Abstract

In situ temperature dependence of the Photoluminescence under 325nm irradiation is used to investigate defect populations existing in different surface flaws in high purity fused silica. Five photoluminescence bands peaking at 1.9, 2.1, 2.3, 2.63 and 3.11 eV have been detected in the spectral area ranging from 1.6 up to 3.6 eV. The Gaussian deconvolution of spectra allows dividing the five luminescence bands in two categories. The former corresponds to bands showing a significant intensity enhancement while temperature decreases; the latter corresponds to bands remaining insensitive to the temperature evolution. Such a behavior brings new information on defects involved in laser damage mechanism at 351 nm in nanosecond regime.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Lowdermilk, “Status of the National Ignition Facility project,” Proc. SPIE 3047, 16–37 (1996).
  2. M. L. André, “Status of the LMJ project,” Proc. SPIE 3047, 38–42 (1996).
  3. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt. 12(4), 661–664 (1973).
    [Crossref] [PubMed]
  4. J. Fournier, J. Néauport, P. Grua, E. Fargin, V. Jubera, D. Talaga, and S. Jouannigot, “Evidence of a green luminescence band related to surface flaws in high purity silica glass,” Opt. Express 18(21), 21557–21566 (2010).
    [Crossref] [PubMed]
  5. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
    [Crossref]
  6. L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin. 128(7), 1132–1136 (2008).
    [Crossref]
  7. N. Trukhin and K. M. Golant, “Absorption and luminescence in amorphous silica synthesized by low-pressure plasmachemical technology,” J. Non-Cryst. Solids 353(5-7), 530–536 (2007).
    [Crossref]
  8. Y. Sakurai and K. Nagasawa, “Excitation energy dependence of the photoluminescence bands at 2.7 and 4.3 eV in silica glass at low temperature,” J. Non-Cryst. Solids 290(2-3), 189–193 (2001).
    [Crossref]
  9. J. Néauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on laser induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
    [Crossref]
  10. L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin. 128(7), 1132–1136 (2008).
    [Crossref]
  11. H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter 45(2), 586–591 (1992).
    [Crossref] [PubMed]
  12. H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter 45(2), 586–591 (1992).
    [Crossref] [PubMed]
  13. M. Kalceff, “Cathodoluminescence microcharacterization of the defect structure of irradiated hydrated and anhydrous fused silicon dioxide,” Phys. Rev. B 57(10), 5674–5683 (1998).
    [Crossref]
  14. Y. Sakurai and K. Nagasawa, “Green photoluminescence in γ-irradiated oxygen-surplus silica glass,” J. Appl. Phys. 86(3), 1377–1381 (1999).
    [Crossref]
  15. M. R. Kozlowski, C. L. Battersby, and S. G. Demos, “Luminescence investigation of SiO2 surfaces damaged by 0.35 µm laser illumination,” Proc. SPIE 3902, 138–144 (2000).
    [Crossref]
  16. S. G. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components,” Opt. Express 10(25), 1444–1450 (2002).
    [Crossref] [PubMed]
  17. H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80(6), 3513–3517 (1996).
    [Crossref]
  18. Y. Sakurai, “Photoluminescence band near 2.2 eV in γ-irradiated oxygen-deficient silica glass,” J. Non-Cryst. Solids 342(1-3), 54–58 (2004).
    [Crossref]
  19. Y. Sakurai, “Effect of thermal heat treatment on oxygen-deficiency-associated defect centers: relation to 1.8 eV photoluminescence bands in silica glass,” J. Appl. Phys. 95(2), 543–545 (2004).
    [Crossref]
  20. H. Nishikawa, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Defects and optical absorption bands induced by surplus oxygen in high purity synthetic silica,” J. Appl. Phys. 65(12), 4672–4678 (1989).
    [Crossref]
  21. M. Guzzi, M. Martini, M. Mattaini, F. Pio, and G. Spinolo, “Luminescence of fused silica: observation of the O2- emission band,” Phys. Rev. B Condens. Matter 35(17), 9407–9409 (1987).
    [Crossref] [PubMed]
  22. L. Skuja, “Direct singlet-to-triplet optical absorption and luminescence excitation band of the twofold-coordinated silicon center in oxygen-deficient glassy SiO2,” J. Non-Cryst. Solids 167(3), 229–238 (1994).
    [Crossref]
  23. C. Giansante, G. Raffy, C. Schäfer, H. Rahma, M.-T. Kao, A. G. L. Olive, and A. Del Guerzo, “White-light-emitting self-assembled nanofibers and their evidence by microspectroscopy of individual objects,” J. Am. Chem. Soc. 133(2), 316–325 (2011).
    [Crossref]
  24. J. Fournier, PhD thesis (University of Bordeaux, 2011).
  25. T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
    [Crossref]
  26. L. N. Skuja and A. N. Trukhin, “Comment on ‘Luminescence of fused silica: observation of the O2- emission band’,” Phys. Rev. B Condens. Matter 39(6), 3909–3911 (1989).
    [Crossref] [PubMed]
  27. K. Ramseyer and J. Mullis, “Factors influencing short-lived blue cathodoluminescence of α-quartz,” Am. Min. 75, 791–800 (1990).
  28. M. Leone, R. Boscaino, M. Cannas, and F. M. Gelardi, “Low temperature photoluminescence spectroscopy relationship between 3.1 and 4.2 eV bands in vitreous silica,” J. Non-Cryst. Solids 216, 105–110 (1997).
    [Crossref]
  29. Y. Sakurai, “The 3.1 eV photoluminescence band in oxygen-deficient silica glass,” J. Non-Cryst. Solids 271(3), 218–223 (2000).
    [Crossref]
  30. M. Kohketsu, K. Awazu, H. Kawazoe, and M. Yamane, “Photoluminescence centers in VAD SiO2 glasses sintered under reducing or oxidizing atmospheres,” Jpn. J. Appl. Phys. 28(Part 1, No. 4), 615–621 (1989).
    [Crossref]

2011 (1)

C. Giansante, G. Raffy, C. Schäfer, H. Rahma, M.-T. Kao, A. G. L. Olive, and A. Del Guerzo, “White-light-emitting self-assembled nanofibers and their evidence by microspectroscopy of individual objects,” J. Am. Chem. Soc. 133(2), 316–325 (2011).
[Crossref]

2010 (1)

2009 (1)

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

2008 (3)

J. Néauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on laser induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[Crossref]

L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin. 128(7), 1132–1136 (2008).
[Crossref]

L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin. 128(7), 1132–1136 (2008).
[Crossref]

2007 (1)

N. Trukhin and K. M. Golant, “Absorption and luminescence in amorphous silica synthesized by low-pressure plasmachemical technology,” J. Non-Cryst. Solids 353(5-7), 530–536 (2007).
[Crossref]

2004 (2)

Y. Sakurai, “Photoluminescence band near 2.2 eV in γ-irradiated oxygen-deficient silica glass,” J. Non-Cryst. Solids 342(1-3), 54–58 (2004).
[Crossref]

Y. Sakurai, “Effect of thermal heat treatment on oxygen-deficiency-associated defect centers: relation to 1.8 eV photoluminescence bands in silica glass,” J. Appl. Phys. 95(2), 543–545 (2004).
[Crossref]

2002 (1)

2001 (1)

Y. Sakurai and K. Nagasawa, “Excitation energy dependence of the photoluminescence bands at 2.7 and 4.3 eV in silica glass at low temperature,” J. Non-Cryst. Solids 290(2-3), 189–193 (2001).
[Crossref]

2000 (2)

M. R. Kozlowski, C. L. Battersby, and S. G. Demos, “Luminescence investigation of SiO2 surfaces damaged by 0.35 µm laser illumination,” Proc. SPIE 3902, 138–144 (2000).
[Crossref]

Y. Sakurai, “The 3.1 eV photoluminescence band in oxygen-deficient silica glass,” J. Non-Cryst. Solids 271(3), 218–223 (2000).
[Crossref]

1999 (1)

Y. Sakurai and K. Nagasawa, “Green photoluminescence in γ-irradiated oxygen-surplus silica glass,” J. Appl. Phys. 86(3), 1377–1381 (1999).
[Crossref]

1998 (2)

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[Crossref]

M. Kalceff, “Cathodoluminescence microcharacterization of the defect structure of irradiated hydrated and anhydrous fused silicon dioxide,” Phys. Rev. B 57(10), 5674–5683 (1998).
[Crossref]

1997 (1)

M. Leone, R. Boscaino, M. Cannas, and F. M. Gelardi, “Low temperature photoluminescence spectroscopy relationship between 3.1 and 4.2 eV bands in vitreous silica,” J. Non-Cryst. Solids 216, 105–110 (1997).
[Crossref]

1996 (3)

W. H. Lowdermilk, “Status of the National Ignition Facility project,” Proc. SPIE 3047, 16–37 (1996).

M. L. André, “Status of the LMJ project,” Proc. SPIE 3047, 38–42 (1996).

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80(6), 3513–3517 (1996).
[Crossref]

1994 (1)

L. Skuja, “Direct singlet-to-triplet optical absorption and luminescence excitation band of the twofold-coordinated silicon center in oxygen-deficient glassy SiO2,” J. Non-Cryst. Solids 167(3), 229–238 (1994).
[Crossref]

1992 (2)

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter 45(2), 586–591 (1992).
[Crossref] [PubMed]

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter 45(2), 586–591 (1992).
[Crossref] [PubMed]

1990 (1)

K. Ramseyer and J. Mullis, “Factors influencing short-lived blue cathodoluminescence of α-quartz,” Am. Min. 75, 791–800 (1990).

1989 (3)

L. N. Skuja and A. N. Trukhin, “Comment on ‘Luminescence of fused silica: observation of the O2- emission band’,” Phys. Rev. B Condens. Matter 39(6), 3909–3911 (1989).
[Crossref] [PubMed]

M. Kohketsu, K. Awazu, H. Kawazoe, and M. Yamane, “Photoluminescence centers in VAD SiO2 glasses sintered under reducing or oxidizing atmospheres,” Jpn. J. Appl. Phys. 28(Part 1, No. 4), 615–621 (1989).
[Crossref]

H. Nishikawa, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Defects and optical absorption bands induced by surplus oxygen in high purity synthetic silica,” J. Appl. Phys. 65(12), 4672–4678 (1989).
[Crossref]

1987 (1)

M. Guzzi, M. Martini, M. Mattaini, F. Pio, and G. Spinolo, “Luminescence of fused silica: observation of the O2- emission band,” Phys. Rev. B Condens. Matter 35(17), 9407–9409 (1987).
[Crossref] [PubMed]

1973 (1)

Ambard, C.

J. Néauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on laser induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[Crossref]

André, M. L.

M. L. André, “Status of the LMJ project,” Proc. SPIE 3047, 38–42 (1996).

Awazu, K.

M. Kohketsu, K. Awazu, H. Kawazoe, and M. Yamane, “Photoluminescence centers in VAD SiO2 glasses sintered under reducing or oxidizing atmospheres,” Jpn. J. Appl. Phys. 28(Part 1, No. 4), 615–621 (1989).
[Crossref]

Battersby, C. L.

M. R. Kozlowski, C. L. Battersby, and S. G. Demos, “Luminescence investigation of SiO2 surfaces damaged by 0.35 µm laser illumination,” Proc. SPIE 3902, 138–144 (2000).
[Crossref]

Bercegol, H.

J. Néauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on laser induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[Crossref]

Bloembergen, N.

Boscaino, R.

L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin. 128(7), 1132–1136 (2008).
[Crossref]

L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin. 128(7), 1132–1136 (2008).
[Crossref]

M. Leone, R. Boscaino, M. Cannas, and F. M. Gelardi, “Low temperature photoluminescence spectroscopy relationship between 3.1 and 4.2 eV bands in vitreous silica,” J. Non-Cryst. Solids 216, 105–110 (1997).
[Crossref]

Bude, J. D.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Cannas, M.

L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin. 128(7), 1132–1136 (2008).
[Crossref]

L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin. 128(7), 1132–1136 (2008).
[Crossref]

M. Leone, R. Boscaino, M. Cannas, and F. M. Gelardi, “Low temperature photoluminescence spectroscopy relationship between 3.1 and 4.2 eV bands in vitreous silica,” J. Non-Cryst. Solids 216, 105–110 (1997).
[Crossref]

Cormont, P.

J. Néauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on laser induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[Crossref]

Del Guerzo, A.

C. Giansante, G. Raffy, C. Schäfer, H. Rahma, M.-T. Kao, A. G. L. Olive, and A. Del Guerzo, “White-light-emitting self-assembled nanofibers and their evidence by microspectroscopy of individual objects,” J. Am. Chem. Soc. 133(2), 316–325 (2011).
[Crossref]

Demos, S. G.

S. G. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components,” Opt. Express 10(25), 1444–1450 (2002).
[Crossref] [PubMed]

M. R. Kozlowski, C. L. Battersby, and S. G. Demos, “Luminescence investigation of SiO2 surfaces damaged by 0.35 µm laser illumination,” Proc. SPIE 3902, 138–144 (2000).
[Crossref]

Fargin, E.

Feldman, T.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Fournier, J.

Fujimoto, J.

Gelardi, F. M.

M. Leone, R. Boscaino, M. Cannas, and F. M. Gelardi, “Low temperature photoluminescence spectroscopy relationship between 3.1 and 4.2 eV bands in vitreous silica,” J. Non-Cryst. Solids 216, 105–110 (1997).
[Crossref]

Giansante, C.

C. Giansante, G. Raffy, C. Schäfer, H. Rahma, M.-T. Kao, A. G. L. Olive, and A. Del Guerzo, “White-light-emitting self-assembled nanofibers and their evidence by microspectroscopy of individual objects,” J. Am. Chem. Soc. 133(2), 316–325 (2011).
[Crossref]

Golant, K. M.

N. Trukhin and K. M. Golant, “Absorption and luminescence in amorphous silica synthesized by low-pressure plasmachemical technology,” J. Non-Cryst. Solids 353(5-7), 530–536 (2007).
[Crossref]

Grua, P.

Guzzi, M.

M. Guzzi, M. Martini, M. Mattaini, F. Pio, and G. Spinolo, “Luminescence of fused silica: observation of the O2- emission band,” Phys. Rev. B Condens. Matter 35(17), 9407–9409 (1987).
[Crossref] [PubMed]

Hama, Y.

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter 45(2), 586–591 (1992).
[Crossref] [PubMed]

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter 45(2), 586–591 (1992).
[Crossref] [PubMed]

H. Nishikawa, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Defects and optical absorption bands induced by surplus oxygen in high purity synthetic silica,” J. Appl. Phys. 65(12), 4672–4678 (1989).
[Crossref]

Ito, D.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80(6), 3513–3517 (1996).
[Crossref]

Jouannigot, S.

Jubera, V.

Kalceff, M.

M. Kalceff, “Cathodoluminescence microcharacterization of the defect structure of irradiated hydrated and anhydrous fused silicon dioxide,” Phys. Rev. B 57(10), 5674–5683 (1998).
[Crossref]

Kao, M.-T.

C. Giansante, G. Raffy, C. Schäfer, H. Rahma, M.-T. Kao, A. G. L. Olive, and A. Del Guerzo, “White-light-emitting self-assembled nanofibers and their evidence by microspectroscopy of individual objects,” J. Am. Chem. Soc. 133(2), 316–325 (2011).
[Crossref]

Kawazoe, H.

M. Kohketsu, K. Awazu, H. Kawazoe, and M. Yamane, “Photoluminescence centers in VAD SiO2 glasses sintered under reducing or oxidizing atmospheres,” Jpn. J. Appl. Phys. 28(Part 1, No. 4), 615–621 (1989).
[Crossref]

Kohketsu, M.

M. Kohketsu, K. Awazu, H. Kawazoe, and M. Yamane, “Photoluminescence centers in VAD SiO2 glasses sintered under reducing or oxidizing atmospheres,” Jpn. J. Appl. Phys. 28(Part 1, No. 4), 615–621 (1989).
[Crossref]

Kozlowski, M. R.

M. R. Kozlowski, C. L. Battersby, and S. G. Demos, “Luminescence investigation of SiO2 surfaces damaged by 0.35 µm laser illumination,” Proc. SPIE 3902, 138–144 (2000).
[Crossref]

Lamaignère, L.

J. Néauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on laser induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[Crossref]

Laurence, T. A.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Leone, M.

M. Leone, R. Boscaino, M. Cannas, and F. M. Gelardi, “Low temperature photoluminescence spectroscopy relationship between 3.1 and 4.2 eV bands in vitreous silica,” J. Non-Cryst. Solids 216, 105–110 (1997).
[Crossref]

Lowdermilk, W. H.

W. H. Lowdermilk, “Status of the National Ignition Facility project,” Proc. SPIE 3047, 16–37 (1996).

Martini, M.

M. Guzzi, M. Martini, M. Mattaini, F. Pio, and G. Spinolo, “Luminescence of fused silica: observation of the O2- emission band,” Phys. Rev. B Condens. Matter 35(17), 9407–9409 (1987).
[Crossref] [PubMed]

Mattaini, M.

M. Guzzi, M. Martini, M. Mattaini, F. Pio, and G. Spinolo, “Luminescence of fused silica: observation of the O2- emission band,” Phys. Rev. B Condens. Matter 35(17), 9407–9409 (1987).
[Crossref] [PubMed]

Miller, P. E.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Minoshima, K.

Mullis, J.

K. Ramseyer and J. Mullis, “Factors influencing short-lived blue cathodoluminescence of α-quartz,” Am. Min. 75, 791–800 (1990).

Nagasawa, K.

Y. Sakurai and K. Nagasawa, “Excitation energy dependence of the photoluminescence bands at 2.7 and 4.3 eV in silica glass at low temperature,” J. Non-Cryst. Solids 290(2-3), 189–193 (2001).
[Crossref]

Y. Sakurai and K. Nagasawa, “Green photoluminescence in γ-irradiated oxygen-surplus silica glass,” J. Appl. Phys. 86(3), 1377–1381 (1999).
[Crossref]

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80(6), 3513–3517 (1996).
[Crossref]

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter 45(2), 586–591 (1992).
[Crossref] [PubMed]

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter 45(2), 586–591 (1992).
[Crossref] [PubMed]

H. Nishikawa, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Defects and optical absorption bands induced by surplus oxygen in high purity synthetic silica,” J. Appl. Phys. 65(12), 4672–4678 (1989).
[Crossref]

Nakamura, R.

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter 45(2), 586–591 (1992).
[Crossref] [PubMed]

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter 45(2), 586–591 (1992).
[Crossref] [PubMed]

Néauport, J.

J. Fournier, J. Néauport, P. Grua, E. Fargin, V. Jubera, D. Talaga, and S. Jouannigot, “Evidence of a green luminescence band related to surface flaws in high purity silica glass,” Opt. Express 18(21), 21557–21566 (2010).
[Crossref] [PubMed]

J. Néauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on laser induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[Crossref]

Nishikawa, H.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80(6), 3513–3517 (1996).
[Crossref]

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter 45(2), 586–591 (1992).
[Crossref] [PubMed]

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter 45(2), 586–591 (1992).
[Crossref] [PubMed]

H. Nishikawa, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Defects and optical absorption bands induced by surplus oxygen in high purity synthetic silica,” J. Appl. Phys. 65(12), 4672–4678 (1989).
[Crossref]

Ohki, Y.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80(6), 3513–3517 (1996).
[Crossref]

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter 45(2), 586–591 (1992).
[Crossref] [PubMed]

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter 45(2), 586–591 (1992).
[Crossref] [PubMed]

H. Nishikawa, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Defects and optical absorption bands induced by surplus oxygen in high purity synthetic silica,” J. Appl. Phys. 65(12), 4672–4678 (1989).
[Crossref]

Olive, A. G. L.

C. Giansante, G. Raffy, C. Schäfer, H. Rahma, M.-T. Kao, A. G. L. Olive, and A. Del Guerzo, “White-light-emitting self-assembled nanofibers and their evidence by microspectroscopy of individual objects,” J. Am. Chem. Soc. 133(2), 316–325 (2011).
[Crossref]

Pilon, F.

J. Néauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on laser induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[Crossref]

Pio, F.

M. Guzzi, M. Martini, M. Mattaini, F. Pio, and G. Spinolo, “Luminescence of fused silica: observation of the O2- emission band,” Phys. Rev. B Condens. Matter 35(17), 9407–9409 (1987).
[Crossref] [PubMed]

Raffy, G.

C. Giansante, G. Raffy, C. Schäfer, H. Rahma, M.-T. Kao, A. G. L. Olive, and A. Del Guerzo, “White-light-emitting self-assembled nanofibers and their evidence by microspectroscopy of individual objects,” J. Am. Chem. Soc. 133(2), 316–325 (2011).
[Crossref]

Rahma, H.

C. Giansante, G. Raffy, C. Schäfer, H. Rahma, M.-T. Kao, A. G. L. Olive, and A. Del Guerzo, “White-light-emitting self-assembled nanofibers and their evidence by microspectroscopy of individual objects,” J. Am. Chem. Soc. 133(2), 316–325 (2011).
[Crossref]

Ramseyer, K.

K. Ramseyer and J. Mullis, “Factors influencing short-lived blue cathodoluminescence of α-quartz,” Am. Min. 75, 791–800 (1990).

Sakurai, Y.

Y. Sakurai, “Photoluminescence band near 2.2 eV in γ-irradiated oxygen-deficient silica glass,” J. Non-Cryst. Solids 342(1-3), 54–58 (2004).
[Crossref]

Y. Sakurai, “Effect of thermal heat treatment on oxygen-deficiency-associated defect centers: relation to 1.8 eV photoluminescence bands in silica glass,” J. Appl. Phys. 95(2), 543–545 (2004).
[Crossref]

Y. Sakurai and K. Nagasawa, “Excitation energy dependence of the photoluminescence bands at 2.7 and 4.3 eV in silica glass at low temperature,” J. Non-Cryst. Solids 290(2-3), 189–193 (2001).
[Crossref]

Y. Sakurai, “The 3.1 eV photoluminescence band in oxygen-deficient silica glass,” J. Non-Cryst. Solids 271(3), 218–223 (2000).
[Crossref]

Y. Sakurai and K. Nagasawa, “Green photoluminescence in γ-irradiated oxygen-surplus silica glass,” J. Appl. Phys. 86(3), 1377–1381 (1999).
[Crossref]

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80(6), 3513–3517 (1996).
[Crossref]

Schäfer, C.

C. Giansante, G. Raffy, C. Schäfer, H. Rahma, M.-T. Kao, A. G. L. Olive, and A. Del Guerzo, “White-light-emitting self-assembled nanofibers and their evidence by microspectroscopy of individual objects,” J. Am. Chem. Soc. 133(2), 316–325 (2011).
[Crossref]

Shen, N.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Shiroyama, T.

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter 45(2), 586–591 (1992).
[Crossref] [PubMed]

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter 45(2), 586–591 (1992).
[Crossref] [PubMed]

Skuja, L.

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[Crossref]

L. Skuja, “Direct singlet-to-triplet optical absorption and luminescence excitation band of the twofold-coordinated silicon center in oxygen-deficient glassy SiO2,” J. Non-Cryst. Solids 167(3), 229–238 (1994).
[Crossref]

Skuja, L. N.

L. N. Skuja and A. N. Trukhin, “Comment on ‘Luminescence of fused silica: observation of the O2- emission band’,” Phys. Rev. B Condens. Matter 39(6), 3909–3911 (1989).
[Crossref] [PubMed]

Spinolo, G.

M. Guzzi, M. Martini, M. Mattaini, F. Pio, and G. Spinolo, “Luminescence of fused silica: observation of the O2- emission band,” Phys. Rev. B Condens. Matter 35(17), 9407–9409 (1987).
[Crossref] [PubMed]

Staggs, M.

Steele, W. A.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Suratwala, T.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Talaga, D.

Tohmon, R.

H. Nishikawa, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Defects and optical absorption bands induced by surplus oxygen in high purity synthetic silica,” J. Appl. Phys. 65(12), 4672–4678 (1989).
[Crossref]

Trukhin, A. N.

L. N. Skuja and A. N. Trukhin, “Comment on ‘Luminescence of fused silica: observation of the O2- emission band’,” Phys. Rev. B Condens. Matter 39(6), 3909–3911 (1989).
[Crossref] [PubMed]

Trukhin, N.

N. Trukhin and K. M. Golant, “Absorption and luminescence in amorphous silica synthesized by low-pressure plasmachemical technology,” J. Non-Cryst. Solids 353(5-7), 530–536 (2007).
[Crossref]

Vaccaro, L.

L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin. 128(7), 1132–1136 (2008).
[Crossref]

L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin. 128(7), 1132–1136 (2008).
[Crossref]

Watanabe, E.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80(6), 3513–3517 (1996).
[Crossref]

Yamane, M.

M. Kohketsu, K. Awazu, H. Kawazoe, and M. Yamane, “Photoluminescence centers in VAD SiO2 glasses sintered under reducing or oxidizing atmospheres,” Jpn. J. Appl. Phys. 28(Part 1, No. 4), 615–621 (1989).
[Crossref]

Am. Min. (1)

K. Ramseyer and J. Mullis, “Factors influencing short-lived blue cathodoluminescence of α-quartz,” Am. Min. 75, 791–800 (1990).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

J. Am. Chem. Soc. (1)

C. Giansante, G. Raffy, C. Schäfer, H. Rahma, M.-T. Kao, A. G. L. Olive, and A. Del Guerzo, “White-light-emitting self-assembled nanofibers and their evidence by microspectroscopy of individual objects,” J. Am. Chem. Soc. 133(2), 316–325 (2011).
[Crossref]

J. Appl. Phys. (4)

Y. Sakurai, “Effect of thermal heat treatment on oxygen-deficiency-associated defect centers: relation to 1.8 eV photoluminescence bands in silica glass,” J. Appl. Phys. 95(2), 543–545 (2004).
[Crossref]

H. Nishikawa, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Defects and optical absorption bands induced by surplus oxygen in high purity synthetic silica,” J. Appl. Phys. 65(12), 4672–4678 (1989).
[Crossref]

Y. Sakurai and K. Nagasawa, “Green photoluminescence in γ-irradiated oxygen-surplus silica glass,” J. Appl. Phys. 86(3), 1377–1381 (1999).
[Crossref]

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80(6), 3513–3517 (1996).
[Crossref]

J. Lumin. (2)

L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin. 128(7), 1132–1136 (2008).
[Crossref]

L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin. 128(7), 1132–1136 (2008).
[Crossref]

J. Non-Cryst. Solids (7)

N. Trukhin and K. M. Golant, “Absorption and luminescence in amorphous silica synthesized by low-pressure plasmachemical technology,” J. Non-Cryst. Solids 353(5-7), 530–536 (2007).
[Crossref]

Y. Sakurai and K. Nagasawa, “Excitation energy dependence of the photoluminescence bands at 2.7 and 4.3 eV in silica glass at low temperature,” J. Non-Cryst. Solids 290(2-3), 189–193 (2001).
[Crossref]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[Crossref]

Y. Sakurai, “Photoluminescence band near 2.2 eV in γ-irradiated oxygen-deficient silica glass,” J. Non-Cryst. Solids 342(1-3), 54–58 (2004).
[Crossref]

L. Skuja, “Direct singlet-to-triplet optical absorption and luminescence excitation band of the twofold-coordinated silicon center in oxygen-deficient glassy SiO2,” J. Non-Cryst. Solids 167(3), 229–238 (1994).
[Crossref]

M. Leone, R. Boscaino, M. Cannas, and F. M. Gelardi, “Low temperature photoluminescence spectroscopy relationship between 3.1 and 4.2 eV bands in vitreous silica,” J. Non-Cryst. Solids 216, 105–110 (1997).
[Crossref]

Y. Sakurai, “The 3.1 eV photoluminescence band in oxygen-deficient silica glass,” J. Non-Cryst. Solids 271(3), 218–223 (2000).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Kohketsu, K. Awazu, H. Kawazoe, and M. Yamane, “Photoluminescence centers in VAD SiO2 glasses sintered under reducing or oxidizing atmospheres,” Jpn. J. Appl. Phys. 28(Part 1, No. 4), 615–621 (1989).
[Crossref]

Opt. Commun. (1)

J. Néauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on laser induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[Crossref]

Opt. Express (2)

Phys. Rev. B (1)

M. Kalceff, “Cathodoluminescence microcharacterization of the defect structure of irradiated hydrated and anhydrous fused silicon dioxide,” Phys. Rev. B 57(10), 5674–5683 (1998).
[Crossref]

Phys. Rev. B Condens. Matter (4)

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter 45(2), 586–591 (1992).
[Crossref] [PubMed]

H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter 45(2), 586–591 (1992).
[Crossref] [PubMed]

M. Guzzi, M. Martini, M. Mattaini, F. Pio, and G. Spinolo, “Luminescence of fused silica: observation of the O2- emission band,” Phys. Rev. B Condens. Matter 35(17), 9407–9409 (1987).
[Crossref] [PubMed]

L. N. Skuja and A. N. Trukhin, “Comment on ‘Luminescence of fused silica: observation of the O2- emission band’,” Phys. Rev. B Condens. Matter 39(6), 3909–3911 (1989).
[Crossref] [PubMed]

Proc. SPIE (3)

M. R. Kozlowski, C. L. Battersby, and S. G. Demos, “Luminescence investigation of SiO2 surfaces damaged by 0.35 µm laser illumination,” Proc. SPIE 3902, 138–144 (2000).
[Crossref]

W. H. Lowdermilk, “Status of the National Ignition Facility project,” Proc. SPIE 3047, 16–37 (1996).

M. L. André, “Status of the LMJ project,” Proc. SPIE 3047, 38–42 (1996).

Other (1)

J. Fournier, PhD thesis (University of Bordeaux, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Photoluminescence spectra for an indentation excited with 3.81 eV photons. (a) comparison of the three spectra, (b) 293 K, (c) 193 K, (d) 93 K. (Experimental signal (black), fitted signal (red) Gaussian components of the fitted signal (blue)).

Fig. 2
Fig. 2

Normalized surface of each luminescence band as a function of temperature for an indentation.

Fig. 3
Fig. 3

Photoluminescence spectra for an indentation excited with 3.81 eV photons. (a) comparison of the three spectra. (b) 293 K. (c) 193 K. (d) 93 K. Experimental signal (black), fitted signal (red) Gaussian components of the fitted signal (blue).

Fig. 4
Fig. 4

Normalized surface of each luminescence band as a function of temperature for laser damage on silica materials. (a) 2.10 eV and 2.31 eV band. (b) 1.90, 2.63 and 3.11 eV band.

Tables (2)

Tables Icon

Table 1 Parameters Used for Spectral Deconvolutions of Thermal Dependant Luminescence Reported on Indentations

Tables Icon

Table 2 Parameters Used for Spectral Deconvolutions for the Three Temperatures

Metrics