Abstract

This study presents the synthesis of copper indium gallium (di)selenide (CIGS) films by a solvothermal method. Four factors in CIGS synthesis are considered: In/Ga ratios, hydrogen contents during thermal annealing, thermal annealing temperatures, and annealing times. Experimental results show that the optimal parameters for CIGS film synthesis are the following: proportion of Cu:In:Ga:Se = 1:0.7:0.3:2; hydrogen content during thermal annealing, 5%; thermal annealing temperature, 600 °C; and annealing time, 100 min. The largest crystal grain size of a CIGS film synthesized using these optimal parameters is about 100 nm. The crystal grain size is also found to be inversely proportional to sheet resistance. This relationship holds true because a smaller crystal indicates more grain boundaries and defects. Thus, an electron encounters more barriers in the transmission process, and electric conductivity decreases.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Guillemoles, L. Kronik, D. Cahen, U. Rau, A. Jasenek, and H. W. Schock, “Stability issues of Cu(In,Ga)Se2 based solar cells,” J. Phys. Chem. B 104(20), 4849–4862 (2000).
    [CrossRef]
  2. M. Kemell, M. Ritala, and M. Leskela, “Thin film deposition methods for CuInSe2 solar cells,” Crit. Rev. Solid State Mater. Sci. 30(1), 1–31 (2005).
    [CrossRef]
  3. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
    [CrossRef]
  4. S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovolt. Res. Appl. 18(6), 453–466 (2010).
    [CrossRef]
  5. I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
    [CrossRef]
  6. S. Kurtz and J. Geisz, “Multijunction solar cells for conversion of concentrated sunlight to electricity,” Opt. Express 18(S1), A73–A78 (2010).
    [CrossRef]
  7. J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
    [CrossRef]
  8. N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys. Condens. Matter 16(31), S3277–S3318 (2004).
    [CrossRef]
  9. N. Tansu, J.-Y. Yeh, and L. J. Mawst, “High-Performance 1200-nm InGaAs and 1300-nm InGaAsN Quantum-Well Lasers by Metalorganic Chemical Vapor Deposition,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1220–1227 (2003).
    [CrossRef]
  10. S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 µm GaInNAsSb lasers,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1089–1098 (2005).
    [CrossRef]
  11. M. Wiemer, V. Sabnis, and H. Yuen, “43.5% efficient lattice matched solar cells,” Proc. SPIE 8108, 810804, 810804-5 (2011).
    [CrossRef]
  12. D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen, and O. Kerrec, “Chalcopyritethin film solar cells by electrodeposition,” Sol. Energy 77(6), 725–737 (2004).
    [CrossRef]
  13. K. H. Yoon, S. K. Kim, R. B. V. Chalapathy, J. H. Yun, J. C. Lee, and J. Song, “Characterization of a Molybdenum Electrode Deposited by Sputtering and Its E?ect on Cu(In,Ga)Se2 Solar Cells,” J. Korean Phys. Soc. 45(4), 1114–1118 (2004).
  14. Y. G. Chun, K. H. Kim, and K. H. Yoon, “Synthesis of CuInGaSe2 nanoparticles by solvothermal route,” Thin Solid Films 480–481, 46–49 (2005).
    [CrossRef]
  15. J. W. Park, Y. W. Choi, E. Lee, O. S. Joo, S. Yoon, and B. K. Min, “Synthesis of CIGS absorber layers via a paste coating,” J. Cryst. Growth 311(9), 2621–2625 (2009).
    [CrossRef]
  16. S. Gu, H.-S. Shin, D.-H. Yeo, Y.-W. Hong, and S. Nahm, “Synthesis of the single phase CIGS particle by solvothermal method for solar cell application,” Curr. Appl. Phys. 11(1), S99–S102 (2011).
    [CrossRef]
  17. M. G. Park, S. J. Ahn, J. H. Yun, J. Gwak, A. Cho, S. K. Ahn, K. Shin, D. Nam, H. Cheong, and K. Yoon, “Characteristics of Cu(In,Ga)Se2 (CIGS) thin films deposited by adirect solution coating process,” J. Alloy. Comp. 513, 68–74 (2012).
    [CrossRef]
  18. J. Olejní?ek, C. A. Kamler, A. Mirasano, A. L. Martinez-Skinner, M. A. Ingersoll, C. L. Exstrom, S. A. Darveau, J. L. Huguenin-Love, M. Diaz, J. Ianno, and J. Soukup, “A non-vacuum process for preparing nanocrystalline CuIn1-xGaxSe2 materials involving an open-air solvothermal reaction” (University of Nebraska–Lincoln, 2010).
  19. E. Lee, J. W. Cho, J. Kim, J. Yun, J. H. Kim, and B. K. Min, “Synthesis of CIGS powders: Transition from binary to quaternary crystalline structure,” J. Alloy. Comp. 506(2), 969–972 (2010).
    [CrossRef]
  20. J. F. Guillemoles, “Stability of Cu(In,Ga)Se2 solar cells: a thermodynamic approach,” Thin Solid Films 361–362, 338–345 (2000).
    [CrossRef]
  21. K. H. Kim, Y. G. Chun, B. O. Park, and K. H. Yoon, “Synthesis of CuInSe2 and CuInGaSe2 Nanoparticles by Solvothermal Route,” Mater. Sci. Forum 449–452, 273–276 (2004).
    [CrossRef]
  22. J. Tang, S. Hinds, S. O. Kelley, and E. H. Sargent, “Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles,” Chem. Mater. 20(22), 6906–6910 (2008).
    [CrossRef]
  23. M. R. Robinson and M. R. Roscheisen (Inventors), Nanosolar Inc. (Assignee), U.S. Patent No. 7604843B1 (Oct. 20, 2009).
  24. J. Olejní?ek, C. A. Kamler, A. Mirasano, A. L. Martinez-Skinner, M. A. Ingersoll, C. L. Exstrom, S. A. Darveau, J. L. Huguenin-Love, M. Diaz, N. J. Ianno, and R. J. Soukup, “A non-vacuum process for preparing nanocrystalline CuIn1-xGaxSe2 materials involving an open-air solvothermal reaction,” Sol. Energy Mater. Sol. Cells 94(1), 8–11 (2010).
    [CrossRef]
  25. Y. Liu, D. Kong, J. Li, C. Zhao, C. Chen, and J. Brugger, “Preparation of Cu(In,Ga)Se2 Thin Film by Solvothermal and Spin-coating Process,” Energy Procedia 16, 217–222 (2012).
    [CrossRef]
  26. D. Y. Lee, S. J. Park, and J. H. Kim, “Structural analysis of CIGS film prepared by chemical spray deposition,” Curr. Appl. Phys. 11(1), S88–S92 (2011).
    [CrossRef]
  27. F. B. Dejene, “The structural and material properties of CuInSe2 and CuInGaSe2 prepared by selenization of stacks of metal and compound precursors by Se vapor for solar cell applications,” Sol. Energy Mater. Sol. Cells 93(5), 577–582 (2009).
    [CrossRef]
  28. I. H. Choi and D. H. Lee, “Preparation of CuInGaSe2 films by metalorganic chemical vapor deposition using three precursors,” Thin Solid Films 515(11), 4778–4782 (2007).
    [CrossRef]
  29. S. H. Wei, S. B. Zhang, and A. Zunger, “Effects of Ga addition to CuInSe2 on its electronic structural and defect properties,” Appl. Phys. Lett. 72(24), 3199–3201 (1998).
    [CrossRef]
  30. A. Yamada, H. Miyazaki, R. Mikami, and M. Konagail, “Improved performance of Cu(InGa)Se2 thin film solar cells with high Ga composition using rapid thermal annealing process,” in 3rd World Conference on Phorovoliaic Energy Conversion, 2859–2863. Osaka, Japan (2003).
  31. M. M. Islam, S. Ishizuka, A. Yamada, K. Matsubara, S. Niki, T. Sakurai, and K. Akimoto, “Thickness study of Al:ZnO film for application as a window layer in Cu(In1?xGax)Se2 thin film solar cell,” Appl. Surf. Sci. 257(9), 4026–4030 (2011).
    [CrossRef]
  32. Y. H. Jo, B. C. Mohanty, and Y. S. Cho, “Enhanced electrical properties of pulsed laser-deposited CuIn0.7Ga0.3Se2thin films via processing control,” Sol. Energy 84(12), 2213–2218 (2010).
    [CrossRef]
  33. L. Zhang, Q. He, W. L. Jiang, F. F. Liu, C. J. Li, and Y. Sun, “Effects of substrate temperature on the structural and electrical properties of Cu(In,Ga)Se2 thin films,” Sol. Energy Mater. Sol. Cells 93(1), 114–118 (2009).
    [CrossRef]
  34. M. M. Islam, T. Sakurai, S. Ishizuka, A. Yamada, H. Shibata, K. Sakurai, K. Matsubara, S. Niki, and K. Akimoto, “Effect of Se/(Ga + In) ratio on MBE grown Cu(In,Ga)Se2 thin film solar cell,” J. Cryst. Growth 311(7), 2212–2214 (2009).
    [CrossRef]
  35. Z. Li, H. Qing, J. Wei-Long, L. Chang-Jian, and S. Yun, “Cu(In, Ga)Se2 Thin Films on Flexible Polyimide Sheet: Structural and Electrical Properties versus Composition,” Chin. Phys. Lett. 26(2), 026801 (2009).
    [CrossRef]

2012 (2)

M. G. Park, S. J. Ahn, J. H. Yun, J. Gwak, A. Cho, S. K. Ahn, K. Shin, D. Nam, H. Cheong, and K. Yoon, “Characteristics of Cu(In,Ga)Se2 (CIGS) thin films deposited by adirect solution coating process,” J. Alloy. Comp. 513, 68–74 (2012).
[CrossRef]

Y. Liu, D. Kong, J. Li, C. Zhao, C. Chen, and J. Brugger, “Preparation of Cu(In,Ga)Se2 Thin Film by Solvothermal and Spin-coating Process,” Energy Procedia 16, 217–222 (2012).
[CrossRef]

2011 (5)

D. Y. Lee, S. J. Park, and J. H. Kim, “Structural analysis of CIGS film prepared by chemical spray deposition,” Curr. Appl. Phys. 11(1), S88–S92 (2011).
[CrossRef]

M. M. Islam, S. Ishizuka, A. Yamada, K. Matsubara, S. Niki, T. Sakurai, and K. Akimoto, “Thickness study of Al:ZnO film for application as a window layer in Cu(In1?xGax)Se2 thin film solar cell,” Appl. Surf. Sci. 257(9), 4026–4030 (2011).
[CrossRef]

S. Gu, H.-S. Shin, D.-H. Yeo, Y.-W. Hong, and S. Nahm, “Synthesis of the single phase CIGS particle by solvothermal method for solar cell application,” Curr. Appl. Phys. 11(1), S99–S102 (2011).
[CrossRef]

M. Wiemer, V. Sabnis, and H. Yuen, “43.5% efficient lattice matched solar cells,” Proc. SPIE 8108, 810804, 810804-5 (2011).
[CrossRef]

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
[CrossRef]

2010 (5)

S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovolt. Res. Appl. 18(6), 453–466 (2010).
[CrossRef]

S. Kurtz and J. Geisz, “Multijunction solar cells for conversion of concentrated sunlight to electricity,” Opt. Express 18(S1), A73–A78 (2010).
[CrossRef]

E. Lee, J. W. Cho, J. Kim, J. Yun, J. H. Kim, and B. K. Min, “Synthesis of CIGS powders: Transition from binary to quaternary crystalline structure,” J. Alloy. Comp. 506(2), 969–972 (2010).
[CrossRef]

Y. H. Jo, B. C. Mohanty, and Y. S. Cho, “Enhanced electrical properties of pulsed laser-deposited CuIn0.7Ga0.3Se2thin films via processing control,” Sol. Energy 84(12), 2213–2218 (2010).
[CrossRef]

J. Olejní?ek, C. A. Kamler, A. Mirasano, A. L. Martinez-Skinner, M. A. Ingersoll, C. L. Exstrom, S. A. Darveau, J. L. Huguenin-Love, M. Diaz, N. J. Ianno, and R. J. Soukup, “A non-vacuum process for preparing nanocrystalline CuIn1-xGaxSe2 materials involving an open-air solvothermal reaction,” Sol. Energy Mater. Sol. Cells 94(1), 8–11 (2010).
[CrossRef]

2009 (5)

L. Zhang, Q. He, W. L. Jiang, F. F. Liu, C. J. Li, and Y. Sun, “Effects of substrate temperature on the structural and electrical properties of Cu(In,Ga)Se2 thin films,” Sol. Energy Mater. Sol. Cells 93(1), 114–118 (2009).
[CrossRef]

M. M. Islam, T. Sakurai, S. Ishizuka, A. Yamada, H. Shibata, K. Sakurai, K. Matsubara, S. Niki, and K. Akimoto, “Effect of Se/(Ga + In) ratio on MBE grown Cu(In,Ga)Se2 thin film solar cell,” J. Cryst. Growth 311(7), 2212–2214 (2009).
[CrossRef]

Z. Li, H. Qing, J. Wei-Long, L. Chang-Jian, and S. Yun, “Cu(In, Ga)Se2 Thin Films on Flexible Polyimide Sheet: Structural and Electrical Properties versus Composition,” Chin. Phys. Lett. 26(2), 026801 (2009).
[CrossRef]

F. B. Dejene, “The structural and material properties of CuInSe2 and CuInGaSe2 prepared by selenization of stacks of metal and compound precursors by Se vapor for solar cell applications,” Sol. Energy Mater. Sol. Cells 93(5), 577–582 (2009).
[CrossRef]

J. W. Park, Y. W. Choi, E. Lee, O. S. Joo, S. Yoon, and B. K. Min, “Synthesis of CIGS absorber layers via a paste coating,” J. Cryst. Growth 311(9), 2621–2625 (2009).
[CrossRef]

2008 (3)

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
[CrossRef]

J. Tang, S. Hinds, S. O. Kelley, and E. H. Sargent, “Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles,” Chem. Mater. 20(22), 6906–6910 (2008).
[CrossRef]

2007 (1)

I. H. Choi and D. H. Lee, “Preparation of CuInGaSe2 films by metalorganic chemical vapor deposition using three precursors,” Thin Solid Films 515(11), 4778–4782 (2007).
[CrossRef]

2005 (3)

M. Kemell, M. Ritala, and M. Leskela, “Thin film deposition methods for CuInSe2 solar cells,” Crit. Rev. Solid State Mater. Sci. 30(1), 1–31 (2005).
[CrossRef]

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 µm GaInNAsSb lasers,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1089–1098 (2005).
[CrossRef]

Y. G. Chun, K. H. Kim, and K. H. Yoon, “Synthesis of CuInGaSe2 nanoparticles by solvothermal route,” Thin Solid Films 480–481, 46–49 (2005).
[CrossRef]

2004 (4)

D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen, and O. Kerrec, “Chalcopyritethin film solar cells by electrodeposition,” Sol. Energy 77(6), 725–737 (2004).
[CrossRef]

K. H. Yoon, S. K. Kim, R. B. V. Chalapathy, J. H. Yun, J. C. Lee, and J. Song, “Characterization of a Molybdenum Electrode Deposited by Sputtering and Its E?ect on Cu(In,Ga)Se2 Solar Cells,” J. Korean Phys. Soc. 45(4), 1114–1118 (2004).

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys. Condens. Matter 16(31), S3277–S3318 (2004).
[CrossRef]

K. H. Kim, Y. G. Chun, B. O. Park, and K. H. Yoon, “Synthesis of CuInSe2 and CuInGaSe2 Nanoparticles by Solvothermal Route,” Mater. Sci. Forum 449–452, 273–276 (2004).
[CrossRef]

2003 (1)

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “High-Performance 1200-nm InGaAs and 1300-nm InGaAsN Quantum-Well Lasers by Metalorganic Chemical Vapor Deposition,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1220–1227 (2003).
[CrossRef]

2000 (2)

J. F. Guillemoles, L. Kronik, D. Cahen, U. Rau, A. Jasenek, and H. W. Schock, “Stability issues of Cu(In,Ga)Se2 based solar cells,” J. Phys. Chem. B 104(20), 4849–4862 (2000).
[CrossRef]

J. F. Guillemoles, “Stability of Cu(In,Ga)Se2 solar cells: a thermodynamic approach,” Thin Solid Films 361–362, 338–345 (2000).
[CrossRef]

1998 (1)

S. H. Wei, S. B. Zhang, and A. Zunger, “Effects of Ga addition to CuInSe2 on its electronic structural and defect properties,” Appl. Phys. Lett. 72(24), 3199–3201 (1998).
[CrossRef]

Ahn, S. J.

M. G. Park, S. J. Ahn, J. H. Yun, J. Gwak, A. Cho, S. K. Ahn, K. Shin, D. Nam, H. Cheong, and K. Yoon, “Characteristics of Cu(In,Ga)Se2 (CIGS) thin films deposited by adirect solution coating process,” J. Alloy. Comp. 513, 68–74 (2012).
[CrossRef]

Ahn, S. K.

M. G. Park, S. J. Ahn, J. H. Yun, J. Gwak, A. Cho, S. K. Ahn, K. Shin, D. Nam, H. Cheong, and K. Yoon, “Characteristics of Cu(In,Ga)Se2 (CIGS) thin films deposited by adirect solution coating process,” J. Alloy. Comp. 513, 68–74 (2012).
[CrossRef]

Akimoto, K.

M. M. Islam, S. Ishizuka, A. Yamada, K. Matsubara, S. Niki, T. Sakurai, and K. Akimoto, “Thickness study of Al:ZnO film for application as a window layer in Cu(In1?xGax)Se2 thin film solar cell,” Appl. Surf. Sci. 257(9), 4026–4030 (2011).
[CrossRef]

M. M. Islam, T. Sakurai, S. Ishizuka, A. Yamada, H. Shibata, K. Sakurai, K. Matsubara, S. Niki, and K. Akimoto, “Effect of Se/(Ga + In) ratio on MBE grown Cu(In,Ga)Se2 thin film solar cell,” J. Cryst. Growth 311(7), 2212–2214 (2009).
[CrossRef]

Bank, S. R.

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 µm GaInNAsSb lasers,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1089–1098 (2005).
[CrossRef]

Benfarah, M.

D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen, and O. Kerrec, “Chalcopyritethin film solar cells by electrodeposition,” Sol. Energy 77(6), 725–737 (2004).
[CrossRef]

Bodereau, N.

D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen, and O. Kerrec, “Chalcopyritethin film solar cells by electrodeposition,” Sol. Energy 77(6), 725–737 (2004).
[CrossRef]

Brugger, J.

Y. Liu, D. Kong, J. Li, C. Zhao, C. Chen, and J. Brugger, “Preparation of Cu(In,Ga)Se2 Thin Film by Solvothermal and Spin-coating Process,” Energy Procedia 16, 217–222 (2012).
[CrossRef]

Cahen, D.

J. F. Guillemoles, L. Kronik, D. Cahen, U. Rau, A. Jasenek, and H. W. Schock, “Stability issues of Cu(In,Ga)Se2 based solar cells,” J. Phys. Chem. B 104(20), 4849–4862 (2000).
[CrossRef]

Chalapathy, R. B. V.

K. H. Yoon, S. K. Kim, R. B. V. Chalapathy, J. H. Yun, J. C. Lee, and J. Song, “Characterization of a Molybdenum Electrode Deposited by Sputtering and Its E?ect on Cu(In,Ga)Se2 Solar Cells,” J. Korean Phys. Soc. 45(4), 1114–1118 (2004).

Chang-Jian, L.

Z. Li, H. Qing, J. Wei-Long, L. Chang-Jian, and S. Yun, “Cu(In, Ga)Se2 Thin Films on Flexible Polyimide Sheet: Structural and Electrical Properties versus Composition,” Chin. Phys. Lett. 26(2), 026801 (2009).
[CrossRef]

Chaumont, A.

D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen, and O. Kerrec, “Chalcopyritethin film solar cells by electrodeposition,” Sol. Energy 77(6), 725–737 (2004).
[CrossRef]

Chen, C.

Y. Liu, D. Kong, J. Li, C. Zhao, C. Chen, and J. Brugger, “Preparation of Cu(In,Ga)Se2 Thin Film by Solvothermal and Spin-coating Process,” Energy Procedia 16, 217–222 (2012).
[CrossRef]

Cheong, H.

M. G. Park, S. J. Ahn, J. H. Yun, J. Gwak, A. Cho, S. K. Ahn, K. Shin, D. Nam, H. Cheong, and K. Yoon, “Characteristics of Cu(In,Ga)Se2 (CIGS) thin films deposited by adirect solution coating process,” J. Alloy. Comp. 513, 68–74 (2012).
[CrossRef]

Cho, A.

M. G. Park, S. J. Ahn, J. H. Yun, J. Gwak, A. Cho, S. K. Ahn, K. Shin, D. Nam, H. Cheong, and K. Yoon, “Characteristics of Cu(In,Ga)Se2 (CIGS) thin films deposited by adirect solution coating process,” J. Alloy. Comp. 513, 68–74 (2012).
[CrossRef]

Cho, J. W.

E. Lee, J. W. Cho, J. Kim, J. Yun, J. H. Kim, and B. K. Min, “Synthesis of CIGS powders: Transition from binary to quaternary crystalline structure,” J. Alloy. Comp. 506(2), 969–972 (2010).
[CrossRef]

Cho, Y. S.

Y. H. Jo, B. C. Mohanty, and Y. S. Cho, “Enhanced electrical properties of pulsed laser-deposited CuIn0.7Ga0.3Se2thin films via processing control,” Sol. Energy 84(12), 2213–2218 (2010).
[CrossRef]

Choi, I. H.

I. H. Choi and D. H. Lee, “Preparation of CuInGaSe2 films by metalorganic chemical vapor deposition using three precursors,” Thin Solid Films 515(11), 4778–4782 (2007).
[CrossRef]

Choi, Y. W.

J. W. Park, Y. W. Choi, E. Lee, O. S. Joo, S. Yoon, and B. K. Min, “Synthesis of CIGS absorber layers via a paste coating,” J. Cryst. Growth 311(9), 2621–2625 (2009).
[CrossRef]

Chun, Y. G.

Y. G. Chun, K. H. Kim, and K. H. Yoon, “Synthesis of CuInGaSe2 nanoparticles by solvothermal route,” Thin Solid Films 480–481, 46–49 (2005).
[CrossRef]

K. H. Kim, Y. G. Chun, B. O. Park, and K. H. Yoon, “Synthesis of CuInSe2 and CuInGaSe2 Nanoparticles by Solvothermal Route,” Mater. Sci. Forum 449–452, 273–276 (2004).
[CrossRef]

Contreras, M.

S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovolt. Res. Appl. 18(6), 453–466 (2010).
[CrossRef]

Contreras, M. A.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
[CrossRef]

Darveau, S. A.

J. Olejní?ek, C. A. Kamler, A. Mirasano, A. L. Martinez-Skinner, M. A. Ingersoll, C. L. Exstrom, S. A. Darveau, J. L. Huguenin-Love, M. Diaz, N. J. Ianno, and R. J. Soukup, “A non-vacuum process for preparing nanocrystalline CuIn1-xGaxSe2 materials involving an open-air solvothermal reaction,” Sol. Energy Mater. Sol. Cells 94(1), 8–11 (2010).
[CrossRef]

DeHart, C.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
[CrossRef]

Dejene, F. B.

F. B. Dejene, “The structural and material properties of CuInSe2 and CuInGaSe2 prepared by selenization of stacks of metal and compound precursors by Se vapor for solar cell applications,” Sol. Energy Mater. Sol. Cells 93(5), 577–582 (2009).
[CrossRef]

Diaz, M.

J. Olejní?ek, C. A. Kamler, A. Mirasano, A. L. Martinez-Skinner, M. A. Ingersoll, C. L. Exstrom, S. A. Darveau, J. L. Huguenin-Love, M. Diaz, N. J. Ianno, and R. J. Soukup, “A non-vacuum process for preparing nanocrystalline CuIn1-xGaxSe2 materials involving an open-air solvothermal reaction,” Sol. Energy Mater. Sol. Cells 94(1), 8–11 (2010).
[CrossRef]

Duda, A.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

Egaas, B.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
[CrossRef]

Exstrom, C. L.

J. Olejní?ek, C. A. Kamler, A. Mirasano, A. L. Martinez-Skinner, M. A. Ingersoll, C. L. Exstrom, S. A. Darveau, J. L. Huguenin-Love, M. Diaz, N. J. Ianno, and R. J. Soukup, “A non-vacuum process for preparing nanocrystalline CuIn1-xGaxSe2 materials involving an open-air solvothermal reaction,” Sol. Energy Mater. Sol. Cells 94(1), 8–11 (2010).
[CrossRef]

Fanouillere, P.

D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen, and O. Kerrec, “Chalcopyritethin film solar cells by electrodeposition,” Sol. Energy 77(6), 725–737 (2004).
[CrossRef]

Fauvarque, J. P.

D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen, and O. Kerrec, “Chalcopyritethin film solar cells by electrodeposition,” Sol. Energy 77(6), 725–737 (2004).
[CrossRef]

Friedman, D. J.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

Geisz, J.

Geisz, J. F.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

Goddard, L. L.

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 µm GaInNAsSb lasers,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1089–1098 (2005).
[CrossRef]

Grand, P. P.

D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen, and O. Kerrec, “Chalcopyritethin film solar cells by electrodeposition,” Sol. Energy 77(6), 725–737 (2004).
[CrossRef]

Gu, S.

S. Gu, H.-S. Shin, D.-H. Yeo, Y.-W. Hong, and S. Nahm, “Synthesis of the single phase CIGS particle by solvothermal method for solar cell application,” Curr. Appl. Phys. 11(1), S99–S102 (2011).
[CrossRef]

Guillemoles, J. F.

D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen, and O. Kerrec, “Chalcopyritethin film solar cells by electrodeposition,” Sol. Energy 77(6), 725–737 (2004).
[CrossRef]

J. F. Guillemoles, “Stability of Cu(In,Ga)Se2 solar cells: a thermodynamic approach,” Thin Solid Films 361–362, 338–345 (2000).
[CrossRef]

J. F. Guillemoles, L. Kronik, D. Cahen, U. Rau, A. Jasenek, and H. W. Schock, “Stability issues of Cu(In,Ga)Se2 based solar cells,” J. Phys. Chem. B 104(20), 4849–4862 (2000).
[CrossRef]

Guimard, D.

D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen, and O. Kerrec, “Chalcopyritethin film solar cells by electrodeposition,” Sol. Energy 77(6), 725–737 (2004).
[CrossRef]

Gwak, J.

M. G. Park, S. J. Ahn, J. H. Yun, J. Gwak, A. Cho, S. K. Ahn, K. Shin, D. Nam, H. Cheong, and K. Yoon, “Characteristics of Cu(In,Ga)Se2 (CIGS) thin films deposited by adirect solution coating process,” J. Alloy. Comp. 513, 68–74 (2012).
[CrossRef]

Hariskos, D.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
[CrossRef]

Harris, J. S.

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 µm GaInNAsSb lasers,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1089–1098 (2005).
[CrossRef]

He, Q.

L. Zhang, Q. He, W. L. Jiang, F. F. Liu, C. J. Li, and Y. Sun, “Effects of substrate temperature on the structural and electrical properties of Cu(In,Ga)Se2 thin films,” Sol. Energy Mater. Sol. Cells 93(1), 114–118 (2009).
[CrossRef]

Hinds, S.

J. Tang, S. Hinds, S. O. Kelley, and E. H. Sargent, “Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles,” Chem. Mater. 20(22), 6906–6910 (2008).
[CrossRef]

Hong, Y.-W.

S. Gu, H.-S. Shin, D.-H. Yeo, Y.-W. Hong, and S. Nahm, “Synthesis of the single phase CIGS particle by solvothermal method for solar cell application,” Curr. Appl. Phys. 11(1), S99–S102 (2011).
[CrossRef]

Hubert, C.

D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen, and O. Kerrec, “Chalcopyritethin film solar cells by electrodeposition,” Sol. Energy 77(6), 725–737 (2004).
[CrossRef]

Huguenin-Love, J. L.

J. Olejní?ek, C. A. Kamler, A. Mirasano, A. L. Martinez-Skinner, M. A. Ingersoll, C. L. Exstrom, S. A. Darveau, J. L. Huguenin-Love, M. Diaz, N. J. Ianno, and R. J. Soukup, “A non-vacuum process for preparing nanocrystalline CuIn1-xGaxSe2 materials involving an open-air solvothermal reaction,” Sol. Energy Mater. Sol. Cells 94(1), 8–11 (2010).
[CrossRef]

Ianno, N. J.

J. Olejní?ek, C. A. Kamler, A. Mirasano, A. L. Martinez-Skinner, M. A. Ingersoll, C. L. Exstrom, S. A. Darveau, J. L. Huguenin-Love, M. Diaz, N. J. Ianno, and R. J. Soukup, “A non-vacuum process for preparing nanocrystalline CuIn1-xGaxSe2 materials involving an open-air solvothermal reaction,” Sol. Energy Mater. Sol. Cells 94(1), 8–11 (2010).
[CrossRef]

Ingersoll, M. A.

J. Olejní?ek, C. A. Kamler, A. Mirasano, A. L. Martinez-Skinner, M. A. Ingersoll, C. L. Exstrom, S. A. Darveau, J. L. Huguenin-Love, M. Diaz, N. J. Ianno, and R. J. Soukup, “A non-vacuum process for preparing nanocrystalline CuIn1-xGaxSe2 materials involving an open-air solvothermal reaction,” Sol. Energy Mater. Sol. Cells 94(1), 8–11 (2010).
[CrossRef]

Ishizuka, S.

M. M. Islam, S. Ishizuka, A. Yamada, K. Matsubara, S. Niki, T. Sakurai, and K. Akimoto, “Thickness study of Al:ZnO film for application as a window layer in Cu(In1?xGax)Se2 thin film solar cell,” Appl. Surf. Sci. 257(9), 4026–4030 (2011).
[CrossRef]

S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovolt. Res. Appl. 18(6), 453–466 (2010).
[CrossRef]

M. M. Islam, T. Sakurai, S. Ishizuka, A. Yamada, H. Shibata, K. Sakurai, K. Matsubara, S. Niki, and K. Akimoto, “Effect of Se/(Ga + In) ratio on MBE grown Cu(In,Ga)Se2 thin film solar cell,” J. Cryst. Growth 311(7), 2212–2214 (2009).
[CrossRef]

Islam, M. M.

M. M. Islam, S. Ishizuka, A. Yamada, K. Matsubara, S. Niki, T. Sakurai, and K. Akimoto, “Thickness study of Al:ZnO film for application as a window layer in Cu(In1?xGax)Se2 thin film solar cell,” Appl. Surf. Sci. 257(9), 4026–4030 (2011).
[CrossRef]

M. M. Islam, T. Sakurai, S. Ishizuka, A. Yamada, H. Shibata, K. Sakurai, K. Matsubara, S. Niki, and K. Akimoto, “Effect of Se/(Ga + In) ratio on MBE grown Cu(In,Ga)Se2 thin film solar cell,” J. Cryst. Growth 311(7), 2212–2214 (2009).
[CrossRef]

Jackson, P.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
[CrossRef]

Jasenek, A.

J. F. Guillemoles, L. Kronik, D. Cahen, U. Rau, A. Jasenek, and H. W. Schock, “Stability issues of Cu(In,Ga)Se2 based solar cells,” J. Phys. Chem. B 104(20), 4849–4862 (2000).
[CrossRef]

Jiang, W. L.

L. Zhang, Q. He, W. L. Jiang, F. F. Liu, C. J. Li, and Y. Sun, “Effects of substrate temperature on the structural and electrical properties of Cu(In,Ga)Se2 thin films,” Sol. Energy Mater. Sol. Cells 93(1), 114–118 (2009).
[CrossRef]

Jo, Y. H.

Y. H. Jo, B. C. Mohanty, and Y. S. Cho, “Enhanced electrical properties of pulsed laser-deposited CuIn0.7Ga0.3Se2thin films via processing control,” Sol. Energy 84(12), 2213–2218 (2010).
[CrossRef]

Jones, K. M.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

Joo, O. S.

J. W. Park, Y. W. Choi, E. Lee, O. S. Joo, S. Yoon, and B. K. Min, “Synthesis of CIGS absorber layers via a paste coating,” J. Cryst. Growth 311(9), 2621–2625 (2009).
[CrossRef]

Kamler, C. A.

J. Olejní?ek, C. A. Kamler, A. Mirasano, A. L. Martinez-Skinner, M. A. Ingersoll, C. L. Exstrom, S. A. Darveau, J. L. Huguenin-Love, M. Diaz, N. J. Ianno, and R. J. Soukup, “A non-vacuum process for preparing nanocrystalline CuIn1-xGaxSe2 materials involving an open-air solvothermal reaction,” Sol. Energy Mater. Sol. Cells 94(1), 8–11 (2010).
[CrossRef]

Kelley, S. O.

J. Tang, S. Hinds, S. O. Kelley, and E. H. Sargent, “Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles,” Chem. Mater. 20(22), 6906–6910 (2008).
[CrossRef]

Kemell, M.

M. Kemell, M. Ritala, and M. Leskela, “Thin film deposition methods for CuInSe2 solar cells,” Crit. Rev. Solid State Mater. Sci. 30(1), 1–31 (2005).
[CrossRef]

Kerrec, O.

D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen, and O. Kerrec, “Chalcopyritethin film solar cells by electrodeposition,” Sol. Energy 77(6), 725–737 (2004).
[CrossRef]

Kiehl, J. T.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

Kim, J.

E. Lee, J. W. Cho, J. Kim, J. Yun, J. H. Kim, and B. K. Min, “Synthesis of CIGS powders: Transition from binary to quaternary crystalline structure,” J. Alloy. Comp. 506(2), 969–972 (2010).
[CrossRef]

Kim, J. H.

D. Y. Lee, S. J. Park, and J. H. Kim, “Structural analysis of CIGS film prepared by chemical spray deposition,” Curr. Appl. Phys. 11(1), S88–S92 (2011).
[CrossRef]

E. Lee, J. W. Cho, J. Kim, J. Yun, J. H. Kim, and B. K. Min, “Synthesis of CIGS powders: Transition from binary to quaternary crystalline structure,” J. Alloy. Comp. 506(2), 969–972 (2010).
[CrossRef]

Kim, K. H.

Y. G. Chun, K. H. Kim, and K. H. Yoon, “Synthesis of CuInGaSe2 nanoparticles by solvothermal route,” Thin Solid Films 480–481, 46–49 (2005).
[CrossRef]

K. H. Kim, Y. G. Chun, B. O. Park, and K. H. Yoon, “Synthesis of CuInSe2 and CuInGaSe2 Nanoparticles by Solvothermal Route,” Mater. Sci. Forum 449–452, 273–276 (2004).
[CrossRef]

Kim, S. K.

K. H. Yoon, S. K. Kim, R. B. V. Chalapathy, J. H. Yun, J. C. Lee, and J. Song, “Characterization of a Molybdenum Electrode Deposited by Sputtering and Its E?ect on Cu(In,Ga)Se2 Solar Cells,” J. Korean Phys. Soc. 45(4), 1114–1118 (2004).

Kong, D.

Y. Liu, D. Kong, J. Li, C. Zhao, C. Chen, and J. Brugger, “Preparation of Cu(In,Ga)Se2 Thin Film by Solvothermal and Spin-coating Process,” Energy Procedia 16, 217–222 (2012).
[CrossRef]

Kronik, L.

J. F. Guillemoles, L. Kronik, D. Cahen, U. Rau, A. Jasenek, and H. W. Schock, “Stability issues of Cu(In,Ga)Se2 based solar cells,” J. Phys. Chem. B 104(20), 4849–4862 (2000).
[CrossRef]

Kurtz, S.

Kushiya, K.

S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovolt. Res. Appl. 18(6), 453–466 (2010).
[CrossRef]

Lee, D. H.

I. H. Choi and D. H. Lee, “Preparation of CuInGaSe2 films by metalorganic chemical vapor deposition using three precursors,” Thin Solid Films 515(11), 4778–4782 (2007).
[CrossRef]

Lee, D. Y.

D. Y. Lee, S. J. Park, and J. H. Kim, “Structural analysis of CIGS film prepared by chemical spray deposition,” Curr. Appl. Phys. 11(1), S88–S92 (2011).
[CrossRef]

Lee, E.

E. Lee, J. W. Cho, J. Kim, J. Yun, J. H. Kim, and B. K. Min, “Synthesis of CIGS powders: Transition from binary to quaternary crystalline structure,” J. Alloy. Comp. 506(2), 969–972 (2010).
[CrossRef]

J. W. Park, Y. W. Choi, E. Lee, O. S. Joo, S. Yoon, and B. K. Min, “Synthesis of CIGS absorber layers via a paste coating,” J. Cryst. Growth 311(9), 2621–2625 (2009).
[CrossRef]

Lee, J. C.

K. H. Yoon, S. K. Kim, R. B. V. Chalapathy, J. H. Yun, J. C. Lee, and J. Song, “Characterization of a Molybdenum Electrode Deposited by Sputtering and Its E?ect on Cu(In,Ga)Se2 Solar Cells,” J. Korean Phys. Soc. 45(4), 1114–1118 (2004).

Leskela, M.

M. Kemell, M. Ritala, and M. Leskela, “Thin film deposition methods for CuInSe2 solar cells,” Crit. Rev. Solid State Mater. Sci. 30(1), 1–31 (2005).
[CrossRef]

Li, C. J.

L. Zhang, Q. He, W. L. Jiang, F. F. Liu, C. J. Li, and Y. Sun, “Effects of substrate temperature on the structural and electrical properties of Cu(In,Ga)Se2 thin films,” Sol. Energy Mater. Sol. Cells 93(1), 114–118 (2009).
[CrossRef]

Li, J.

Y. Liu, D. Kong, J. Li, C. Zhao, C. Chen, and J. Brugger, “Preparation of Cu(In,Ga)Se2 Thin Film by Solvothermal and Spin-coating Process,” Energy Procedia 16, 217–222 (2012).
[CrossRef]

Li, Z.

Z. Li, H. Qing, J. Wei-Long, L. Chang-Jian, and S. Yun, “Cu(In, Ga)Se2 Thin Films on Flexible Polyimide Sheet: Structural and Electrical Properties versus Composition,” Chin. Phys. Lett. 26(2), 026801 (2009).
[CrossRef]

Lincot, D.

D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen, and O. Kerrec, “Chalcopyritethin film solar cells by electrodeposition,” Sol. Energy 77(6), 725–737 (2004).
[CrossRef]

Liu, F. F.

L. Zhang, Q. He, W. L. Jiang, F. F. Liu, C. J. Li, and Y. Sun, “Effects of substrate temperature on the structural and electrical properties of Cu(In,Ga)Se2 thin films,” Sol. Energy Mater. Sol. Cells 93(1), 114–118 (2009).
[CrossRef]

Liu, Y.

Y. Liu, D. Kong, J. Li, C. Zhao, C. Chen, and J. Brugger, “Preparation of Cu(In,Ga)Se2 Thin Film by Solvothermal and Spin-coating Process,” Energy Procedia 16, 217–222 (2012).
[CrossRef]

Lotter, E.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
[CrossRef]

Martinez-Skinner, A. L.

J. Olejní?ek, C. A. Kamler, A. Mirasano, A. L. Martinez-Skinner, M. A. Ingersoll, C. L. Exstrom, S. A. Darveau, J. L. Huguenin-Love, M. Diaz, N. J. Ianno, and R. J. Soukup, “A non-vacuum process for preparing nanocrystalline CuIn1-xGaxSe2 materials involving an open-air solvothermal reaction,” Sol. Energy Mater. Sol. Cells 94(1), 8–11 (2010).
[CrossRef]

Matsubara, K.

M. M. Islam, S. Ishizuka, A. Yamada, K. Matsubara, S. Niki, T. Sakurai, and K. Akimoto, “Thickness study of Al:ZnO film for application as a window layer in Cu(In1?xGax)Se2 thin film solar cell,” Appl. Surf. Sci. 257(9), 4026–4030 (2011).
[CrossRef]

S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovolt. Res. Appl. 18(6), 453–466 (2010).
[CrossRef]

M. M. Islam, T. Sakurai, S. Ishizuka, A. Yamada, H. Shibata, K. Sakurai, K. Matsubara, S. Niki, and K. Akimoto, “Effect of Se/(Ga + In) ratio on MBE grown Cu(In,Ga)Se2 thin film solar cell,” J. Cryst. Growth 311(7), 2212–2214 (2009).
[CrossRef]

Mawst, L. J.

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys. Condens. Matter 16(31), S3277–S3318 (2004).
[CrossRef]

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “High-Performance 1200-nm InGaAs and 1300-nm InGaAsN Quantum-Well Lasers by Metalorganic Chemical Vapor Deposition,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1220–1227 (2003).
[CrossRef]

Menner, R.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
[CrossRef]

Min, B. K.

E. Lee, J. W. Cho, J. Kim, J. Yun, J. H. Kim, and B. K. Min, “Synthesis of CIGS powders: Transition from binary to quaternary crystalline structure,” J. Alloy. Comp. 506(2), 969–972 (2010).
[CrossRef]

J. W. Park, Y. W. Choi, E. Lee, O. S. Joo, S. Yoon, and B. K. Min, “Synthesis of CIGS absorber layers via a paste coating,” J. Cryst. Growth 311(9), 2621–2625 (2009).
[CrossRef]

Mirasano, A.

J. Olejní?ek, C. A. Kamler, A. Mirasano, A. L. Martinez-Skinner, M. A. Ingersoll, C. L. Exstrom, S. A. Darveau, J. L. Huguenin-Love, M. Diaz, N. J. Ianno, and R. J. Soukup, “A non-vacuum process for preparing nanocrystalline CuIn1-xGaxSe2 materials involving an open-air solvothermal reaction,” Sol. Energy Mater. Sol. Cells 94(1), 8–11 (2010).
[CrossRef]

Mogensen, P.

D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen, and O. Kerrec, “Chalcopyritethin film solar cells by electrodeposition,” Sol. Energy 77(6), 725–737 (2004).
[CrossRef]

Mohanty, B. C.

Y. H. Jo, B. C. Mohanty, and Y. S. Cho, “Enhanced electrical properties of pulsed laser-deposited CuIn0.7Ga0.3Se2thin films via processing control,” Sol. Energy 84(12), 2213–2218 (2010).
[CrossRef]

Moriarty, T. E.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

Naghavi, N.

D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen, and O. Kerrec, “Chalcopyritethin film solar cells by electrodeposition,” Sol. Energy 77(6), 725–737 (2004).
[CrossRef]

Nahm, S.

S. Gu, H.-S. Shin, D.-H. Yeo, Y.-W. Hong, and S. Nahm, “Synthesis of the single phase CIGS particle by solvothermal method for solar cell application,” Curr. Appl. Phys. 11(1), S99–S102 (2011).
[CrossRef]

Nam, D.

M. G. Park, S. J. Ahn, J. H. Yun, J. Gwak, A. Cho, S. K. Ahn, K. Shin, D. Nam, H. Cheong, and K. Yoon, “Characteristics of Cu(In,Ga)Se2 (CIGS) thin films deposited by adirect solution coating process,” J. Alloy. Comp. 513, 68–74 (2012).
[CrossRef]

Niki, S.

M. M. Islam, S. Ishizuka, A. Yamada, K. Matsubara, S. Niki, T. Sakurai, and K. Akimoto, “Thickness study of Al:ZnO film for application as a window layer in Cu(In1?xGax)Se2 thin film solar cell,” Appl. Surf. Sci. 257(9), 4026–4030 (2011).
[CrossRef]

S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovolt. Res. Appl. 18(6), 453–466 (2010).
[CrossRef]

M. M. Islam, T. Sakurai, S. Ishizuka, A. Yamada, H. Shibata, K. Sakurai, K. Matsubara, S. Niki, and K. Akimoto, “Effect of Se/(Ga + In) ratio on MBE grown Cu(In,Ga)Se2 thin film solar cell,” J. Cryst. Growth 311(7), 2212–2214 (2009).
[CrossRef]

Norman, A. G.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

Noufi, R.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
[CrossRef]

Olavarria, W. J.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

Olejnícek, J.

J. Olejní?ek, C. A. Kamler, A. Mirasano, A. L. Martinez-Skinner, M. A. Ingersoll, C. L. Exstrom, S. A. Darveau, J. L. Huguenin-Love, M. Diaz, N. J. Ianno, and R. J. Soukup, “A non-vacuum process for preparing nanocrystalline CuIn1-xGaxSe2 materials involving an open-air solvothermal reaction,” Sol. Energy Mater. Sol. Cells 94(1), 8–11 (2010).
[CrossRef]

Paetel, S.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
[CrossRef]

Panheleux, P.

D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen, and O. Kerrec, “Chalcopyritethin film solar cells by electrodeposition,” Sol. Energy 77(6), 725–737 (2004).
[CrossRef]

Parissi, L.

D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen, and O. Kerrec, “Chalcopyritethin film solar cells by electrodeposition,” Sol. Energy 77(6), 725–737 (2004).
[CrossRef]

Park, B. O.

K. H. Kim, Y. G. Chun, B. O. Park, and K. H. Yoon, “Synthesis of CuInSe2 and CuInGaSe2 Nanoparticles by Solvothermal Route,” Mater. Sci. Forum 449–452, 273–276 (2004).
[CrossRef]

Park, J. W.

J. W. Park, Y. W. Choi, E. Lee, O. S. Joo, S. Yoon, and B. K. Min, “Synthesis of CIGS absorber layers via a paste coating,” J. Cryst. Growth 311(9), 2621–2625 (2009).
[CrossRef]

Park, M. G.

M. G. Park, S. J. Ahn, J. H. Yun, J. Gwak, A. Cho, S. K. Ahn, K. Shin, D. Nam, H. Cheong, and K. Yoon, “Characteristics of Cu(In,Ga)Se2 (CIGS) thin films deposited by adirect solution coating process,” J. Alloy. Comp. 513, 68–74 (2012).
[CrossRef]

Park, S. J.

D. Y. Lee, S. J. Park, and J. H. Kim, “Structural analysis of CIGS film prepared by chemical spray deposition,” Curr. Appl. Phys. 11(1), S88–S92 (2011).
[CrossRef]

Perkins, C. L.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
[CrossRef]

Powalla, M.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
[CrossRef]

S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovolt. Res. Appl. 18(6), 453–466 (2010).
[CrossRef]

Qing, H.

Z. Li, H. Qing, J. Wei-Long, L. Chang-Jian, and S. Yun, “Cu(In, Ga)Se2 Thin Films on Flexible Polyimide Sheet: Structural and Electrical Properties versus Composition,” Chin. Phys. Lett. 26(2), 026801 (2009).
[CrossRef]

Ramdani, O.

D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen, and O. Kerrec, “Chalcopyritethin film solar cells by electrodeposition,” Sol. Energy 77(6), 725–737 (2004).
[CrossRef]

Rau, U.

J. F. Guillemoles, L. Kronik, D. Cahen, U. Rau, A. Jasenek, and H. W. Schock, “Stability issues of Cu(In,Ga)Se2 based solar cells,” J. Phys. Chem. B 104(20), 4849–4862 (2000).
[CrossRef]

Repins, I.

S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovolt. Res. Appl. 18(6), 453–466 (2010).
[CrossRef]

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
[CrossRef]

Ritala, M.

M. Kemell, M. Ritala, and M. Leskela, “Thin film deposition methods for CuInSe2 solar cells,” Crit. Rev. Solid State Mater. Sci. 30(1), 1–31 (2005).
[CrossRef]

Romero, M. J.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

Roussel, O.

D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen, and O. Kerrec, “Chalcopyritethin film solar cells by electrodeposition,” Sol. Energy 77(6), 725–737 (2004).
[CrossRef]

Sabnis, V.

M. Wiemer, V. Sabnis, and H. Yuen, “43.5% efficient lattice matched solar cells,” Proc. SPIE 8108, 810804, 810804-5 (2011).
[CrossRef]

Sakurai, K.

M. M. Islam, T. Sakurai, S. Ishizuka, A. Yamada, H. Shibata, K. Sakurai, K. Matsubara, S. Niki, and K. Akimoto, “Effect of Se/(Ga + In) ratio on MBE grown Cu(In,Ga)Se2 thin film solar cell,” J. Cryst. Growth 311(7), 2212–2214 (2009).
[CrossRef]

Sakurai, T.

M. M. Islam, S. Ishizuka, A. Yamada, K. Matsubara, S. Niki, T. Sakurai, and K. Akimoto, “Thickness study of Al:ZnO film for application as a window layer in Cu(In1?xGax)Se2 thin film solar cell,” Appl. Surf. Sci. 257(9), 4026–4030 (2011).
[CrossRef]

M. M. Islam, T. Sakurai, S. Ishizuka, A. Yamada, H. Shibata, K. Sakurai, K. Matsubara, S. Niki, and K. Akimoto, “Effect of Se/(Ga + In) ratio on MBE grown Cu(In,Ga)Se2 thin film solar cell,” J. Cryst. Growth 311(7), 2212–2214 (2009).
[CrossRef]

Sargent, E. H.

J. Tang, S. Hinds, S. O. Kelley, and E. H. Sargent, “Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles,” Chem. Mater. 20(22), 6906–6910 (2008).
[CrossRef]

Scharf, J.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
[CrossRef]

Schock, H. W.

J. F. Guillemoles, L. Kronik, D. Cahen, U. Rau, A. Jasenek, and H. W. Schock, “Stability issues of Cu(In,Ga)Se2 based solar cells,” J. Phys. Chem. B 104(20), 4849–4862 (2000).
[CrossRef]

Shibata, H.

M. M. Islam, T. Sakurai, S. Ishizuka, A. Yamada, H. Shibata, K. Sakurai, K. Matsubara, S. Niki, and K. Akimoto, “Effect of Se/(Ga + In) ratio on MBE grown Cu(In,Ga)Se2 thin film solar cell,” J. Cryst. Growth 311(7), 2212–2214 (2009).
[CrossRef]

Shin, H.-S.

S. Gu, H.-S. Shin, D.-H. Yeo, Y.-W. Hong, and S. Nahm, “Synthesis of the single phase CIGS particle by solvothermal method for solar cell application,” Curr. Appl. Phys. 11(1), S99–S102 (2011).
[CrossRef]

Shin, K.

M. G. Park, S. J. Ahn, J. H. Yun, J. Gwak, A. Cho, S. K. Ahn, K. Shin, D. Nam, H. Cheong, and K. Yoon, “Characteristics of Cu(In,Ga)Se2 (CIGS) thin films deposited by adirect solution coating process,” J. Alloy. Comp. 513, 68–74 (2012).
[CrossRef]

Sicx-Kurdi, J.

D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen, and O. Kerrec, “Chalcopyritethin film solar cells by electrodeposition,” Sol. Energy 77(6), 725–737 (2004).
[CrossRef]

Song, J.

K. H. Yoon, S. K. Kim, R. B. V. Chalapathy, J. H. Yun, J. C. Lee, and J. Song, “Characterization of a Molybdenum Electrode Deposited by Sputtering and Its E?ect on Cu(In,Ga)Se2 Solar Cells,” J. Korean Phys. Soc. 45(4), 1114–1118 (2004).

Soukup, R. J.

J. Olejní?ek, C. A. Kamler, A. Mirasano, A. L. Martinez-Skinner, M. A. Ingersoll, C. L. Exstrom, S. A. Darveau, J. L. Huguenin-Love, M. Diaz, N. J. Ianno, and R. J. Soukup, “A non-vacuum process for preparing nanocrystalline CuIn1-xGaxSe2 materials involving an open-air solvothermal reaction,” Sol. Energy Mater. Sol. Cells 94(1), 8–11 (2010).
[CrossRef]

Sun, Y.

L. Zhang, Q. He, W. L. Jiang, F. F. Liu, C. J. Li, and Y. Sun, “Effects of substrate temperature on the structural and electrical properties of Cu(In,Ga)Se2 thin films,” Sol. Energy Mater. Sol. Cells 93(1), 114–118 (2009).
[CrossRef]

Tang, J.

J. Tang, S. Hinds, S. O. Kelley, and E. H. Sargent, “Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles,” Chem. Mater. 20(22), 6906–6910 (2008).
[CrossRef]

Tansu, N.

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys. Condens. Matter 16(31), S3277–S3318 (2004).
[CrossRef]

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “High-Performance 1200-nm InGaAs and 1300-nm InGaAsN Quantum-Well Lasers by Metalorganic Chemical Vapor Deposition,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1220–1227 (2003).
[CrossRef]

Taunier, S.

D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen, and O. Kerrec, “Chalcopyritethin film solar cells by electrodeposition,” Sol. Energy 77(6), 725–737 (2004).
[CrossRef]

To, B.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
[CrossRef]

Ward, J. S.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

Wei, S. H.

S. H. Wei, S. B. Zhang, and A. Zunger, “Effects of Ga addition to CuInSe2 on its electronic structural and defect properties,” Appl. Phys. Lett. 72(24), 3199–3201 (1998).
[CrossRef]

Wei-Long, J.

Z. Li, H. Qing, J. Wei-Long, L. Chang-Jian, and S. Yun, “Cu(In, Ga)Se2 Thin Films on Flexible Polyimide Sheet: Structural and Electrical Properties versus Composition,” Chin. Phys. Lett. 26(2), 026801 (2009).
[CrossRef]

Wiemer, M.

M. Wiemer, V. Sabnis, and H. Yuen, “43.5% efficient lattice matched solar cells,” Proc. SPIE 8108, 810804, 810804-5 (2011).
[CrossRef]

Wischmann, W.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
[CrossRef]

Wistey, M. A.

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 µm GaInNAsSb lasers,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1089–1098 (2005).
[CrossRef]

Wuerz, R.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
[CrossRef]

Yamada, A.

M. M. Islam, S. Ishizuka, A. Yamada, K. Matsubara, S. Niki, T. Sakurai, and K. Akimoto, “Thickness study of Al:ZnO film for application as a window layer in Cu(In1?xGax)Se2 thin film solar cell,” Appl. Surf. Sci. 257(9), 4026–4030 (2011).
[CrossRef]

M. M. Islam, T. Sakurai, S. Ishizuka, A. Yamada, H. Shibata, K. Sakurai, K. Matsubara, S. Niki, and K. Akimoto, “Effect of Se/(Ga + In) ratio on MBE grown Cu(In,Ga)Se2 thin film solar cell,” J. Cryst. Growth 311(7), 2212–2214 (2009).
[CrossRef]

Yeh, J.-Y.

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys. Condens. Matter 16(31), S3277–S3318 (2004).
[CrossRef]

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “High-Performance 1200-nm InGaAs and 1300-nm InGaAsN Quantum-Well Lasers by Metalorganic Chemical Vapor Deposition,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1220–1227 (2003).
[CrossRef]

Yeo, D.-H.

S. Gu, H.-S. Shin, D.-H. Yeo, Y.-W. Hong, and S. Nahm, “Synthesis of the single phase CIGS particle by solvothermal method for solar cell application,” Curr. Appl. Phys. 11(1), S99–S102 (2011).
[CrossRef]

Yoon, K.

M. G. Park, S. J. Ahn, J. H. Yun, J. Gwak, A. Cho, S. K. Ahn, K. Shin, D. Nam, H. Cheong, and K. Yoon, “Characteristics of Cu(In,Ga)Se2 (CIGS) thin films deposited by adirect solution coating process,” J. Alloy. Comp. 513, 68–74 (2012).
[CrossRef]

Yoon, K. H.

Y. G. Chun, K. H. Kim, and K. H. Yoon, “Synthesis of CuInGaSe2 nanoparticles by solvothermal route,” Thin Solid Films 480–481, 46–49 (2005).
[CrossRef]

K. H. Yoon, S. K. Kim, R. B. V. Chalapathy, J. H. Yun, J. C. Lee, and J. Song, “Characterization of a Molybdenum Electrode Deposited by Sputtering and Its E?ect on Cu(In,Ga)Se2 Solar Cells,” J. Korean Phys. Soc. 45(4), 1114–1118 (2004).

K. H. Kim, Y. G. Chun, B. O. Park, and K. H. Yoon, “Synthesis of CuInSe2 and CuInGaSe2 Nanoparticles by Solvothermal Route,” Mater. Sci. Forum 449–452, 273–276 (2004).
[CrossRef]

Yoon, S.

J. W. Park, Y. W. Choi, E. Lee, O. S. Joo, S. Yoon, and B. K. Min, “Synthesis of CIGS absorber layers via a paste coating,” J. Cryst. Growth 311(9), 2621–2625 (2009).
[CrossRef]

Yuen, H.

M. Wiemer, V. Sabnis, and H. Yuen, “43.5% efficient lattice matched solar cells,” Proc. SPIE 8108, 810804, 810804-5 (2011).
[CrossRef]

Yuen, H. B.

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 µm GaInNAsSb lasers,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1089–1098 (2005).
[CrossRef]

Yun, J.

E. Lee, J. W. Cho, J. Kim, J. Yun, J. H. Kim, and B. K. Min, “Synthesis of CIGS powders: Transition from binary to quaternary crystalline structure,” J. Alloy. Comp. 506(2), 969–972 (2010).
[CrossRef]

Yun, J. H.

M. G. Park, S. J. Ahn, J. H. Yun, J. Gwak, A. Cho, S. K. Ahn, K. Shin, D. Nam, H. Cheong, and K. Yoon, “Characteristics of Cu(In,Ga)Se2 (CIGS) thin films deposited by adirect solution coating process,” J. Alloy. Comp. 513, 68–74 (2012).
[CrossRef]

K. H. Yoon, S. K. Kim, R. B. V. Chalapathy, J. H. Yun, J. C. Lee, and J. Song, “Characterization of a Molybdenum Electrode Deposited by Sputtering and Its E?ect on Cu(In,Ga)Se2 Solar Cells,” J. Korean Phys. Soc. 45(4), 1114–1118 (2004).

Yun, S.

Z. Li, H. Qing, J. Wei-Long, L. Chang-Jian, and S. Yun, “Cu(In, Ga)Se2 Thin Films on Flexible Polyimide Sheet: Structural and Electrical Properties versus Composition,” Chin. Phys. Lett. 26(2), 026801 (2009).
[CrossRef]

Zhang, L.

L. Zhang, Q. He, W. L. Jiang, F. F. Liu, C. J. Li, and Y. Sun, “Effects of substrate temperature on the structural and electrical properties of Cu(In,Ga)Se2 thin films,” Sol. Energy Mater. Sol. Cells 93(1), 114–118 (2009).
[CrossRef]

Zhang, S. B.

S. H. Wei, S. B. Zhang, and A. Zunger, “Effects of Ga addition to CuInSe2 on its electronic structural and defect properties,” Appl. Phys. Lett. 72(24), 3199–3201 (1998).
[CrossRef]

Zhao, C.

Y. Liu, D. Kong, J. Li, C. Zhao, C. Chen, and J. Brugger, “Preparation of Cu(In,Ga)Se2 Thin Film by Solvothermal and Spin-coating Process,” Energy Procedia 16, 217–222 (2012).
[CrossRef]

Zunger, A.

S. H. Wei, S. B. Zhang, and A. Zunger, “Effects of Ga addition to CuInSe2 on its electronic structural and defect properties,” Appl. Phys. Lett. 72(24), 3199–3201 (1998).
[CrossRef]

Appl. Phys. Lett. (2)

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

S. H. Wei, S. B. Zhang, and A. Zunger, “Effects of Ga addition to CuInSe2 on its electronic structural and defect properties,” Appl. Phys. Lett. 72(24), 3199–3201 (1998).
[CrossRef]

Appl. Surf. Sci. (1)

M. M. Islam, S. Ishizuka, A. Yamada, K. Matsubara, S. Niki, T. Sakurai, and K. Akimoto, “Thickness study of Al:ZnO film for application as a window layer in Cu(In1?xGax)Se2 thin film solar cell,” Appl. Surf. Sci. 257(9), 4026–4030 (2011).
[CrossRef]

Chem. Mater. (1)

J. Tang, S. Hinds, S. O. Kelley, and E. H. Sargent, “Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles,” Chem. Mater. 20(22), 6906–6910 (2008).
[CrossRef]

Chin. Phys. Lett. (1)

Z. Li, H. Qing, J. Wei-Long, L. Chang-Jian, and S. Yun, “Cu(In, Ga)Se2 Thin Films on Flexible Polyimide Sheet: Structural and Electrical Properties versus Composition,” Chin. Phys. Lett. 26(2), 026801 (2009).
[CrossRef]

Crit. Rev. Solid State Mater. Sci. (1)

M. Kemell, M. Ritala, and M. Leskela, “Thin film deposition methods for CuInSe2 solar cells,” Crit. Rev. Solid State Mater. Sci. 30(1), 1–31 (2005).
[CrossRef]

Curr. Appl. Phys. (2)

S. Gu, H.-S. Shin, D.-H. Yeo, Y.-W. Hong, and S. Nahm, “Synthesis of the single phase CIGS particle by solvothermal method for solar cell application,” Curr. Appl. Phys. 11(1), S99–S102 (2011).
[CrossRef]

D. Y. Lee, S. J. Park, and J. H. Kim, “Structural analysis of CIGS film prepared by chemical spray deposition,” Curr. Appl. Phys. 11(1), S88–S92 (2011).
[CrossRef]

Energy Procedia (1)

Y. Liu, D. Kong, J. Li, C. Zhao, C. Chen, and J. Brugger, “Preparation of Cu(In,Ga)Se2 Thin Film by Solvothermal and Spin-coating Process,” Energy Procedia 16, 217–222 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “High-Performance 1200-nm InGaAs and 1300-nm InGaAsN Quantum-Well Lasers by Metalorganic Chemical Vapor Deposition,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1220–1227 (2003).
[CrossRef]

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 µm GaInNAsSb lasers,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1089–1098 (2005).
[CrossRef]

J. Alloy. Comp. (2)

M. G. Park, S. J. Ahn, J. H. Yun, J. Gwak, A. Cho, S. K. Ahn, K. Shin, D. Nam, H. Cheong, and K. Yoon, “Characteristics of Cu(In,Ga)Se2 (CIGS) thin films deposited by adirect solution coating process,” J. Alloy. Comp. 513, 68–74 (2012).
[CrossRef]

E. Lee, J. W. Cho, J. Kim, J. Yun, J. H. Kim, and B. K. Min, “Synthesis of CIGS powders: Transition from binary to quaternary crystalline structure,” J. Alloy. Comp. 506(2), 969–972 (2010).
[CrossRef]

J. Cryst. Growth (2)

J. W. Park, Y. W. Choi, E. Lee, O. S. Joo, S. Yoon, and B. K. Min, “Synthesis of CIGS absorber layers via a paste coating,” J. Cryst. Growth 311(9), 2621–2625 (2009).
[CrossRef]

M. M. Islam, T. Sakurai, S. Ishizuka, A. Yamada, H. Shibata, K. Sakurai, K. Matsubara, S. Niki, and K. Akimoto, “Effect of Se/(Ga + In) ratio on MBE grown Cu(In,Ga)Se2 thin film solar cell,” J. Cryst. Growth 311(7), 2212–2214 (2009).
[CrossRef]

J. Korean Phys. Soc. (1)

K. H. Yoon, S. K. Kim, R. B. V. Chalapathy, J. H. Yun, J. C. Lee, and J. Song, “Characterization of a Molybdenum Electrode Deposited by Sputtering and Its E?ect on Cu(In,Ga)Se2 Solar Cells,” J. Korean Phys. Soc. 45(4), 1114–1118 (2004).

J. Phys. Chem. B (1)

J. F. Guillemoles, L. Kronik, D. Cahen, U. Rau, A. Jasenek, and H. W. Schock, “Stability issues of Cu(In,Ga)Se2 based solar cells,” J. Phys. Chem. B 104(20), 4849–4862 (2000).
[CrossRef]

J. Phys. Condens. Matter (1)

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys. Condens. Matter 16(31), S3277–S3318 (2004).
[CrossRef]

Mater. Sci. Forum (1)

K. H. Kim, Y. G. Chun, B. O. Park, and K. H. Yoon, “Synthesis of CuInSe2 and CuInGaSe2 Nanoparticles by Solvothermal Route,” Mater. Sci. Forum 449–452, 273–276 (2004).
[CrossRef]

Opt. Express (1)

Proc. SPIE (1)

M. Wiemer, V. Sabnis, and H. Yuen, “43.5% efficient lattice matched solar cells,” Proc. SPIE 8108, 810804, 810804-5 (2011).
[CrossRef]

Prog. Photovolt. Res. Appl. (3)

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011).
[CrossRef]

S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovolt. Res. Appl. 18(6), 453–466 (2010).
[CrossRef]

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
[CrossRef]

Sol. Energy (2)

D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen, and O. Kerrec, “Chalcopyritethin film solar cells by electrodeposition,” Sol. Energy 77(6), 725–737 (2004).
[CrossRef]

Y. H. Jo, B. C. Mohanty, and Y. S. Cho, “Enhanced electrical properties of pulsed laser-deposited CuIn0.7Ga0.3Se2thin films via processing control,” Sol. Energy 84(12), 2213–2218 (2010).
[CrossRef]

Sol. Energy Mater. Sol. Cells (3)

L. Zhang, Q. He, W. L. Jiang, F. F. Liu, C. J. Li, and Y. Sun, “Effects of substrate temperature on the structural and electrical properties of Cu(In,Ga)Se2 thin films,” Sol. Energy Mater. Sol. Cells 93(1), 114–118 (2009).
[CrossRef]

F. B. Dejene, “The structural and material properties of CuInSe2 and CuInGaSe2 prepared by selenization of stacks of metal and compound precursors by Se vapor for solar cell applications,” Sol. Energy Mater. Sol. Cells 93(5), 577–582 (2009).
[CrossRef]

J. Olejní?ek, C. A. Kamler, A. Mirasano, A. L. Martinez-Skinner, M. A. Ingersoll, C. L. Exstrom, S. A. Darveau, J. L. Huguenin-Love, M. Diaz, N. J. Ianno, and R. J. Soukup, “A non-vacuum process for preparing nanocrystalline CuIn1-xGaxSe2 materials involving an open-air solvothermal reaction,” Sol. Energy Mater. Sol. Cells 94(1), 8–11 (2010).
[CrossRef]

Thin Solid Films (3)

J. F. Guillemoles, “Stability of Cu(In,Ga)Se2 solar cells: a thermodynamic approach,” Thin Solid Films 361–362, 338–345 (2000).
[CrossRef]

I. H. Choi and D. H. Lee, “Preparation of CuInGaSe2 films by metalorganic chemical vapor deposition using three precursors,” Thin Solid Films 515(11), 4778–4782 (2007).
[CrossRef]

Y. G. Chun, K. H. Kim, and K. H. Yoon, “Synthesis of CuInGaSe2 nanoparticles by solvothermal route,” Thin Solid Films 480–481, 46–49 (2005).
[CrossRef]

Other (3)

J. Olejní?ek, C. A. Kamler, A. Mirasano, A. L. Martinez-Skinner, M. A. Ingersoll, C. L. Exstrom, S. A. Darveau, J. L. Huguenin-Love, M. Diaz, J. Ianno, and J. Soukup, “A non-vacuum process for preparing nanocrystalline CuIn1-xGaxSe2 materials involving an open-air solvothermal reaction” (University of Nebraska–Lincoln, 2010).

A. Yamada, H. Miyazaki, R. Mikami, and M. Konagail, “Improved performance of Cu(InGa)Se2 thin film solar cells with high Ga composition using rapid thermal annealing process,” in 3rd World Conference on Phorovoliaic Energy Conversion, 2859–2863. Osaka, Japan (2003).

M. R. Robinson and M. R. Roscheisen (Inventors), Nanosolar Inc. (Assignee), U.S. Patent No. 7604843B1 (Oct. 20, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

XRD map of the CIGS samples synthesized with (a) In:Ga = 0.7:0.3 (b) In:Ga = 0.5:0.5, and (c) In:Ga = 0.3:0.7 after annealing in the range of 450 °C to 600 °C.

Fig. 2
Fig. 2

High-magnification top view SEM images of Samples (a) H0, (b) H5, (c) H8, (d) H13, and (e) H26; (f) XRD results of Samples H0, H5, H8, H13, and H26.

Fig. 3
Fig. 3

SEM end views of Samples H0, H5, H8, H13, and H26.

Fig. 4
Fig. 4

(a) XRD patterns of Samples T200, T400, T500, T600, and T800. SEM top views of Samples (b) T200, (c) T400, (d) T500, (e) T600, and (f) T800.

Fig. 5
Fig. 5

SEM end views image of Samples (a) T200, (b) T400, (c) T500, (d) T600, and (e) T800.

Fig. 6
Fig. 6

Distribution map (a), (b), (c), (d), and (e) of the grain sizes of Samples T200, T400, T500, T600, and T800 measured using ImageJ.

Fig. 7
Fig. 7

(a) XRD measured results of Samples t80, t90, t100, t110, and t120. High-magnification top view SEM images of Samples (b) t80, (c) t90, (d) t100, (e) t110, and (f) t120; (g) Top view SEM image of Sample t110 magnified 150,000 × and 500 nm in size.

Fig. 8
Fig. 8

SEM end views of Samples (a) t80, (b) t90, (c) t100, (d) t110, and (e) t120. The upper-right map in each figure represents the cross-sectional images of the samples.

Fig. 9
Fig. 9

Distribution map (a), (b), (c), (d), and (e) of the grain sizes of Samples t80, t90, t100, t110, and t120 measured using ImageJ.

Fig. 10
Fig. 10

Relational graph of the thermal annealing time, grain size, and resistivity.

Tables (5)

Tables Icon

Table 1 Parameter list of CIGS samples synthesized in different In/Ga ratios, position of diffraction peak (112) obtained after annealing, and lattice constant tablea

Tables Icon

Table 2 Data sheet obtained by feeding different hydrogen contents and different annealing temperatures, position of diffraction peak (112) after annealing, and lattice constant tablea

Tables Icon

Table 3 Data sheet of the samples at different annealing temperatures, position of diffraction peak (112) after annealing, and lattice constant table

Tables Icon

Table 4 Parameter of CIGS synthesis with different annealing times for Samples t80, t90, t100, t110, and t120 of 80, 90, 100, 110, and 120 min

Tables Icon

Table 5 Measured result of Samples t80, t90, t100, t110, and t120 using a four-point prober

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Cu ( NO 3 ) 2 · 3H 2     Cu 2 + + HNO 3 + OH In ( NO 3 ) 2 · 3H 2      In 2 + + HNO 3 + OH Ga ( NO 3 ) 2 · 3H 2 O      Ga 2 + + HNO 3 + OH SeCl 4      Se 4+ +  4Cl Se 4+ + 4ROH   Se ( OR ) 4 +  4H + 4H + +  4Cl    4HCl Cu 2+ +  xIn 3+ + ( 1x ) Ga 3+ + Se ( OR ) 4 + ROH  CuIn x Ga (1x) Se 2 +residual organics
d= λ 2sinθ
1 d 2 = h 2 + k 2 a 2 + l 2 c 2  
ρ= R sheet × T f  

Metrics