Abstract

Highly Er-doped Yb-Y disilicates thin films grown on c-Si will be presented. The approach has permitted to vary independently the concentrations of both active rare earths, Er and Yb, and to effectively control the Er sensitization from Yb ions. We will demonstrate that these films are stable, having a uniform distribution of the chemical components throughout their thickness and a favored crystallization of the α-phase, which is the most optically efficient. We verified that this crystallization can be ascribed to a densification of the material and to the mobility locally introduced by ion implantation. Finally we will show a strong PL emission at 1.54 μm, associated to the Yb-Er energy transfer mechanism, without any deleterious energy back-transfer. These properties make this new class of thin films a valuable and promising approach for the realization of efficient planar amplifiers.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, “1.54-μm luminescence of erbium-implanted III-V semiconductors and silicon,” Appl. Phys. Lett.43(10), 943–945 (1983).
    [CrossRef]
  2. K. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics,” J. Prog. Quantum Electron.26(4-5), 225–284 (2002).
    [CrossRef]
  3. A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys.82(1), 1–39 (1997).
    [CrossRef]
  4. K. Hattori, T. Kitagawa, M. Oguma, Y. Ohmori, and M. Horiguchi, “Erbium-doped silica-based waveguide amplifier integrated with a 980/1530 nm WDM coupler,” Electron. Lett.30(11), 856–857 (1994).
    [CrossRef]
  5. Y. C. Yan, A. J. Faber, H. de Waal, P. J. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett.71(20), 2922–2924 (1997).
    [CrossRef]
  6. M. Miritello, R. Lo Savio, A. M. Piro, G. Franzò, F. Priolo, F. Iacona, and C. Bongiorno, “Optical and structural properties of Er2O3 films grown by magnetron sputtering,” J. Appl. Phys.100(1), 013502 (2006).
    [CrossRef]
  7. T.-D. Nguyen, C.-T. Dinh, and T.-O. Do, “Shape- and size-controlled synthesis of monoclinic ErOOH and cubic Er2O3 from micro- to nanostructures and their upconversion luminescence,” ACS Nano4(4), 2263–2273 (2010).
    [CrossRef] [PubMed]
  8. M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater.19(12), 1582–1588 (2007).
    [CrossRef]
  9. H.-J. Choi, J. H. Shin, K. Suh, H.-K. Seong, H.-C. Han, and J.-C. Lee, “Self-organized growth of Si/silica/Er2Si2O7 core-shell nanowire heterostructures and their luminescence,” Nano Lett.5(12), 2432–2437 (2005).
    [CrossRef] [PubMed]
  10. F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Effect of Yb3+ codoping on the upconversion emission in nanocrystalline Y2O3:Er3+,” J. Phys. Chem. B107(5), 1107–1112 (2003).
    [CrossRef]
  11. R. Lo Savio, M. Miritello, P. Cardile, and F. Priolo, “Concentration dependence of the Er3+ visible and infrared luminescence in Y2−xErxO3 thin films on Si,” J. Appl. Phys.106(4), 043512 (2009).
    [CrossRef]
  12. M. Miritello, P. Cardile, R. Lo Savio, and F. Priolo, “Energy transfer and enhanced 1.54 μm emission in erbium-ytterbium disilicate thin films,” Opt. Express19(21), 20761–20772 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-21-20761 .
    [CrossRef] [PubMed]
  13. M. Miritello, R. Lo Savio, P. Cardile, and F. Priolo, “Enhanced down conversion of photons emitted by photoexcited ErxY2-xSi2O7 films grown on silicon,” Phys. Rev. B81(4), 041411 (2010).
    [CrossRef]
  14. X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates,” Appl. Phys. Lett.98(7), 071903 (2011).
    [CrossRef]
  15. X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2−xSiO5 waveguide,” J. Appl. Phys. Lett.108, 013506 (2010).
  16. K. Suh, J.-H. Shin, S.-J. Seo, and B.-S. Bae, “Er3+ luminescence and cooperative upconversion in ErxY2−xSiO5 nanocrystal aggregates fabricated using Si nanowires,” Appl. Phys. Lett.92(12), 121910 (2008).
    [CrossRef]
  17. M. C. Strohhöfer and A. Polman, “Absorption and emission spectroscopy in Er3+-Yb3+ doped aluminum oxide waveguides,” Opt. Mater.21(4), 705–712 (2003).
    [CrossRef]
  18. G. C. Valley, “Modeling cladding-pumped Er/Yb fiber amplifiers,” Opt. Fiber Technol.7(1), 21–44 (2001).
    [CrossRef]
  19. H. S. Hsu, C. Cai, and A. M. Armani, “Ultra-low-threshold Er:Yb sol-gel microlaser on silicon,” Opt. Express17(25), 23265–23271 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-25-23265 .
    [CrossRef] [PubMed]
  20. B. Wang, R. M. Guo, X. J. Wang, L. Wang, L. Y. Hong, B. Yin, L. F. Gao, and Z. Zhou, “Near-infrared electroluminescence in ErYb silicate based light-emitting device,” Opt. Mater.34(8), 1371–1374 (2012).
    [CrossRef]
  21. J. Ito and H. Johnson, “Synthesis and study of yttrialite,” Am. Mineral.53, 1940–1952 (1968).
  22. R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett.93(2), 021919 (2008).
    [CrossRef]
  23. C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. J. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys.100(11), 113103 (2006).
    [CrossRef]
  24. P. Yang, P. Deng, and Z. Yin, “Concentration quenching in Yb:YAG,” J. Lumin.97(1), 51–54 (2002).
    [CrossRef]
  25. P. Cardile, M. Miritello, and F. Priolo, “Energy transfer mechanisms in Er-Yb-Y disilicate thin films,” Appl. Phys. Lett.100(25), 251913 (2012).
    [CrossRef]
  26. B.-C. Hwang, S. Jiang, T. Luo, J. Watson, G. Sorbello, and N. Peyghambarian, “Cooperative upconversion and energy transfer of new high Er3+- and Yb3+-doped phosphate glasses,” J. Opt. Soc. Am. B17(5), 833–839 (2000).
    [CrossRef]
  27. L. Zhang, H. Hu, C. Qi, and F. Lin, “Spectroscopic properties and energy transfer in Yb3+/Er3+-doped phosphate glasses,” Opt. Mater.17(3), 371–377 (2001).
    [CrossRef]
  28. L. Laversenne, S. Kairouani, Y. Guyot, C. Goutaudier, G. Boulon, and M. T. Cohen-Adad, “Correlation between dopant content and excited-state dynamics properties in Er3+–Yb3+-codoped Y2O3 by using a new combinatorial method,” Opt. Mater.19(1), 59–66 (2002).
    [CrossRef]

2012

B. Wang, R. M. Guo, X. J. Wang, L. Wang, L. Y. Hong, B. Yin, L. F. Gao, and Z. Zhou, “Near-infrared electroluminescence in ErYb silicate based light-emitting device,” Opt. Mater.34(8), 1371–1374 (2012).
[CrossRef]

P. Cardile, M. Miritello, and F. Priolo, “Energy transfer mechanisms in Er-Yb-Y disilicate thin films,” Appl. Phys. Lett.100(25), 251913 (2012).
[CrossRef]

2011

M. Miritello, P. Cardile, R. Lo Savio, and F. Priolo, “Energy transfer and enhanced 1.54 μm emission in erbium-ytterbium disilicate thin films,” Opt. Express19(21), 20761–20772 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-21-20761 .
[CrossRef] [PubMed]

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates,” Appl. Phys. Lett.98(7), 071903 (2011).
[CrossRef]

2010

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2−xSiO5 waveguide,” J. Appl. Phys. Lett.108, 013506 (2010).

T.-D. Nguyen, C.-T. Dinh, and T.-O. Do, “Shape- and size-controlled synthesis of monoclinic ErOOH and cubic Er2O3 from micro- to nanostructures and their upconversion luminescence,” ACS Nano4(4), 2263–2273 (2010).
[CrossRef] [PubMed]

M. Miritello, R. Lo Savio, P. Cardile, and F. Priolo, “Enhanced down conversion of photons emitted by photoexcited ErxY2-xSi2O7 films grown on silicon,” Phys. Rev. B81(4), 041411 (2010).
[CrossRef]

2009

H. S. Hsu, C. Cai, and A. M. Armani, “Ultra-low-threshold Er:Yb sol-gel microlaser on silicon,” Opt. Express17(25), 23265–23271 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-25-23265 .
[CrossRef] [PubMed]

R. Lo Savio, M. Miritello, P. Cardile, and F. Priolo, “Concentration dependence of the Er3+ visible and infrared luminescence in Y2−xErxO3 thin films on Si,” J. Appl. Phys.106(4), 043512 (2009).
[CrossRef]

2008

K. Suh, J.-H. Shin, S.-J. Seo, and B.-S. Bae, “Er3+ luminescence and cooperative upconversion in ErxY2−xSiO5 nanocrystal aggregates fabricated using Si nanowires,” Appl. Phys. Lett.92(12), 121910 (2008).
[CrossRef]

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett.93(2), 021919 (2008).
[CrossRef]

2007

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater.19(12), 1582–1588 (2007).
[CrossRef]

2006

M. Miritello, R. Lo Savio, A. M. Piro, G. Franzò, F. Priolo, F. Iacona, and C. Bongiorno, “Optical and structural properties of Er2O3 films grown by magnetron sputtering,” J. Appl. Phys.100(1), 013502 (2006).
[CrossRef]

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. J. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys.100(11), 113103 (2006).
[CrossRef]

2005

H.-J. Choi, J. H. Shin, K. Suh, H.-K. Seong, H.-C. Han, and J.-C. Lee, “Self-organized growth of Si/silica/Er2Si2O7 core-shell nanowire heterostructures and their luminescence,” Nano Lett.5(12), 2432–2437 (2005).
[CrossRef] [PubMed]

2003

F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Effect of Yb3+ codoping on the upconversion emission in nanocrystalline Y2O3:Er3+,” J. Phys. Chem. B107(5), 1107–1112 (2003).
[CrossRef]

M. C. Strohhöfer and A. Polman, “Absorption and emission spectroscopy in Er3+-Yb3+ doped aluminum oxide waveguides,” Opt. Mater.21(4), 705–712 (2003).
[CrossRef]

2002

K. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics,” J. Prog. Quantum Electron.26(4-5), 225–284 (2002).
[CrossRef]

P. Yang, P. Deng, and Z. Yin, “Concentration quenching in Yb:YAG,” J. Lumin.97(1), 51–54 (2002).
[CrossRef]

L. Laversenne, S. Kairouani, Y. Guyot, C. Goutaudier, G. Boulon, and M. T. Cohen-Adad, “Correlation between dopant content and excited-state dynamics properties in Er3+–Yb3+-codoped Y2O3 by using a new combinatorial method,” Opt. Mater.19(1), 59–66 (2002).
[CrossRef]

2001

L. Zhang, H. Hu, C. Qi, and F. Lin, “Spectroscopic properties and energy transfer in Yb3+/Er3+-doped phosphate glasses,” Opt. Mater.17(3), 371–377 (2001).
[CrossRef]

G. C. Valley, “Modeling cladding-pumped Er/Yb fiber amplifiers,” Opt. Fiber Technol.7(1), 21–44 (2001).
[CrossRef]

2000

1997

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys.82(1), 1–39 (1997).
[CrossRef]

Y. C. Yan, A. J. Faber, H. de Waal, P. J. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett.71(20), 2922–2924 (1997).
[CrossRef]

1994

K. Hattori, T. Kitagawa, M. Oguma, Y. Ohmori, and M. Horiguchi, “Erbium-doped silica-based waveguide amplifier integrated with a 980/1530 nm WDM coupler,” Electron. Lett.30(11), 856–857 (1994).
[CrossRef]

1983

H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, “1.54-μm luminescence of erbium-implanted III-V semiconductors and silicon,” Appl. Phys. Lett.43(10), 943–945 (1983).
[CrossRef]

1968

J. Ito and H. Johnson, “Synthesis and study of yttrialite,” Am. Mineral.53, 1940–1952 (1968).

Armani, A. M.

Axmann, A.

H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, “1.54-μm luminescence of erbium-implanted III-V semiconductors and silicon,” Appl. Phys. Lett.43(10), 943–945 (1983).
[CrossRef]

Bae, B.-S.

K. Suh, J.-H. Shin, S.-J. Seo, and B.-S. Bae, “Er3+ luminescence and cooperative upconversion in ErxY2−xSiO5 nanocrystal aggregates fabricated using Si nanowires,” Appl. Phys. Lett.92(12), 121910 (2008).
[CrossRef]

Bell, M. J. V.

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. J. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys.100(11), 113103 (2006).
[CrossRef]

Bettinelli, M.

F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Effect of Yb3+ codoping on the upconversion emission in nanocrystalline Y2O3:Er3+,” J. Phys. Chem. B107(5), 1107–1112 (2003).
[CrossRef]

Bongiorno, C.

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater.19(12), 1582–1588 (2007).
[CrossRef]

M. Miritello, R. Lo Savio, A. M. Piro, G. Franzò, F. Priolo, F. Iacona, and C. Bongiorno, “Optical and structural properties of Er2O3 films grown by magnetron sputtering,” J. Appl. Phys.100(1), 013502 (2006).
[CrossRef]

Boulon, G.

L. Laversenne, S. Kairouani, Y. Guyot, C. Goutaudier, G. Boulon, and M. T. Cohen-Adad, “Correlation between dopant content and excited-state dynamics properties in Er3+–Yb3+-codoped Y2O3 by using a new combinatorial method,” Opt. Mater.19(1), 59–66 (2002).
[CrossRef]

Boyer, J. C.

F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Effect of Yb3+ codoping on the upconversion emission in nanocrystalline Y2O3:Er3+,” J. Phys. Chem. B107(5), 1107–1112 (2003).
[CrossRef]

Cai, C.

Capobianco, J. A.

F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Effect of Yb3+ codoping on the upconversion emission in nanocrystalline Y2O3:Er3+,” J. Phys. Chem. B107(5), 1107–1112 (2003).
[CrossRef]

Cardile, P.

P. Cardile, M. Miritello, and F. Priolo, “Energy transfer mechanisms in Er-Yb-Y disilicate thin films,” Appl. Phys. Lett.100(25), 251913 (2012).
[CrossRef]

M. Miritello, P. Cardile, R. Lo Savio, and F. Priolo, “Energy transfer and enhanced 1.54 μm emission in erbium-ytterbium disilicate thin films,” Opt. Express19(21), 20761–20772 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-21-20761 .
[CrossRef] [PubMed]

M. Miritello, R. Lo Savio, P. Cardile, and F. Priolo, “Enhanced down conversion of photons emitted by photoexcited ErxY2-xSi2O7 films grown on silicon,” Phys. Rev. B81(4), 041411 (2010).
[CrossRef]

R. Lo Savio, M. Miritello, P. Cardile, and F. Priolo, “Concentration dependence of the Er3+ visible and infrared luminescence in Y2−xErxO3 thin films on Si,” J. Appl. Phys.106(4), 043512 (2009).
[CrossRef]

Catunda, T. J.

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. J. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys.100(11), 113103 (2006).
[CrossRef]

Choi, H.-J.

H.-J. Choi, J. H. Shin, K. Suh, H.-K. Seong, H.-C. Han, and J.-C. Lee, “Self-organized growth of Si/silica/Er2Si2O7 core-shell nanowire heterostructures and their luminescence,” Nano Lett.5(12), 2432–2437 (2005).
[CrossRef] [PubMed]

Cohen-Adad, M. T.

L. Laversenne, S. Kairouani, Y. Guyot, C. Goutaudier, G. Boulon, and M. T. Cohen-Adad, “Correlation between dopant content and excited-state dynamics properties in Er3+–Yb3+-codoped Y2O3 by using a new combinatorial method,” Opt. Mater.19(1), 59–66 (2002).
[CrossRef]

de Waal, H.

Y. C. Yan, A. J. Faber, H. de Waal, P. J. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett.71(20), 2922–2924 (1997).
[CrossRef]

Deng, P.

P. Yang, P. Deng, and Z. Yin, “Concentration quenching in Yb:YAG,” J. Lumin.97(1), 51–54 (2002).
[CrossRef]

Dinh, C.-T.

T.-D. Nguyen, C.-T. Dinh, and T.-O. Do, “Shape- and size-controlled synthesis of monoclinic ErOOH and cubic Er2O3 from micro- to nanostructures and their upconversion luminescence,” ACS Nano4(4), 2263–2273 (2010).
[CrossRef] [PubMed]

Do, T.-O.

T.-D. Nguyen, C.-T. Dinh, and T.-O. Do, “Shape- and size-controlled synthesis of monoclinic ErOOH and cubic Er2O3 from micro- to nanostructures and their upconversion luminescence,” ACS Nano4(4), 2263–2273 (2010).
[CrossRef] [PubMed]

Ennen, H.

H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, “1.54-μm luminescence of erbium-implanted III-V semiconductors and silicon,” Appl. Phys. Lett.43(10), 943–945 (1983).
[CrossRef]

Faber, A. J.

Y. C. Yan, A. J. Faber, H. de Waal, P. J. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett.71(20), 2922–2924 (1997).
[CrossRef]

Franzò, G.

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater.19(12), 1582–1588 (2007).
[CrossRef]

M. Miritello, R. Lo Savio, A. M. Piro, G. Franzò, F. Priolo, F. Iacona, and C. Bongiorno, “Optical and structural properties of Er2O3 films grown by magnetron sputtering,” J. Appl. Phys.100(1), 013502 (2006).
[CrossRef]

Gao, L. F.

B. Wang, R. M. Guo, X. J. Wang, L. Wang, L. Y. Hong, B. Yin, L. F. Gao, and Z. Zhou, “Near-infrared electroluminescence in ErYb silicate based light-emitting device,” Opt. Mater.34(8), 1371–1374 (2012).
[CrossRef]

Goutaudier, C.

L. Laversenne, S. Kairouani, Y. Guyot, C. Goutaudier, G. Boulon, and M. T. Cohen-Adad, “Correlation between dopant content and excited-state dynamics properties in Er3+–Yb3+-codoped Y2O3 by using a new combinatorial method,” Opt. Mater.19(1), 59–66 (2002).
[CrossRef]

Guo, R. M.

B. Wang, R. M. Guo, X. J. Wang, L. Wang, L. Y. Hong, B. Yin, L. F. Gao, and Z. Zhou, “Near-infrared electroluminescence in ErYb silicate based light-emitting device,” Opt. Mater.34(8), 1371–1374 (2012).
[CrossRef]

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates,” Appl. Phys. Lett.98(7), 071903 (2011).
[CrossRef]

Guyot, Y.

L. Laversenne, S. Kairouani, Y. Guyot, C. Goutaudier, G. Boulon, and M. T. Cohen-Adad, “Correlation between dopant content and excited-state dynamics properties in Er3+–Yb3+-codoped Y2O3 by using a new combinatorial method,” Opt. Mater.19(1), 59–66 (2002).
[CrossRef]

Han, H.-C.

H.-J. Choi, J. H. Shin, K. Suh, H.-K. Seong, H.-C. Han, and J.-C. Lee, “Self-organized growth of Si/silica/Er2Si2O7 core-shell nanowire heterostructures and their luminescence,” Nano Lett.5(12), 2432–2437 (2005).
[CrossRef] [PubMed]

Hattori, K.

K. Hattori, T. Kitagawa, M. Oguma, Y. Ohmori, and M. Horiguchi, “Erbium-doped silica-based waveguide amplifier integrated with a 980/1530 nm WDM coupler,” Electron. Lett.30(11), 856–857 (1994).
[CrossRef]

Hong, L. Y.

B. Wang, R. M. Guo, X. J. Wang, L. Wang, L. Y. Hong, B. Yin, L. F. Gao, and Z. Zhou, “Near-infrared electroluminescence in ErYb silicate based light-emitting device,” Opt. Mater.34(8), 1371–1374 (2012).
[CrossRef]

Horiguchi, M.

K. Hattori, T. Kitagawa, M. Oguma, Y. Ohmori, and M. Horiguchi, “Erbium-doped silica-based waveguide amplifier integrated with a 980/1530 nm WDM coupler,” Electron. Lett.30(11), 856–857 (1994).
[CrossRef]

Hsu, H. S.

Hu, H.

L. Zhang, H. Hu, C. Qi, and F. Lin, “Spectroscopic properties and energy transfer in Yb3+/Er3+-doped phosphate glasses,” Opt. Mater.17(3), 371–377 (2001).
[CrossRef]

Hwang, B.-C.

Iacona, F.

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett.93(2), 021919 (2008).
[CrossRef]

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater.19(12), 1582–1588 (2007).
[CrossRef]

M. Miritello, R. Lo Savio, A. M. Piro, G. Franzò, F. Priolo, F. Iacona, and C. Bongiorno, “Optical and structural properties of Er2O3 films grown by magnetron sputtering,” J. Appl. Phys.100(1), 013502 (2006).
[CrossRef]

Irrera, A.

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater.19(12), 1582–1588 (2007).
[CrossRef]

Isshiki, H.

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates,” Appl. Phys. Lett.98(7), 071903 (2011).
[CrossRef]

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2−xSiO5 waveguide,” J. Appl. Phys. Lett.108, 013506 (2010).

Ito, J.

J. Ito and H. Johnson, “Synthesis and study of yttrialite,” Am. Mineral.53, 1940–1952 (1968).

Jacinto, C.

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. J. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys.100(11), 113103 (2006).
[CrossRef]

Jiang, S.

Johnson, H.

J. Ito and H. Johnson, “Synthesis and study of yttrialite,” Am. Mineral.53, 1940–1952 (1968).

Kairouani, S.

L. Laversenne, S. Kairouani, Y. Guyot, C. Goutaudier, G. Boulon, and M. T. Cohen-Adad, “Correlation between dopant content and excited-state dynamics properties in Er3+–Yb3+-codoped Y2O3 by using a new combinatorial method,” Opt. Mater.19(1), 59–66 (2002).
[CrossRef]

Kenyon, K.

K. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics,” J. Prog. Quantum Electron.26(4-5), 225–284 (2002).
[CrossRef]

Kik, P. J.

Y. C. Yan, A. J. Faber, H. de Waal, P. J. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett.71(20), 2922–2924 (1997).
[CrossRef]

Kimura, T.

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates,” Appl. Phys. Lett.98(7), 071903 (2011).
[CrossRef]

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2−xSiO5 waveguide,” J. Appl. Phys. Lett.108, 013506 (2010).

Kitagawa, T.

K. Hattori, T. Kitagawa, M. Oguma, Y. Ohmori, and M. Horiguchi, “Erbium-doped silica-based waveguide amplifier integrated with a 980/1530 nm WDM coupler,” Electron. Lett.30(11), 856–857 (1994).
[CrossRef]

Laversenne, L.

L. Laversenne, S. Kairouani, Y. Guyot, C. Goutaudier, G. Boulon, and M. T. Cohen-Adad, “Correlation between dopant content and excited-state dynamics properties in Er3+–Yb3+-codoped Y2O3 by using a new combinatorial method,” Opt. Mater.19(1), 59–66 (2002).
[CrossRef]

Lee, J.-C.

H.-J. Choi, J. H. Shin, K. Suh, H.-K. Seong, H.-C. Han, and J.-C. Lee, “Self-organized growth of Si/silica/Er2Si2O7 core-shell nanowire heterostructures and their luminescence,” Nano Lett.5(12), 2432–2437 (2005).
[CrossRef] [PubMed]

Lin, F.

L. Zhang, H. Hu, C. Qi, and F. Lin, “Spectroscopic properties and energy transfer in Yb3+/Er3+-doped phosphate glasses,” Opt. Mater.17(3), 371–377 (2001).
[CrossRef]

Lo Savio, R.

M. Miritello, P. Cardile, R. Lo Savio, and F. Priolo, “Energy transfer and enhanced 1.54 μm emission in erbium-ytterbium disilicate thin films,” Opt. Express19(21), 20761–20772 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-21-20761 .
[CrossRef] [PubMed]

M. Miritello, R. Lo Savio, P. Cardile, and F. Priolo, “Enhanced down conversion of photons emitted by photoexcited ErxY2-xSi2O7 films grown on silicon,” Phys. Rev. B81(4), 041411 (2010).
[CrossRef]

R. Lo Savio, M. Miritello, P. Cardile, and F. Priolo, “Concentration dependence of the Er3+ visible and infrared luminescence in Y2−xErxO3 thin films on Si,” J. Appl. Phys.106(4), 043512 (2009).
[CrossRef]

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett.93(2), 021919 (2008).
[CrossRef]

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater.19(12), 1582–1588 (2007).
[CrossRef]

M. Miritello, R. Lo Savio, A. M. Piro, G. Franzò, F. Priolo, F. Iacona, and C. Bongiorno, “Optical and structural properties of Er2O3 films grown by magnetron sputtering,” J. Appl. Phys.100(1), 013502 (2006).
[CrossRef]

Luo, T.

Miritello, M.

P. Cardile, M. Miritello, and F. Priolo, “Energy transfer mechanisms in Er-Yb-Y disilicate thin films,” Appl. Phys. Lett.100(25), 251913 (2012).
[CrossRef]

M. Miritello, P. Cardile, R. Lo Savio, and F. Priolo, “Energy transfer and enhanced 1.54 μm emission in erbium-ytterbium disilicate thin films,” Opt. Express19(21), 20761–20772 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-21-20761 .
[CrossRef] [PubMed]

M. Miritello, R. Lo Savio, P. Cardile, and F. Priolo, “Enhanced down conversion of photons emitted by photoexcited ErxY2-xSi2O7 films grown on silicon,” Phys. Rev. B81(4), 041411 (2010).
[CrossRef]

R. Lo Savio, M. Miritello, P. Cardile, and F. Priolo, “Concentration dependence of the Er3+ visible and infrared luminescence in Y2−xErxO3 thin films on Si,” J. Appl. Phys.106(4), 043512 (2009).
[CrossRef]

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett.93(2), 021919 (2008).
[CrossRef]

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater.19(12), 1582–1588 (2007).
[CrossRef]

M. Miritello, R. Lo Savio, A. M. Piro, G. Franzò, F. Priolo, F. Iacona, and C. Bongiorno, “Optical and structural properties of Er2O3 films grown by magnetron sputtering,” J. Appl. Phys.100(1), 013502 (2006).
[CrossRef]

Nguyen, T.-D.

T.-D. Nguyen, C.-T. Dinh, and T.-O. Do, “Shape- and size-controlled synthesis of monoclinic ErOOH and cubic Er2O3 from micro- to nanostructures and their upconversion luminescence,” ACS Nano4(4), 2263–2273 (2010).
[CrossRef] [PubMed]

Nunes, L. A. O.

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. J. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys.100(11), 113103 (2006).
[CrossRef]

Oguma, M.

K. Hattori, T. Kitagawa, M. Oguma, Y. Ohmori, and M. Horiguchi, “Erbium-doped silica-based waveguide amplifier integrated with a 980/1530 nm WDM coupler,” Electron. Lett.30(11), 856–857 (1994).
[CrossRef]

Ohmori, Y.

K. Hattori, T. Kitagawa, M. Oguma, Y. Ohmori, and M. Horiguchi, “Erbium-doped silica-based waveguide amplifier integrated with a 980/1530 nm WDM coupler,” Electron. Lett.30(11), 856–857 (1994).
[CrossRef]

Oliveira, S. L.

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. J. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys.100(11), 113103 (2006).
[CrossRef]

Peyghambarian, N.

Piro, A. M.

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett.93(2), 021919 (2008).
[CrossRef]

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater.19(12), 1582–1588 (2007).
[CrossRef]

M. Miritello, R. Lo Savio, A. M. Piro, G. Franzò, F. Priolo, F. Iacona, and C. Bongiorno, “Optical and structural properties of Er2O3 films grown by magnetron sputtering,” J. Appl. Phys.100(1), 013502 (2006).
[CrossRef]

Polman, A.

M. C. Strohhöfer and A. Polman, “Absorption and emission spectroscopy in Er3+-Yb3+ doped aluminum oxide waveguides,” Opt. Mater.21(4), 705–712 (2003).
[CrossRef]

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys.82(1), 1–39 (1997).
[CrossRef]

Y. C. Yan, A. J. Faber, H. de Waal, P. J. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett.71(20), 2922–2924 (1997).
[CrossRef]

Pomrenke, G.

H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, “1.54-μm luminescence of erbium-implanted III-V semiconductors and silicon,” Appl. Phys. Lett.43(10), 943–945 (1983).
[CrossRef]

Priolo, F.

P. Cardile, M. Miritello, and F. Priolo, “Energy transfer mechanisms in Er-Yb-Y disilicate thin films,” Appl. Phys. Lett.100(25), 251913 (2012).
[CrossRef]

M. Miritello, P. Cardile, R. Lo Savio, and F. Priolo, “Energy transfer and enhanced 1.54 μm emission in erbium-ytterbium disilicate thin films,” Opt. Express19(21), 20761–20772 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-21-20761 .
[CrossRef] [PubMed]

M. Miritello, R. Lo Savio, P. Cardile, and F. Priolo, “Enhanced down conversion of photons emitted by photoexcited ErxY2-xSi2O7 films grown on silicon,” Phys. Rev. B81(4), 041411 (2010).
[CrossRef]

R. Lo Savio, M. Miritello, P. Cardile, and F. Priolo, “Concentration dependence of the Er3+ visible and infrared luminescence in Y2−xErxO3 thin films on Si,” J. Appl. Phys.106(4), 043512 (2009).
[CrossRef]

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett.93(2), 021919 (2008).
[CrossRef]

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater.19(12), 1582–1588 (2007).
[CrossRef]

M. Miritello, R. Lo Savio, A. M. Piro, G. Franzò, F. Priolo, F. Iacona, and C. Bongiorno, “Optical and structural properties of Er2O3 films grown by magnetron sputtering,” J. Appl. Phys.100(1), 013502 (2006).
[CrossRef]

Qi, C.

L. Zhang, H. Hu, C. Qi, and F. Lin, “Spectroscopic properties and energy transfer in Yb3+/Er3+-doped phosphate glasses,” Opt. Mater.17(3), 371–377 (2001).
[CrossRef]

Schneider, J.

H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, “1.54-μm luminescence of erbium-implanted III-V semiconductors and silicon,” Appl. Phys. Lett.43(10), 943–945 (1983).
[CrossRef]

Seo, S.-J.

K. Suh, J.-H. Shin, S.-J. Seo, and B.-S. Bae, “Er3+ luminescence and cooperative upconversion in ErxY2−xSiO5 nanocrystal aggregates fabricated using Si nanowires,” Appl. Phys. Lett.92(12), 121910 (2008).
[CrossRef]

Seong, H.-K.

H.-J. Choi, J. H. Shin, K. Suh, H.-K. Seong, H.-C. Han, and J.-C. Lee, “Self-organized growth of Si/silica/Er2Si2O7 core-shell nanowire heterostructures and their luminescence,” Nano Lett.5(12), 2432–2437 (2005).
[CrossRef] [PubMed]

Shin, J. H.

H.-J. Choi, J. H. Shin, K. Suh, H.-K. Seong, H.-C. Han, and J.-C. Lee, “Self-organized growth of Si/silica/Er2Si2O7 core-shell nanowire heterostructures and their luminescence,” Nano Lett.5(12), 2432–2437 (2005).
[CrossRef] [PubMed]

Shin, J.-H.

K. Suh, J.-H. Shin, S.-J. Seo, and B.-S. Bae, “Er3+ luminescence and cooperative upconversion in ErxY2−xSiO5 nanocrystal aggregates fabricated using Si nanowires,” Appl. Phys. Lett.92(12), 121910 (2008).
[CrossRef]

Sorbello, G.

Speghini, A.

F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Effect of Yb3+ codoping on the upconversion emission in nanocrystalline Y2O3:Er3+,” J. Phys. Chem. B107(5), 1107–1112 (2003).
[CrossRef]

Strohhöfer, M. C.

M. C. Strohhöfer and A. Polman, “Absorption and emission spectroscopy in Er3+-Yb3+ doped aluminum oxide waveguides,” Opt. Mater.21(4), 705–712 (2003).
[CrossRef]

Suh, K.

K. Suh, J.-H. Shin, S.-J. Seo, and B.-S. Bae, “Er3+ luminescence and cooperative upconversion in ErxY2−xSiO5 nanocrystal aggregates fabricated using Si nanowires,” Appl. Phys. Lett.92(12), 121910 (2008).
[CrossRef]

H.-J. Choi, J. H. Shin, K. Suh, H.-K. Seong, H.-C. Han, and J.-C. Lee, “Self-organized growth of Si/silica/Er2Si2O7 core-shell nanowire heterostructures and their luminescence,” Nano Lett.5(12), 2432–2437 (2005).
[CrossRef] [PubMed]

Valley, G. C.

G. C. Valley, “Modeling cladding-pumped Er/Yb fiber amplifiers,” Opt. Fiber Technol.7(1), 21–44 (2001).
[CrossRef]

Vetrone, F.

F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Effect of Yb3+ codoping on the upconversion emission in nanocrystalline Y2O3:Er3+,” J. Phys. Chem. B107(5), 1107–1112 (2003).
[CrossRef]

Wang, B.

B. Wang, R. M. Guo, X. J. Wang, L. Wang, L. Y. Hong, B. Yin, L. F. Gao, and Z. Zhou, “Near-infrared electroluminescence in ErYb silicate based light-emitting device,” Opt. Mater.34(8), 1371–1374 (2012).
[CrossRef]

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates,” Appl. Phys. Lett.98(7), 071903 (2011).
[CrossRef]

Wang, L.

B. Wang, R. M. Guo, X. J. Wang, L. Wang, L. Y. Hong, B. Yin, L. F. Gao, and Z. Zhou, “Near-infrared electroluminescence in ErYb silicate based light-emitting device,” Opt. Mater.34(8), 1371–1374 (2012).
[CrossRef]

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates,” Appl. Phys. Lett.98(7), 071903 (2011).
[CrossRef]

Wang, X. J.

B. Wang, R. M. Guo, X. J. Wang, L. Wang, L. Y. Hong, B. Yin, L. F. Gao, and Z. Zhou, “Near-infrared electroluminescence in ErYb silicate based light-emitting device,” Opt. Mater.34(8), 1371–1374 (2012).
[CrossRef]

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates,” Appl. Phys. Lett.98(7), 071903 (2011).
[CrossRef]

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2−xSiO5 waveguide,” J. Appl. Phys. Lett.108, 013506 (2010).

Watson, J.

Yan, Y. C.

Y. C. Yan, A. J. Faber, H. de Waal, P. J. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett.71(20), 2922–2924 (1997).
[CrossRef]

Yang, P.

P. Yang, P. Deng, and Z. Yin, “Concentration quenching in Yb:YAG,” J. Lumin.97(1), 51–54 (2002).
[CrossRef]

Yin, B.

B. Wang, R. M. Guo, X. J. Wang, L. Wang, L. Y. Hong, B. Yin, L. F. Gao, and Z. Zhou, “Near-infrared electroluminescence in ErYb silicate based light-emitting device,” Opt. Mater.34(8), 1371–1374 (2012).
[CrossRef]

Yin, Z.

P. Yang, P. Deng, and Z. Yin, “Concentration quenching in Yb:YAG,” J. Lumin.97(1), 51–54 (2002).
[CrossRef]

Yuan, G.

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2−xSiO5 waveguide,” J. Appl. Phys. Lett.108, 013506 (2010).

Zhang, L.

L. Zhang, H. Hu, C. Qi, and F. Lin, “Spectroscopic properties and energy transfer in Yb3+/Er3+-doped phosphate glasses,” Opt. Mater.17(3), 371–377 (2001).
[CrossRef]

Zhou, Z.

B. Wang, R. M. Guo, X. J. Wang, L. Wang, L. Y. Hong, B. Yin, L. F. Gao, and Z. Zhou, “Near-infrared electroluminescence in ErYb silicate based light-emitting device,” Opt. Mater.34(8), 1371–1374 (2012).
[CrossRef]

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates,” Appl. Phys. Lett.98(7), 071903 (2011).
[CrossRef]

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2−xSiO5 waveguide,” J. Appl. Phys. Lett.108, 013506 (2010).

ACS Nano

T.-D. Nguyen, C.-T. Dinh, and T.-O. Do, “Shape- and size-controlled synthesis of monoclinic ErOOH and cubic Er2O3 from micro- to nanostructures and their upconversion luminescence,” ACS Nano4(4), 2263–2273 (2010).
[CrossRef] [PubMed]

Adv. Mater.

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater.19(12), 1582–1588 (2007).
[CrossRef]

Am. Mineral.

J. Ito and H. Johnson, “Synthesis and study of yttrialite,” Am. Mineral.53, 1940–1952 (1968).

Appl. Phys. Lett.

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett.93(2), 021919 (2008).
[CrossRef]

P. Cardile, M. Miritello, and F. Priolo, “Energy transfer mechanisms in Er-Yb-Y disilicate thin films,” Appl. Phys. Lett.100(25), 251913 (2012).
[CrossRef]

Y. C. Yan, A. J. Faber, H. de Waal, P. J. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett.71(20), 2922–2924 (1997).
[CrossRef]

H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, “1.54-μm luminescence of erbium-implanted III-V semiconductors and silicon,” Appl. Phys. Lett.43(10), 943–945 (1983).
[CrossRef]

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates,” Appl. Phys. Lett.98(7), 071903 (2011).
[CrossRef]

K. Suh, J.-H. Shin, S.-J. Seo, and B.-S. Bae, “Er3+ luminescence and cooperative upconversion in ErxY2−xSiO5 nanocrystal aggregates fabricated using Si nanowires,” Appl. Phys. Lett.92(12), 121910 (2008).
[CrossRef]

Electron. Lett.

K. Hattori, T. Kitagawa, M. Oguma, Y. Ohmori, and M. Horiguchi, “Erbium-doped silica-based waveguide amplifier integrated with a 980/1530 nm WDM coupler,” Electron. Lett.30(11), 856–857 (1994).
[CrossRef]

J. Appl. Phys.

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys.82(1), 1–39 (1997).
[CrossRef]

M. Miritello, R. Lo Savio, A. M. Piro, G. Franzò, F. Priolo, F. Iacona, and C. Bongiorno, “Optical and structural properties of Er2O3 films grown by magnetron sputtering,” J. Appl. Phys.100(1), 013502 (2006).
[CrossRef]

R. Lo Savio, M. Miritello, P. Cardile, and F. Priolo, “Concentration dependence of the Er3+ visible and infrared luminescence in Y2−xErxO3 thin films on Si,” J. Appl. Phys.106(4), 043512 (2009).
[CrossRef]

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. J. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys.100(11), 113103 (2006).
[CrossRef]

J. Appl. Phys. Lett.

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2−xSiO5 waveguide,” J. Appl. Phys. Lett.108, 013506 (2010).

J. Lumin.

P. Yang, P. Deng, and Z. Yin, “Concentration quenching in Yb:YAG,” J. Lumin.97(1), 51–54 (2002).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Effect of Yb3+ codoping on the upconversion emission in nanocrystalline Y2O3:Er3+,” J. Phys. Chem. B107(5), 1107–1112 (2003).
[CrossRef]

J. Prog. Quantum Electron.

K. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics,” J. Prog. Quantum Electron.26(4-5), 225–284 (2002).
[CrossRef]

Nano Lett.

H.-J. Choi, J. H. Shin, K. Suh, H.-K. Seong, H.-C. Han, and J.-C. Lee, “Self-organized growth of Si/silica/Er2Si2O7 core-shell nanowire heterostructures and their luminescence,” Nano Lett.5(12), 2432–2437 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Fiber Technol.

G. C. Valley, “Modeling cladding-pumped Er/Yb fiber amplifiers,” Opt. Fiber Technol.7(1), 21–44 (2001).
[CrossRef]

Opt. Mater.

B. Wang, R. M. Guo, X. J. Wang, L. Wang, L. Y. Hong, B. Yin, L. F. Gao, and Z. Zhou, “Near-infrared electroluminescence in ErYb silicate based light-emitting device,” Opt. Mater.34(8), 1371–1374 (2012).
[CrossRef]

M. C. Strohhöfer and A. Polman, “Absorption and emission spectroscopy in Er3+-Yb3+ doped aluminum oxide waveguides,” Opt. Mater.21(4), 705–712 (2003).
[CrossRef]

L. Zhang, H. Hu, C. Qi, and F. Lin, “Spectroscopic properties and energy transfer in Yb3+/Er3+-doped phosphate glasses,” Opt. Mater.17(3), 371–377 (2001).
[CrossRef]

L. Laversenne, S. Kairouani, Y. Guyot, C. Goutaudier, G. Boulon, and M. T. Cohen-Adad, “Correlation between dopant content and excited-state dynamics properties in Er3+–Yb3+-codoped Y2O3 by using a new combinatorial method,” Opt. Mater.19(1), 59–66 (2002).
[CrossRef]

Phys. Rev. B

M. Miritello, R. Lo Savio, P. Cardile, and F. Priolo, “Enhanced down conversion of photons emitted by photoexcited ErxY2-xSi2O7 films grown on silicon,” Phys. Rev. B81(4), 041411 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

RBS spectra of two examples of Yb-Y disilicate having different NYb content: as deposited, after implanting 2 × 1016 Er/cm2 (Er2) and after implantation and RTA (Er2 + RTA). The threshold energies of Y, Er and Yb are also indicated.

Fig. 2
Fig. 2

(a) Cross sectional SEM image of an as deposited Yb-Y disilicate. (b) AFM measurements on an as-implanted sample, after removing a masking grating. (c) AFM zoom-in reporting the step height in a 3D picture. (d) Analytical measurement of the step height.

Fig. 3
Fig. 3

Comparison of the XRD spectra of the Yb-Y disilicates after thermal treatment for all the NYb values investigated (continuous lines), and after 5 × 1020 Er/cm3 implantation (lines and full symbols). For the sample with 8.0 × 1021 Yb/cm3, the XRD spectrum related to the higher implanted Er dose, 1.5 × 1021 Er/cm3, is also reported (line and open symbols).

Fig. 4
Fig. 4

(a) PL emission from Er at 1.54 μm, for both the implanted Er doses, and for the extreme values of NYb. (b) Percentage of the mediated contribution in the Er excitation via Yb-Er energy transfer. The inset reports a scheme of the Yb and Er energy levels involved.

Fig. 5
Fig. 5

(a) PL emission and (b) time resolved PL decay from Er at 1.54 μm in the implanted Yb-Y disilicate and in absence of Yb in Y-Er disilicate, for the same NYb = 1.5 × 1022 Yb/cm3.

Metrics