Abstract

In situ temperature dependence of the Photoluminescence under 325nm irradiation is used to investigate defect populations existing in different surface flaws in high purity fused silica. Five photoluminescence bands peaking at 1.9, 2.1, 2.3, 2.63 and 3.11 eV have been detected in the spectral area ranging from 1.6 up to 3.6 eV. The Gaussian deconvolution of spectra allows dividing the five luminescence bands in two categories. The former corresponds to bands showing a significant intensity enhancement while temperature decreases; the latter corresponds to bands remaining insensitive to the temperature evolution. Such a behavior brings new information on defects involved in laser damage mechanism at 351 nm in nanosecond regime.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Lowdermilk, “Status of the National Ignition Facility project,” Proc. SPIE3047, 16–37 (1996).
  2. M. L. André, “Status of the LMJ project,” Proc. SPIE3047, 38–42 (1996).
  3. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt.12(4), 661–664 (1973).
    [CrossRef] [PubMed]
  4. J. Fournier, J. Néauport, P. Grua, E. Fargin, V. Jubera, D. Talaga, and S. Jouannigot, “Evidence of a green luminescence band related to surface flaws in high purity silica glass,” Opt. Express18(21), 21557–21566 (2010).
    [CrossRef] [PubMed]
  5. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids239(1-3), 16–48 (1998).
    [CrossRef]
  6. L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin.128(7), 1132–1136 (2008).
    [CrossRef]
  7. N. Trukhin and K. M. Golant, “Absorption and luminescence in amorphous silica synthesized by low-pressure plasmachemical technology,” J. Non-Cryst. Solids353(5-7), 530–536 (2007).
    [CrossRef]
  8. Y. Sakurai and K. Nagasawa, “Excitation energy dependence of the photoluminescence bands at 2.7 and 4.3 eV in silica glass at low temperature,” J. Non-Cryst. Solids290(2-3), 189–193 (2001).
    [CrossRef]
  9. J. Néauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on laser induced damage density at 351 nm,” Opt. Commun.281(14), 3802–3805 (2008).
    [CrossRef]
  10. L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin.128(7), 1132–1136 (2008).
    [CrossRef]
  11. H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter45(2), 586–591 (1992).
    [CrossRef] [PubMed]
  12. H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter45(2), 586–591 (1992).
    [CrossRef] [PubMed]
  13. M. Kalceff, “Cathodoluminescence microcharacterization of the defect structure of irradiated hydrated and anhydrous fused silicon dioxide,” Phys. Rev. B57(10), 5674–5683 (1998).
    [CrossRef]
  14. Y. Sakurai and K. Nagasawa, “Green photoluminescence in γ-irradiated oxygen-surplus silica glass,” J. Appl. Phys.86(3), 1377–1381 (1999).
    [CrossRef]
  15. M. R. Kozlowski, C. L. Battersby, and S. G. Demos, “Luminescence investigation of SiO2 surfaces damaged by 0.35 µm laser illumination,” Proc. SPIE3902, 138–144 (2000).
    [CrossRef]
  16. S. G. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components,” Opt. Express10(25), 1444–1450 (2002).
    [CrossRef] [PubMed]
  17. H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys.80(6), 3513–3517 (1996).
    [CrossRef]
  18. Y. Sakurai, “Photoluminescence band near 2.2 eV in γ-irradiated oxygen-deficient silica glass,” J. Non-Cryst. Solids342(1-3), 54–58 (2004).
    [CrossRef]
  19. Y. Sakurai, “Effect of thermal heat treatment on oxygen-deficiency-associated defect centers: relation to 1.8 eV photoluminescence bands in silica glass,” J. Appl. Phys.95(2), 543–545 (2004).
    [CrossRef]
  20. H. Nishikawa, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Defects and optical absorption bands induced by surplus oxygen in high purity synthetic silica,” J. Appl. Phys.65(12), 4672–4678 (1989).
    [CrossRef]
  21. M. Guzzi, M. Martini, M. Mattaini, F. Pio, and G. Spinolo, “Luminescence of fused silica: observation of the O2- emission band,” Phys. Rev. B Condens. Matter35(17), 9407–9409 (1987).
    [CrossRef] [PubMed]
  22. L. Skuja, “Direct singlet-to-triplet optical absorption and luminescence excitation band of the twofold-coordinated silicon center in oxygen-deficient glassy SiO2,” J. Non-Cryst. Solids167(3), 229–238 (1994).
    [CrossRef]
  23. C. Giansante, G. Raffy, C. Schäfer, H. Rahma, M.-T. Kao, A. G. L. Olive, and A. Del Guerzo, “White-light-emitting self-assembled nanofibers and their evidence by microspectroscopy of individual objects,” J. Am. Chem. Soc.133(2), 316–325 (2011).
    [CrossRef]
  24. J. Fournier, PhD thesis (University of Bordeaux, 2011).
  25. T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett.94(15), 151114 (2009).
    [CrossRef]
  26. L. N. Skuja and A. N. Trukhin, “Comment on ‘Luminescence of fused silica: observation of the O2- emission band’,” Phys. Rev. B Condens. Matter39(6), 3909–3911 (1989).
    [CrossRef] [PubMed]
  27. K. Ramseyer and J. Mullis, “Factors influencing short-lived blue cathodoluminescence of α-quartz,” Am. Min.75, 791–800 (1990).
  28. M. Leone, R. Boscaino, M. Cannas, and F. M. Gelardi, “Low temperature photoluminescence spectroscopy relationship between 3.1 and 4.2 eV bands in vitreous silica,” J. Non-Cryst. Solids216, 105–110 (1997).
    [CrossRef]
  29. Y. Sakurai, “The 3.1 eV photoluminescence band in oxygen-deficient silica glass,” J. Non-Cryst. Solids271(3), 218–223 (2000).
    [CrossRef]
  30. M. Kohketsu, K. Awazu, H. Kawazoe, and M. Yamane, “Photoluminescence centers in VAD SiO2 glasses sintered under reducing or oxidizing atmospheres,” Jpn. J. Appl. Phys.28(Part 1, No. 4), 615–621 (1989).
    [CrossRef]

2011 (1)

C. Giansante, G. Raffy, C. Schäfer, H. Rahma, M.-T. Kao, A. G. L. Olive, and A. Del Guerzo, “White-light-emitting self-assembled nanofibers and their evidence by microspectroscopy of individual objects,” J. Am. Chem. Soc.133(2), 316–325 (2011).
[CrossRef]

2010 (1)

2009 (1)

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett.94(15), 151114 (2009).
[CrossRef]

2008 (3)

J. Néauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on laser induced damage density at 351 nm,” Opt. Commun.281(14), 3802–3805 (2008).
[CrossRef]

L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin.128(7), 1132–1136 (2008).
[CrossRef]

L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin.128(7), 1132–1136 (2008).
[CrossRef]

2007 (1)

N. Trukhin and K. M. Golant, “Absorption and luminescence in amorphous silica synthesized by low-pressure plasmachemical technology,” J. Non-Cryst. Solids353(5-7), 530–536 (2007).
[CrossRef]

2004 (2)

Y. Sakurai, “Photoluminescence band near 2.2 eV in γ-irradiated oxygen-deficient silica glass,” J. Non-Cryst. Solids342(1-3), 54–58 (2004).
[CrossRef]

Y. Sakurai, “Effect of thermal heat treatment on oxygen-deficiency-associated defect centers: relation to 1.8 eV photoluminescence bands in silica glass,” J. Appl. Phys.95(2), 543–545 (2004).
[CrossRef]

2002 (1)

2001 (1)

Y. Sakurai and K. Nagasawa, “Excitation energy dependence of the photoluminescence bands at 2.7 and 4.3 eV in silica glass at low temperature,” J. Non-Cryst. Solids290(2-3), 189–193 (2001).
[CrossRef]

2000 (2)

M. R. Kozlowski, C. L. Battersby, and S. G. Demos, “Luminescence investigation of SiO2 surfaces damaged by 0.35 µm laser illumination,” Proc. SPIE3902, 138–144 (2000).
[CrossRef]

Y. Sakurai, “The 3.1 eV photoluminescence band in oxygen-deficient silica glass,” J. Non-Cryst. Solids271(3), 218–223 (2000).
[CrossRef]

1999 (1)

Y. Sakurai and K. Nagasawa, “Green photoluminescence in γ-irradiated oxygen-surplus silica glass,” J. Appl. Phys.86(3), 1377–1381 (1999).
[CrossRef]

1998 (2)

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids239(1-3), 16–48 (1998).
[CrossRef]

M. Kalceff, “Cathodoluminescence microcharacterization of the defect structure of irradiated hydrated and anhydrous fused silicon dioxide,” Phys. Rev. B57(10), 5674–5683 (1998).
[CrossRef]

1997 (1)

M. Leone, R. Boscaino, M. Cannas, and F. M. Gelardi, “Low temperature photoluminescence spectroscopy relationship between 3.1 and 4.2 eV bands in vitreous silica,” J. Non-Cryst. Solids216, 105–110 (1997).
[CrossRef]

1996 (3)

W. H. Lowdermilk, “Status of the National Ignition Facility project,” Proc. SPIE3047, 16–37 (1996).

M. L. André, “Status of the LMJ project,” Proc. SPIE3047, 38–42 (1996).

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys.80(6), 3513–3517 (1996).
[CrossRef]

1994 (1)

L. Skuja, “Direct singlet-to-triplet optical absorption and luminescence excitation band of the twofold-coordinated silicon center in oxygen-deficient glassy SiO2,” J. Non-Cryst. Solids167(3), 229–238 (1994).
[CrossRef]

1992 (2)

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter45(2), 586–591 (1992).
[CrossRef] [PubMed]

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter45(2), 586–591 (1992).
[CrossRef] [PubMed]

1990 (1)

K. Ramseyer and J. Mullis, “Factors influencing short-lived blue cathodoluminescence of α-quartz,” Am. Min.75, 791–800 (1990).

1989 (3)

L. N. Skuja and A. N. Trukhin, “Comment on ‘Luminescence of fused silica: observation of the O2- emission band’,” Phys. Rev. B Condens. Matter39(6), 3909–3911 (1989).
[CrossRef] [PubMed]

M. Kohketsu, K. Awazu, H. Kawazoe, and M. Yamane, “Photoluminescence centers in VAD SiO2 glasses sintered under reducing or oxidizing atmospheres,” Jpn. J. Appl. Phys.28(Part 1, No. 4), 615–621 (1989).
[CrossRef]

H. Nishikawa, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Defects and optical absorption bands induced by surplus oxygen in high purity synthetic silica,” J. Appl. Phys.65(12), 4672–4678 (1989).
[CrossRef]

1987 (1)

M. Guzzi, M. Martini, M. Mattaini, F. Pio, and G. Spinolo, “Luminescence of fused silica: observation of the O2- emission band,” Phys. Rev. B Condens. Matter35(17), 9407–9409 (1987).
[CrossRef] [PubMed]

1973 (1)

Ambard, C.

J. Néauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on laser induced damage density at 351 nm,” Opt. Commun.281(14), 3802–3805 (2008).
[CrossRef]

André, M. L.

M. L. André, “Status of the LMJ project,” Proc. SPIE3047, 38–42 (1996).

Awazu, K.

M. Kohketsu, K. Awazu, H. Kawazoe, and M. Yamane, “Photoluminescence centers in VAD SiO2 glasses sintered under reducing or oxidizing atmospheres,” Jpn. J. Appl. Phys.28(Part 1, No. 4), 615–621 (1989).
[CrossRef]

Battersby, C. L.

M. R. Kozlowski, C. L. Battersby, and S. G. Demos, “Luminescence investigation of SiO2 surfaces damaged by 0.35 µm laser illumination,” Proc. SPIE3902, 138–144 (2000).
[CrossRef]

Bercegol, H.

J. Néauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on laser induced damage density at 351 nm,” Opt. Commun.281(14), 3802–3805 (2008).
[CrossRef]

Bloembergen, N.

Boscaino, R.

L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin.128(7), 1132–1136 (2008).
[CrossRef]

L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin.128(7), 1132–1136 (2008).
[CrossRef]

M. Leone, R. Boscaino, M. Cannas, and F. M. Gelardi, “Low temperature photoluminescence spectroscopy relationship between 3.1 and 4.2 eV bands in vitreous silica,” J. Non-Cryst. Solids216, 105–110 (1997).
[CrossRef]

Bude, J. D.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett.94(15), 151114 (2009).
[CrossRef]

Cannas, M.

L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin.128(7), 1132–1136 (2008).
[CrossRef]

L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin.128(7), 1132–1136 (2008).
[CrossRef]

M. Leone, R. Boscaino, M. Cannas, and F. M. Gelardi, “Low temperature photoluminescence spectroscopy relationship between 3.1 and 4.2 eV bands in vitreous silica,” J. Non-Cryst. Solids216, 105–110 (1997).
[CrossRef]

Cormont, P.

J. Néauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on laser induced damage density at 351 nm,” Opt. Commun.281(14), 3802–3805 (2008).
[CrossRef]

Del Guerzo, A.

C. Giansante, G. Raffy, C. Schäfer, H. Rahma, M.-T. Kao, A. G. L. Olive, and A. Del Guerzo, “White-light-emitting self-assembled nanofibers and their evidence by microspectroscopy of individual objects,” J. Am. Chem. Soc.133(2), 316–325 (2011).
[CrossRef]

Demos, S. G.

S. G. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components,” Opt. Express10(25), 1444–1450 (2002).
[CrossRef] [PubMed]

M. R. Kozlowski, C. L. Battersby, and S. G. Demos, “Luminescence investigation of SiO2 surfaces damaged by 0.35 µm laser illumination,” Proc. SPIE3902, 138–144 (2000).
[CrossRef]

Fargin, E.

Feldman, T.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett.94(15), 151114 (2009).
[CrossRef]

Fournier, J.

Fujimoto, J.

Gelardi, F. M.

M. Leone, R. Boscaino, M. Cannas, and F. M. Gelardi, “Low temperature photoluminescence spectroscopy relationship between 3.1 and 4.2 eV bands in vitreous silica,” J. Non-Cryst. Solids216, 105–110 (1997).
[CrossRef]

Giansante, C.

C. Giansante, G. Raffy, C. Schäfer, H. Rahma, M.-T. Kao, A. G. L. Olive, and A. Del Guerzo, “White-light-emitting self-assembled nanofibers and their evidence by microspectroscopy of individual objects,” J. Am. Chem. Soc.133(2), 316–325 (2011).
[CrossRef]

Golant, K. M.

N. Trukhin and K. M. Golant, “Absorption and luminescence in amorphous silica synthesized by low-pressure plasmachemical technology,” J. Non-Cryst. Solids353(5-7), 530–536 (2007).
[CrossRef]

Grua, P.

Guzzi, M.

M. Guzzi, M. Martini, M. Mattaini, F. Pio, and G. Spinolo, “Luminescence of fused silica: observation of the O2- emission band,” Phys. Rev. B Condens. Matter35(17), 9407–9409 (1987).
[CrossRef] [PubMed]

Hama, Y.

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter45(2), 586–591 (1992).
[CrossRef] [PubMed]

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter45(2), 586–591 (1992).
[CrossRef] [PubMed]

H. Nishikawa, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Defects and optical absorption bands induced by surplus oxygen in high purity synthetic silica,” J. Appl. Phys.65(12), 4672–4678 (1989).
[CrossRef]

Ito, D.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys.80(6), 3513–3517 (1996).
[CrossRef]

Jouannigot, S.

Jubera, V.

Kalceff, M.

M. Kalceff, “Cathodoluminescence microcharacterization of the defect structure of irradiated hydrated and anhydrous fused silicon dioxide,” Phys. Rev. B57(10), 5674–5683 (1998).
[CrossRef]

Kao, M.-T.

C. Giansante, G. Raffy, C. Schäfer, H. Rahma, M.-T. Kao, A. G. L. Olive, and A. Del Guerzo, “White-light-emitting self-assembled nanofibers and their evidence by microspectroscopy of individual objects,” J. Am. Chem. Soc.133(2), 316–325 (2011).
[CrossRef]

Kawazoe, H.

M. Kohketsu, K. Awazu, H. Kawazoe, and M. Yamane, “Photoluminescence centers in VAD SiO2 glasses sintered under reducing or oxidizing atmospheres,” Jpn. J. Appl. Phys.28(Part 1, No. 4), 615–621 (1989).
[CrossRef]

Kohketsu, M.

M. Kohketsu, K. Awazu, H. Kawazoe, and M. Yamane, “Photoluminescence centers in VAD SiO2 glasses sintered under reducing or oxidizing atmospheres,” Jpn. J. Appl. Phys.28(Part 1, No. 4), 615–621 (1989).
[CrossRef]

Kozlowski, M. R.

M. R. Kozlowski, C. L. Battersby, and S. G. Demos, “Luminescence investigation of SiO2 surfaces damaged by 0.35 µm laser illumination,” Proc. SPIE3902, 138–144 (2000).
[CrossRef]

Lamaignère, L.

J. Néauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on laser induced damage density at 351 nm,” Opt. Commun.281(14), 3802–3805 (2008).
[CrossRef]

Laurence, T. A.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett.94(15), 151114 (2009).
[CrossRef]

Leone, M.

M. Leone, R. Boscaino, M. Cannas, and F. M. Gelardi, “Low temperature photoluminescence spectroscopy relationship between 3.1 and 4.2 eV bands in vitreous silica,” J. Non-Cryst. Solids216, 105–110 (1997).
[CrossRef]

Lowdermilk, W. H.

W. H. Lowdermilk, “Status of the National Ignition Facility project,” Proc. SPIE3047, 16–37 (1996).

Martini, M.

M. Guzzi, M. Martini, M. Mattaini, F. Pio, and G. Spinolo, “Luminescence of fused silica: observation of the O2- emission band,” Phys. Rev. B Condens. Matter35(17), 9407–9409 (1987).
[CrossRef] [PubMed]

Mattaini, M.

M. Guzzi, M. Martini, M. Mattaini, F. Pio, and G. Spinolo, “Luminescence of fused silica: observation of the O2- emission band,” Phys. Rev. B Condens. Matter35(17), 9407–9409 (1987).
[CrossRef] [PubMed]

Miller, P. E.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett.94(15), 151114 (2009).
[CrossRef]

Minoshima, K.

Mullis, J.

K. Ramseyer and J. Mullis, “Factors influencing short-lived blue cathodoluminescence of α-quartz,” Am. Min.75, 791–800 (1990).

Nagasawa, K.

Y. Sakurai and K. Nagasawa, “Excitation energy dependence of the photoluminescence bands at 2.7 and 4.3 eV in silica glass at low temperature,” J. Non-Cryst. Solids290(2-3), 189–193 (2001).
[CrossRef]

Y. Sakurai and K. Nagasawa, “Green photoluminescence in γ-irradiated oxygen-surplus silica glass,” J. Appl. Phys.86(3), 1377–1381 (1999).
[CrossRef]

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys.80(6), 3513–3517 (1996).
[CrossRef]

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter45(2), 586–591 (1992).
[CrossRef] [PubMed]

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter45(2), 586–591 (1992).
[CrossRef] [PubMed]

H. Nishikawa, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Defects and optical absorption bands induced by surplus oxygen in high purity synthetic silica,” J. Appl. Phys.65(12), 4672–4678 (1989).
[CrossRef]

Nakamura, R.

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter45(2), 586–591 (1992).
[CrossRef] [PubMed]

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter45(2), 586–591 (1992).
[CrossRef] [PubMed]

Néauport, J.

J. Fournier, J. Néauport, P. Grua, E. Fargin, V. Jubera, D. Talaga, and S. Jouannigot, “Evidence of a green luminescence band related to surface flaws in high purity silica glass,” Opt. Express18(21), 21557–21566 (2010).
[CrossRef] [PubMed]

J. Néauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on laser induced damage density at 351 nm,” Opt. Commun.281(14), 3802–3805 (2008).
[CrossRef]

Nishikawa, H.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys.80(6), 3513–3517 (1996).
[CrossRef]

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter45(2), 586–591 (1992).
[CrossRef] [PubMed]

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter45(2), 586–591 (1992).
[CrossRef] [PubMed]

H. Nishikawa, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Defects and optical absorption bands induced by surplus oxygen in high purity synthetic silica,” J. Appl. Phys.65(12), 4672–4678 (1989).
[CrossRef]

Ohki, Y.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys.80(6), 3513–3517 (1996).
[CrossRef]

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter45(2), 586–591 (1992).
[CrossRef] [PubMed]

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter45(2), 586–591 (1992).
[CrossRef] [PubMed]

H. Nishikawa, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Defects and optical absorption bands induced by surplus oxygen in high purity synthetic silica,” J. Appl. Phys.65(12), 4672–4678 (1989).
[CrossRef]

Olive, A. G. L.

C. Giansante, G. Raffy, C. Schäfer, H. Rahma, M.-T. Kao, A. G. L. Olive, and A. Del Guerzo, “White-light-emitting self-assembled nanofibers and their evidence by microspectroscopy of individual objects,” J. Am. Chem. Soc.133(2), 316–325 (2011).
[CrossRef]

Pilon, F.

J. Néauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on laser induced damage density at 351 nm,” Opt. Commun.281(14), 3802–3805 (2008).
[CrossRef]

Pio, F.

M. Guzzi, M. Martini, M. Mattaini, F. Pio, and G. Spinolo, “Luminescence of fused silica: observation of the O2- emission band,” Phys. Rev. B Condens. Matter35(17), 9407–9409 (1987).
[CrossRef] [PubMed]

Raffy, G.

C. Giansante, G. Raffy, C. Schäfer, H. Rahma, M.-T. Kao, A. G. L. Olive, and A. Del Guerzo, “White-light-emitting self-assembled nanofibers and their evidence by microspectroscopy of individual objects,” J. Am. Chem. Soc.133(2), 316–325 (2011).
[CrossRef]

Rahma, H.

C. Giansante, G. Raffy, C. Schäfer, H. Rahma, M.-T. Kao, A. G. L. Olive, and A. Del Guerzo, “White-light-emitting self-assembled nanofibers and their evidence by microspectroscopy of individual objects,” J. Am. Chem. Soc.133(2), 316–325 (2011).
[CrossRef]

Ramseyer, K.

K. Ramseyer and J. Mullis, “Factors influencing short-lived blue cathodoluminescence of α-quartz,” Am. Min.75, 791–800 (1990).

Sakurai, Y.

Y. Sakurai, “Effect of thermal heat treatment on oxygen-deficiency-associated defect centers: relation to 1.8 eV photoluminescence bands in silica glass,” J. Appl. Phys.95(2), 543–545 (2004).
[CrossRef]

Y. Sakurai, “Photoluminescence band near 2.2 eV in γ-irradiated oxygen-deficient silica glass,” J. Non-Cryst. Solids342(1-3), 54–58 (2004).
[CrossRef]

Y. Sakurai and K. Nagasawa, “Excitation energy dependence of the photoluminescence bands at 2.7 and 4.3 eV in silica glass at low temperature,” J. Non-Cryst. Solids290(2-3), 189–193 (2001).
[CrossRef]

Y. Sakurai, “The 3.1 eV photoluminescence band in oxygen-deficient silica glass,” J. Non-Cryst. Solids271(3), 218–223 (2000).
[CrossRef]

Y. Sakurai and K. Nagasawa, “Green photoluminescence in γ-irradiated oxygen-surplus silica glass,” J. Appl. Phys.86(3), 1377–1381 (1999).
[CrossRef]

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys.80(6), 3513–3517 (1996).
[CrossRef]

Schäfer, C.

C. Giansante, G. Raffy, C. Schäfer, H. Rahma, M.-T. Kao, A. G. L. Olive, and A. Del Guerzo, “White-light-emitting self-assembled nanofibers and their evidence by microspectroscopy of individual objects,” J. Am. Chem. Soc.133(2), 316–325 (2011).
[CrossRef]

Shen, N.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett.94(15), 151114 (2009).
[CrossRef]

Shiroyama, T.

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter45(2), 586–591 (1992).
[CrossRef] [PubMed]

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter45(2), 586–591 (1992).
[CrossRef] [PubMed]

Skuja, L.

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids239(1-3), 16–48 (1998).
[CrossRef]

L. Skuja, “Direct singlet-to-triplet optical absorption and luminescence excitation band of the twofold-coordinated silicon center in oxygen-deficient glassy SiO2,” J. Non-Cryst. Solids167(3), 229–238 (1994).
[CrossRef]

Skuja, L. N.

L. N. Skuja and A. N. Trukhin, “Comment on ‘Luminescence of fused silica: observation of the O2- emission band’,” Phys. Rev. B Condens. Matter39(6), 3909–3911 (1989).
[CrossRef] [PubMed]

Spinolo, G.

M. Guzzi, M. Martini, M. Mattaini, F. Pio, and G. Spinolo, “Luminescence of fused silica: observation of the O2- emission band,” Phys. Rev. B Condens. Matter35(17), 9407–9409 (1987).
[CrossRef] [PubMed]

Staggs, M.

Steele, W. A.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett.94(15), 151114 (2009).
[CrossRef]

Suratwala, T.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett.94(15), 151114 (2009).
[CrossRef]

Talaga, D.

Tohmon, R.

H. Nishikawa, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Defects and optical absorption bands induced by surplus oxygen in high purity synthetic silica,” J. Appl. Phys.65(12), 4672–4678 (1989).
[CrossRef]

Trukhin, A. N.

L. N. Skuja and A. N. Trukhin, “Comment on ‘Luminescence of fused silica: observation of the O2- emission band’,” Phys. Rev. B Condens. Matter39(6), 3909–3911 (1989).
[CrossRef] [PubMed]

Trukhin, N.

N. Trukhin and K. M. Golant, “Absorption and luminescence in amorphous silica synthesized by low-pressure plasmachemical technology,” J. Non-Cryst. Solids353(5-7), 530–536 (2007).
[CrossRef]

Vaccaro, L.

L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin.128(7), 1132–1136 (2008).
[CrossRef]

L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin.128(7), 1132–1136 (2008).
[CrossRef]

Watanabe, E.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys.80(6), 3513–3517 (1996).
[CrossRef]

Yamane, M.

M. Kohketsu, K. Awazu, H. Kawazoe, and M. Yamane, “Photoluminescence centers in VAD SiO2 glasses sintered under reducing or oxidizing atmospheres,” Jpn. J. Appl. Phys.28(Part 1, No. 4), 615–621 (1989).
[CrossRef]

Am. Min. (1)

K. Ramseyer and J. Mullis, “Factors influencing short-lived blue cathodoluminescence of α-quartz,” Am. Min.75, 791–800 (1990).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett.94(15), 151114 (2009).
[CrossRef]

J. Am. Chem. Soc. (1)

C. Giansante, G. Raffy, C. Schäfer, H. Rahma, M.-T. Kao, A. G. L. Olive, and A. Del Guerzo, “White-light-emitting self-assembled nanofibers and their evidence by microspectroscopy of individual objects,” J. Am. Chem. Soc.133(2), 316–325 (2011).
[CrossRef]

J. Appl. Phys. (4)

Y. Sakurai, “Effect of thermal heat treatment on oxygen-deficiency-associated defect centers: relation to 1.8 eV photoluminescence bands in silica glass,” J. Appl. Phys.95(2), 543–545 (2004).
[CrossRef]

H. Nishikawa, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Defects and optical absorption bands induced by surplus oxygen in high purity synthetic silica,” J. Appl. Phys.65(12), 4672–4678 (1989).
[CrossRef]

Y. Sakurai and K. Nagasawa, “Green photoluminescence in γ-irradiated oxygen-surplus silica glass,” J. Appl. Phys.86(3), 1377–1381 (1999).
[CrossRef]

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys.80(6), 3513–3517 (1996).
[CrossRef]

J. Lumin. (2)

L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin.128(7), 1132–1136 (2008).
[CrossRef]

L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin.128(7), 1132–1136 (2008).
[CrossRef]

J. Non-Cryst. Solids (7)

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids239(1-3), 16–48 (1998).
[CrossRef]

N. Trukhin and K. M. Golant, “Absorption and luminescence in amorphous silica synthesized by low-pressure plasmachemical technology,” J. Non-Cryst. Solids353(5-7), 530–536 (2007).
[CrossRef]

Y. Sakurai and K. Nagasawa, “Excitation energy dependence of the photoluminescence bands at 2.7 and 4.3 eV in silica glass at low temperature,” J. Non-Cryst. Solids290(2-3), 189–193 (2001).
[CrossRef]

Y. Sakurai, “Photoluminescence band near 2.2 eV in γ-irradiated oxygen-deficient silica glass,” J. Non-Cryst. Solids342(1-3), 54–58 (2004).
[CrossRef]

M. Leone, R. Boscaino, M. Cannas, and F. M. Gelardi, “Low temperature photoluminescence spectroscopy relationship between 3.1 and 4.2 eV bands in vitreous silica,” J. Non-Cryst. Solids216, 105–110 (1997).
[CrossRef]

Y. Sakurai, “The 3.1 eV photoluminescence band in oxygen-deficient silica glass,” J. Non-Cryst. Solids271(3), 218–223 (2000).
[CrossRef]

L. Skuja, “Direct singlet-to-triplet optical absorption and luminescence excitation band of the twofold-coordinated silicon center in oxygen-deficient glassy SiO2,” J. Non-Cryst. Solids167(3), 229–238 (1994).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Kohketsu, K. Awazu, H. Kawazoe, and M. Yamane, “Photoluminescence centers in VAD SiO2 glasses sintered under reducing or oxidizing atmospheres,” Jpn. J. Appl. Phys.28(Part 1, No. 4), 615–621 (1989).
[CrossRef]

Opt. Commun. (1)

J. Néauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on laser induced damage density at 351 nm,” Opt. Commun.281(14), 3802–3805 (2008).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (1)

M. Kalceff, “Cathodoluminescence microcharacterization of the defect structure of irradiated hydrated and anhydrous fused silicon dioxide,” Phys. Rev. B57(10), 5674–5683 (1998).
[CrossRef]

Phys. Rev. B Condens. Matter (4)

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter45(2), 586–591 (1992).
[CrossRef] [PubMed]

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter45(2), 586–591 (1992).
[CrossRef] [PubMed]

M. Guzzi, M. Martini, M. Mattaini, F. Pio, and G. Spinolo, “Luminescence of fused silica: observation of the O2- emission band,” Phys. Rev. B Condens. Matter35(17), 9407–9409 (1987).
[CrossRef] [PubMed]

L. N. Skuja and A. N. Trukhin, “Comment on ‘Luminescence of fused silica: observation of the O2- emission band’,” Phys. Rev. B Condens. Matter39(6), 3909–3911 (1989).
[CrossRef] [PubMed]

Proc. SPIE (3)

W. H. Lowdermilk, “Status of the National Ignition Facility project,” Proc. SPIE3047, 16–37 (1996).

M. L. André, “Status of the LMJ project,” Proc. SPIE3047, 38–42 (1996).

M. R. Kozlowski, C. L. Battersby, and S. G. Demos, “Luminescence investigation of SiO2 surfaces damaged by 0.35 µm laser illumination,” Proc. SPIE3902, 138–144 (2000).
[CrossRef]

Other (1)

J. Fournier, PhD thesis (University of Bordeaux, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Photoluminescence spectra for an indentation excited with 3.81 eV photons. (a) comparison of the three spectra, (b) 293 K, (c) 193 K, (d) 93 K. (Experimental signal (black), fitted signal (red) Gaussian components of the fitted signal (blue)).

Fig. 2
Fig. 2

Normalized surface of each luminescence band as a function of temperature for an indentation.

Fig. 3
Fig. 3

Photoluminescence spectra for an indentation excited with 3.81 eV photons. (a) comparison of the three spectra. (b) 293 K. (c) 193 K. (d) 93 K. Experimental signal (black), fitted signal (red) Gaussian components of the fitted signal (blue).

Fig. 4
Fig. 4

Normalized surface of each luminescence band as a function of temperature for laser damage on silica materials. (a) 2.10 eV and 2.31 eV band. (b) 1.90, 2.63 and 3.11 eV band.

Tables (2)

Tables Icon

Table 1 Parameters Used for Spectral Deconvolutions of Thermal Dependant Luminescence Reported on Indentations

Tables Icon

Table 2 Parameters Used for Spectral Deconvolutions for the Three Temperatures

Metrics