almuneau, D. Sanchez, and L. Cerutti, “Efficient lateral confinement by an oxide aperture in a mid-infrared GaSb-based vertical light-emitting source,” J. Phys. D44(14), 142001 (2011).
[CrossRef]

Opt. Express (1)

Opt. Quantum Electron. (1)

C. Chevallier, N. Fressengeas, F. Genty, and J. Jacquet, “Robust design of Si/Si3N4 high contrast grating mirror for mid-infrared vcsel application,” Opt. Quantum Electron.44(3-5), 169–174 (2012).
[CrossRef]

Semicond. Sci. Technol. (2)

R. Hanfoug, A. Salesse, D. A. Yarekha, A. N. Baranov, and C. Alibert, “Use of AlOx in cladding layers of an antimonide laser structure emitting at 2.3 µm,” Semicond. Sci. Technol.16(11), 936–938 (2001).
[CrossRef]

R. Hanfoug, A. Salesse, D. A. Yarekha, A. N. Baranov, and C. Alibert, “Use of AlOx in cladding layers of an antimonide laser structure emitting at 2.3 µm,” Semicond. Sci. Technol.16(11), 936–938 (2001).
[CrossRef]

Sep. Sci. Technol. (1)

G. Almuneau and ., “Real-time in situ monitoring of wet thermal oxidation for precise confinement in VCSELs,” Sep. Sci. Technol.23, 105021 (2008).

Other (3)

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE International Conference on Neural Networks (IEEE 1995) 4, pp. 1942–1948.
[CrossRef]

M. C. Huang, Y. Zhou, and C. J. Chang-Hasnain, “Polarization mode control in high contrast subwavelength grating VCSEL,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2008), paper CMGG5.
[CrossRef]

H. Sano, J. Kashino, A. Gerke, A. Imamura, F. Koyama, and C. J. Chang-Hasnain, “Transverse mode control of VCSELS with high contrast sub-wavelength grating functioning as angular filter,” in CLEO: Science and Innovations (Optical Society of America 2012), paper CW3N.5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Design of the HCG mirror structure. (a) Scheme of the GaAs/AlxOy high contrast grating structure. The light propagates upwards from the GaAs substrate at normal incidence. (b) Reflectivity spectra for transverse magnetic (TM) and transverse electric (TE) modes of the optimum design exhibiting a 369 nm large and 99.5% high reflectivity stopband for RTM. A good polarization selectivity is obtained with RTE<80% for the whole stopband.

Fig. 2
Fig. 2

Experimental and simulated HRXRD patterns of metamorphic half VCSEL grown on GaSb.

Fig. 3
Fig. 3

Reflectivity (experimental and simulation) of the metamorphic half VCSEL after growth and electroluminescence signal of the epitaxial structure.

Fig. 4
Fig. 4

Cross section image by Scanning Electron Microscopy (SEM) of the fabricated HCG-VCSEL after the ICP-RIE processing.

Fig. 5
Fig. 5

Confocal microscope image of the processed HCG-VCSEL.

Fig. 6
Fig. 6

Images of the HCG-VCSEL during the technological processing. (a) Focused Ion Beam (FIB) image of HCG-VCSEL showing the interface Al0.98GaAs /AlOx of the confinement layer. (b) In situ near-infrared microscope image of the both Al0.98GaAs laterally oxidized layers within the VCSEL structure.

Fig. 7
Fig. 7

Electroluminescence spectrum of the MIR HCG-VCSEL in pulsed regime taken at room temperature.

Tables (1)

Tables Icon

Table 1 Optimum parameters of the HCG obtained by the robust optimization algorithm for a mirror centered at λ0 = 2.3 µm. Tolerance values which ensure a RTM > 99.5% at λ0 are presented for each design length.

Metrics