Abstract

Optical properties of localized surface plasmon resonance (LSPR) in Au/Ag alloy were investigated experimentally and numerically. It was found that LSPR spectra of nanostructures at near-infrared wavelengths changed drastically at the 50% Au/Ag mole fraction. Both the experimental results and the finite-difference time-domain simulations using experimentally obtained n, k values showed a similar tendency. At 50% molar fraction, electromagnetic field enhancement reached almost the same value as in pure Au.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Pipino and V. Silin, “Gold nanoparticle response to nitro-compounds probed by cavity ring-down spectroscopy,” Chem. Phys. Lett.404(4-6), 361–364 (2005).
    [CrossRef]
  2. F. Lordan, J. H. Rice, B. Jose, R. J. Forster, and T. E. Keyes, “Site selective surface enhanced Raman on nanostructured cavities,” Appl. Phys. Lett.99(3), 033104 (2011).
    [CrossRef]
  3. Y. Sawai, B. Takimoto, H. Nabika, K. Ajito, and K. Murakoshi, “Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering,” J. Am. Chem. Soc.129(6), 1658–1662 (2007).
    [CrossRef] [PubMed]
  4. Y. Tsuboi, R. Shimizu, T. Shoji, and N. Kitamura, “Near-infrared continuous-wave light driving a two-photon photochromic reaction with the assistance of localized surface plasmon,” J. Am. Chem. Soc.131(35), 12623–12627 (2009).
    [CrossRef] [PubMed]
  5. Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett.1(13), 2031–2036 (2010).
    [CrossRef]
  6. M. Harada, K. Asakura, Y. Ueki, and N. Toshima, “Structure of polymer-protected palladium-platinum bimetallic clusters at the oxidized state: extended x-ray absorption fine structure analysis,” J. Phys. Chem.96(24), 9730–9738 (1992).
    [CrossRef]
  7. N. Toshima, M. Harada, Y. Yamazaki, and K. Asakura, “Catalytic activity and structural analysis of polymer-protected gold-palladium bimetallic clusters prepared by the simultaneous reduction of hydrogen tetrachloroaurate and palladium dichloride,” J. Phys. Chem.96(24), 9927–9933 (1992).
    [CrossRef]
  8. K. Kusada, M. Yamauchi, H. Kobayashi, H. Kitagawa, and Y. Kubota, “Hydrogen-storage properties of solid-solution alloys of immiscible neighboring elements with Pd,” J. Am. Chem. Soc.132(45), 15896–15898 (2010).
    [CrossRef] [PubMed]
  9. Y. Herbani, T. Nakamura, and S. Sato, “Synthesis of near-monodispersed Au and Ag nanoalloys by high intensity laser irradiation of metal ions in hexane,” J. Phys. Chem. C115(44), 21592–21598 (2011).
    [CrossRef]
  10. Y. Herbani, T. Nakamura, and S. Sato, “Femtosecond laser -induced formation of Au-rich nanoalloys from the aqueous mixture of Au-Ag ions,” J. Nanomater.2010, 154210 (2010).
    [CrossRef]
  11. S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of gold and silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B103(18), 3529–3533 (1999).
    [CrossRef]
  12. K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B110(39), 19220–19225 (2006).
    [CrossRef] [PubMed]
  13. N. E. Motl, E. Ewusi-Annan, I. T. Sines, L. Jensen, and R. E. Schaak, “Au and Cu alloy nanoparticles with tunable compositions and plasmonic properties: experimental determination of composition and correlation with theory,” J. Phys. Chem. C114(45), 19263–19269 (2010).
    [CrossRef]
  14. F. Hubenthal, N. Borg, and F. Trager, “Optical properties and ultrafast electron dynamics in gold and silver alloy and core and shell nanoparticles,” Appl. Phys. B93(1), 39–45 (2008).
    [CrossRef]
  15. S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A103(9), 1165–1170 (1999).
    [CrossRef]
  16. P. Mulvaney, M. Giersig, and A. Henglein, “Electrochemistry of multilayer colloids: preparation and absorption spectrum of gold-coated silver particles,” J. Phys. Chem.97(27), 7061–7064 (1993).
    [CrossRef]
  17. S. Liu, G. Chen, P. N. Prasad, and M. T. Swihart, “Synthesis of monodisperse Au, Ag, and Au and Ag alloy nanoparticles with tunable size and surface plasmon resonance Frequency,” Chem. Mater.23, 4098–4101 (2011).
  18. M. Valodkar, S. Modi, A. Pal, and S. Thakore, “Synthesis and anti-bacterial activity of Cu, Ag and Cu and Ag alloy nanoparticles: A green approach,” Mater. Res. Bull.46(3), 384–389 (2011).
    [CrossRef]
  19. Z. S. Zhang, Z. J. Yang, X. L. Liu, M. Li, and L. Zhou, “Multiple plasmon resonances of Au/Ag alloyed hollow nanoshells,” Scr. Mater.63(12), 1193–1196 (2010).
    [CrossRef]
  20. R. Kuladeep, L. Jyothi, K. S. Alee, K. L. N. Deepak, and D. N. Rao, “Laser-assisted synthesis of Au-Ag alloy nanoparticles with tunable surface plasmon resonance frequency,” Opt. Mater. Express2(2), 161–172 (2012).
    [CrossRef]
  21. P. B. Johnson and R. W. Christy, “Optical constants of copper and nickel as a function of temperature,” Phys. Rev. B11(4), 1315–1323 (1975).
    [CrossRef]
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  23. P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B9(12), 5056–5070 (1974).
    [CrossRef]
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press Handbook Series, 1985).
  25. ASM, ASM Handbook: Volume 3: Alloy Phase Diagrams (ASM International, 1992).
  26. K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc.128(44), 14226–14227 (2006).
    [CrossRef] [PubMed]
  27. K. Ueno, S. Juodkazis, V. Mizeikis, D. Ohnishi, K. Sasaki, and H. Misawa, “Inhibition of multipolar plasmon excitation in periodic chains of gold nanoblocks,” Opt. Express15(25), 16527–16539 (2007).
    [CrossRef] [PubMed]
  28. Y. Nishijima, L. Rosa, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express20(10), 11466–11477 (2012).
    [CrossRef] [PubMed]
  29. G. Burns, Solid State Physics (Academic Press, 1985).
  30. A. R. Denton and N. W. Ashcroft, “Vegard’s law,” Phys. Rev. A43(6), 3161–3164 (1991).
    [CrossRef] [PubMed]
  31. V. Kuckermann, G. Thummes, H. H. Mende, and M. D. Tiwari, “Electrical deviations from Matthiessen's rule in a Ag:Au alloy,” Solid State Commun.54(8), 749–752 (1985).
    [CrossRef]
  32. H. L. Engquist and G. Grimvall, “Electrical transport and deviations from Matthiessen's rule in alloys,” Phys. Rev. B21(6), 2072–2077 (1980).
    [CrossRef]
  33. L. Pauling, “The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms,” J. Am. Chem. Soc.54(9), 3570–3582 (1932).
    [CrossRef]
  34. A. L. Allred and E. G. Rochow, “A scale of electronegativity based on electrostatic force,” J. Inorg. Nucl. Chem.5(4), 264–268 (1958).
    [CrossRef]
  35. S. W. Hsu, K. On, and A. R. Tao, “Localized surface plasmon resonances of anisotropic semiconductor nanocrystals,” J. Am. Chem. Soc.133(47), 19072–19075 (2011).
    [CrossRef] [PubMed]
  36. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
  37. L. Wang, W. Xiong, Y. Nishijima, Y. Yokota, K. Ueno, H. Misawa, G. Bi, and J. R. Qiu, “Spectral properties and mechanism of instability of nanoengineered silver blocks,” Opt. Express19(11), 10640–10646 (2011).
    [CrossRef] [PubMed]
  38. M. Mcmahon, R. Lopez, H. Meyer, L. Feldman, and R. Haglund., “Rapid tarnishing of silver nanoparticles in ambient laboratory air,” Appl. Phys. B80(7), 915–921 (2005).
    [CrossRef]

2012 (2)

2011 (6)

S. W. Hsu, K. On, and A. R. Tao, “Localized surface plasmon resonances of anisotropic semiconductor nanocrystals,” J. Am. Chem. Soc.133(47), 19072–19075 (2011).
[CrossRef] [PubMed]

L. Wang, W. Xiong, Y. Nishijima, Y. Yokota, K. Ueno, H. Misawa, G. Bi, and J. R. Qiu, “Spectral properties and mechanism of instability of nanoengineered silver blocks,” Opt. Express19(11), 10640–10646 (2011).
[CrossRef] [PubMed]

F. Lordan, J. H. Rice, B. Jose, R. J. Forster, and T. E. Keyes, “Site selective surface enhanced Raman on nanostructured cavities,” Appl. Phys. Lett.99(3), 033104 (2011).
[CrossRef]

Y. Herbani, T. Nakamura, and S. Sato, “Synthesis of near-monodispersed Au and Ag nanoalloys by high intensity laser irradiation of metal ions in hexane,” J. Phys. Chem. C115(44), 21592–21598 (2011).
[CrossRef]

S. Liu, G. Chen, P. N. Prasad, and M. T. Swihart, “Synthesis of monodisperse Au, Ag, and Au and Ag alloy nanoparticles with tunable size and surface plasmon resonance Frequency,” Chem. Mater.23, 4098–4101 (2011).

M. Valodkar, S. Modi, A. Pal, and S. Thakore, “Synthesis and anti-bacterial activity of Cu, Ag and Cu and Ag alloy nanoparticles: A green approach,” Mater. Res. Bull.46(3), 384–389 (2011).
[CrossRef]

2010 (5)

Z. S. Zhang, Z. J. Yang, X. L. Liu, M. Li, and L. Zhou, “Multiple plasmon resonances of Au/Ag alloyed hollow nanoshells,” Scr. Mater.63(12), 1193–1196 (2010).
[CrossRef]

N. E. Motl, E. Ewusi-Annan, I. T. Sines, L. Jensen, and R. E. Schaak, “Au and Cu alloy nanoparticles with tunable compositions and plasmonic properties: experimental determination of composition and correlation with theory,” J. Phys. Chem. C114(45), 19263–19269 (2010).
[CrossRef]

Y. Herbani, T. Nakamura, and S. Sato, “Femtosecond laser -induced formation of Au-rich nanoalloys from the aqueous mixture of Au-Ag ions,” J. Nanomater.2010, 154210 (2010).
[CrossRef]

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett.1(13), 2031–2036 (2010).
[CrossRef]

K. Kusada, M. Yamauchi, H. Kobayashi, H. Kitagawa, and Y. Kubota, “Hydrogen-storage properties of solid-solution alloys of immiscible neighboring elements with Pd,” J. Am. Chem. Soc.132(45), 15896–15898 (2010).
[CrossRef] [PubMed]

2009 (1)

Y. Tsuboi, R. Shimizu, T. Shoji, and N. Kitamura, “Near-infrared continuous-wave light driving a two-photon photochromic reaction with the assistance of localized surface plasmon,” J. Am. Chem. Soc.131(35), 12623–12627 (2009).
[CrossRef] [PubMed]

2008 (1)

F. Hubenthal, N. Borg, and F. Trager, “Optical properties and ultrafast electron dynamics in gold and silver alloy and core and shell nanoparticles,” Appl. Phys. B93(1), 39–45 (2008).
[CrossRef]

2007 (2)

Y. Sawai, B. Takimoto, H. Nabika, K. Ajito, and K. Murakoshi, “Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering,” J. Am. Chem. Soc.129(6), 1658–1662 (2007).
[CrossRef] [PubMed]

K. Ueno, S. Juodkazis, V. Mizeikis, D. Ohnishi, K. Sasaki, and H. Misawa, “Inhibition of multipolar plasmon excitation in periodic chains of gold nanoblocks,” Opt. Express15(25), 16527–16539 (2007).
[CrossRef] [PubMed]

2006 (2)

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B110(39), 19220–19225 (2006).
[CrossRef] [PubMed]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc.128(44), 14226–14227 (2006).
[CrossRef] [PubMed]

2005 (2)

M. Mcmahon, R. Lopez, H. Meyer, L. Feldman, and R. Haglund., “Rapid tarnishing of silver nanoparticles in ambient laboratory air,” Appl. Phys. B80(7), 915–921 (2005).
[CrossRef]

A. Pipino and V. Silin, “Gold nanoparticle response to nitro-compounds probed by cavity ring-down spectroscopy,” Chem. Phys. Lett.404(4-6), 361–364 (2005).
[CrossRef]

1999 (2)

S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of gold and silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B103(18), 3529–3533 (1999).
[CrossRef]

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A103(9), 1165–1170 (1999).
[CrossRef]

1993 (1)

P. Mulvaney, M. Giersig, and A. Henglein, “Electrochemistry of multilayer colloids: preparation and absorption spectrum of gold-coated silver particles,” J. Phys. Chem.97(27), 7061–7064 (1993).
[CrossRef]

1992 (2)

M. Harada, K. Asakura, Y. Ueki, and N. Toshima, “Structure of polymer-protected palladium-platinum bimetallic clusters at the oxidized state: extended x-ray absorption fine structure analysis,” J. Phys. Chem.96(24), 9730–9738 (1992).
[CrossRef]

N. Toshima, M. Harada, Y. Yamazaki, and K. Asakura, “Catalytic activity and structural analysis of polymer-protected gold-palladium bimetallic clusters prepared by the simultaneous reduction of hydrogen tetrachloroaurate and palladium dichloride,” J. Phys. Chem.96(24), 9927–9933 (1992).
[CrossRef]

1991 (1)

A. R. Denton and N. W. Ashcroft, “Vegard’s law,” Phys. Rev. A43(6), 3161–3164 (1991).
[CrossRef] [PubMed]

1985 (1)

V. Kuckermann, G. Thummes, H. H. Mende, and M. D. Tiwari, “Electrical deviations from Matthiessen's rule in a Ag:Au alloy,” Solid State Commun.54(8), 749–752 (1985).
[CrossRef]

1980 (1)

H. L. Engquist and G. Grimvall, “Electrical transport and deviations from Matthiessen's rule in alloys,” Phys. Rev. B21(6), 2072–2077 (1980).
[CrossRef]

1975 (1)

P. B. Johnson and R. W. Christy, “Optical constants of copper and nickel as a function of temperature,” Phys. Rev. B11(4), 1315–1323 (1975).
[CrossRef]

1974 (1)

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B9(12), 5056–5070 (1974).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

1958 (1)

A. L. Allred and E. G. Rochow, “A scale of electronegativity based on electrostatic force,” J. Inorg. Nucl. Chem.5(4), 264–268 (1958).
[CrossRef]

1932 (1)

L. Pauling, “The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms,” J. Am. Chem. Soc.54(9), 3570–3582 (1932).
[CrossRef]

Ajito, K.

Y. Sawai, B. Takimoto, H. Nabika, K. Ajito, and K. Murakoshi, “Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering,” J. Am. Chem. Soc.129(6), 1658–1662 (2007).
[CrossRef] [PubMed]

Alee, K. S.

Allred, A. L.

A. L. Allred and E. G. Rochow, “A scale of electronegativity based on electrostatic force,” J. Inorg. Nucl. Chem.5(4), 264–268 (1958).
[CrossRef]

Asakura, K.

M. Harada, K. Asakura, Y. Ueki, and N. Toshima, “Structure of polymer-protected palladium-platinum bimetallic clusters at the oxidized state: extended x-ray absorption fine structure analysis,” J. Phys. Chem.96(24), 9730–9738 (1992).
[CrossRef]

N. Toshima, M. Harada, Y. Yamazaki, and K. Asakura, “Catalytic activity and structural analysis of polymer-protected gold-palladium bimetallic clusters prepared by the simultaneous reduction of hydrogen tetrachloroaurate and palladium dichloride,” J. Phys. Chem.96(24), 9927–9933 (1992).
[CrossRef]

Ashcroft, N. W.

A. R. Denton and N. W. Ashcroft, “Vegard’s law,” Phys. Rev. A43(6), 3161–3164 (1991).
[CrossRef] [PubMed]

Bi, G.

Borg, N.

F. Hubenthal, N. Borg, and F. Trager, “Optical properties and ultrafast electron dynamics in gold and silver alloy and core and shell nanoparticles,” Appl. Phys. B93(1), 39–45 (2008).
[CrossRef]

Burda, C.

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A103(9), 1165–1170 (1999).
[CrossRef]

Chen, G.

S. Liu, G. Chen, P. N. Prasad, and M. T. Swihart, “Synthesis of monodisperse Au, Ag, and Au and Ag alloy nanoparticles with tunable size and surface plasmon resonance Frequency,” Chem. Mater.23, 4098–4101 (2011).

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of copper and nickel as a function of temperature,” Phys. Rev. B11(4), 1315–1323 (1975).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B9(12), 5056–5070 (1974).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Deepak, K. L. N.

Denton, A. R.

A. R. Denton and N. W. Ashcroft, “Vegard’s law,” Phys. Rev. A43(6), 3161–3164 (1991).
[CrossRef] [PubMed]

El-Sayed, M. A.

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B110(39), 19220–19225 (2006).
[CrossRef] [PubMed]

S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of gold and silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B103(18), 3529–3533 (1999).
[CrossRef]

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A103(9), 1165–1170 (1999).
[CrossRef]

Engquist, H. L.

H. L. Engquist and G. Grimvall, “Electrical transport and deviations from Matthiessen's rule in alloys,” Phys. Rev. B21(6), 2072–2077 (1980).
[CrossRef]

Ewusi-Annan, E.

N. E. Motl, E. Ewusi-Annan, I. T. Sines, L. Jensen, and R. E. Schaak, “Au and Cu alloy nanoparticles with tunable compositions and plasmonic properties: experimental determination of composition and correlation with theory,” J. Phys. Chem. C114(45), 19263–19269 (2010).
[CrossRef]

Feldman, L.

M. Mcmahon, R. Lopez, H. Meyer, L. Feldman, and R. Haglund., “Rapid tarnishing of silver nanoparticles in ambient laboratory air,” Appl. Phys. B80(7), 915–921 (2005).
[CrossRef]

Forster, R. J.

F. Lordan, J. H. Rice, B. Jose, R. J. Forster, and T. E. Keyes, “Site selective surface enhanced Raman on nanostructured cavities,” Appl. Phys. Lett.99(3), 033104 (2011).
[CrossRef]

Giersig, M.

P. Mulvaney, M. Giersig, and A. Henglein, “Electrochemistry of multilayer colloids: preparation and absorption spectrum of gold-coated silver particles,” J. Phys. Chem.97(27), 7061–7064 (1993).
[CrossRef]

Grimvall, G.

H. L. Engquist and G. Grimvall, “Electrical transport and deviations from Matthiessen's rule in alloys,” Phys. Rev. B21(6), 2072–2077 (1980).
[CrossRef]

Haglund, R.

M. Mcmahon, R. Lopez, H. Meyer, L. Feldman, and R. Haglund., “Rapid tarnishing of silver nanoparticles in ambient laboratory air,” Appl. Phys. B80(7), 915–921 (2005).
[CrossRef]

Harada, M.

N. Toshima, M. Harada, Y. Yamazaki, and K. Asakura, “Catalytic activity and structural analysis of polymer-protected gold-palladium bimetallic clusters prepared by the simultaneous reduction of hydrogen tetrachloroaurate and palladium dichloride,” J. Phys. Chem.96(24), 9927–9933 (1992).
[CrossRef]

M. Harada, K. Asakura, Y. Ueki, and N. Toshima, “Structure of polymer-protected palladium-platinum bimetallic clusters at the oxidized state: extended x-ray absorption fine structure analysis,” J. Phys. Chem.96(24), 9730–9738 (1992).
[CrossRef]

Henglein, A.

P. Mulvaney, M. Giersig, and A. Henglein, “Electrochemistry of multilayer colloids: preparation and absorption spectrum of gold-coated silver particles,” J. Phys. Chem.97(27), 7061–7064 (1993).
[CrossRef]

Herbani, Y.

Y. Herbani, T. Nakamura, and S. Sato, “Synthesis of near-monodispersed Au and Ag nanoalloys by high intensity laser irradiation of metal ions in hexane,” J. Phys. Chem. C115(44), 21592–21598 (2011).
[CrossRef]

Y. Herbani, T. Nakamura, and S. Sato, “Femtosecond laser -induced formation of Au-rich nanoalloys from the aqueous mixture of Au-Ag ions,” J. Nanomater.2010, 154210 (2010).
[CrossRef]

Hsu, S. W.

S. W. Hsu, K. On, and A. R. Tao, “Localized surface plasmon resonances of anisotropic semiconductor nanocrystals,” J. Am. Chem. Soc.133(47), 19072–19075 (2011).
[CrossRef] [PubMed]

Hubenthal, F.

F. Hubenthal, N. Borg, and F. Trager, “Optical properties and ultrafast electron dynamics in gold and silver alloy and core and shell nanoparticles,” Appl. Phys. B93(1), 39–45 (2008).
[CrossRef]

Jensen, L.

N. E. Motl, E. Ewusi-Annan, I. T. Sines, L. Jensen, and R. E. Schaak, “Au and Cu alloy nanoparticles with tunable compositions and plasmonic properties: experimental determination of composition and correlation with theory,” J. Phys. Chem. C114(45), 19263–19269 (2010).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of copper and nickel as a function of temperature,” Phys. Rev. B11(4), 1315–1323 (1975).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B9(12), 5056–5070 (1974).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Jose, B.

F. Lordan, J. H. Rice, B. Jose, R. J. Forster, and T. E. Keyes, “Site selective surface enhanced Raman on nanostructured cavities,” Appl. Phys. Lett.99(3), 033104 (2011).
[CrossRef]

Juodkazis, S.

Jyothi, L.

Keyes, T. E.

F. Lordan, J. H. Rice, B. Jose, R. J. Forster, and T. E. Keyes, “Site selective surface enhanced Raman on nanostructured cavities,” Appl. Phys. Lett.99(3), 033104 (2011).
[CrossRef]

Kitagawa, H.

K. Kusada, M. Yamauchi, H. Kobayashi, H. Kitagawa, and Y. Kubota, “Hydrogen-storage properties of solid-solution alloys of immiscible neighboring elements with Pd,” J. Am. Chem. Soc.132(45), 15896–15898 (2010).
[CrossRef] [PubMed]

Kitamura, N.

Y. Tsuboi, R. Shimizu, T. Shoji, and N. Kitamura, “Near-infrared continuous-wave light driving a two-photon photochromic reaction with the assistance of localized surface plasmon,” J. Am. Chem. Soc.131(35), 12623–12627 (2009).
[CrossRef] [PubMed]

Kobayashi, H.

K. Kusada, M. Yamauchi, H. Kobayashi, H. Kitagawa, and Y. Kubota, “Hydrogen-storage properties of solid-solution alloys of immiscible neighboring elements with Pd,” J. Am. Chem. Soc.132(45), 15896–15898 (2010).
[CrossRef] [PubMed]

Kubota, Y.

K. Kusada, M. Yamauchi, H. Kobayashi, H. Kitagawa, and Y. Kubota, “Hydrogen-storage properties of solid-solution alloys of immiscible neighboring elements with Pd,” J. Am. Chem. Soc.132(45), 15896–15898 (2010).
[CrossRef] [PubMed]

Kuckermann, V.

V. Kuckermann, G. Thummes, H. H. Mende, and M. D. Tiwari, “Electrical deviations from Matthiessen's rule in a Ag:Au alloy,” Solid State Commun.54(8), 749–752 (1985).
[CrossRef]

Kuladeep, R.

Kusada, K.

K. Kusada, M. Yamauchi, H. Kobayashi, H. Kitagawa, and Y. Kubota, “Hydrogen-storage properties of solid-solution alloys of immiscible neighboring elements with Pd,” J. Am. Chem. Soc.132(45), 15896–15898 (2010).
[CrossRef] [PubMed]

Lee, K. S.

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B110(39), 19220–19225 (2006).
[CrossRef] [PubMed]

Li, M.

Z. S. Zhang, Z. J. Yang, X. L. Liu, M. Li, and L. Zhou, “Multiple plasmon resonances of Au/Ag alloyed hollow nanoshells,” Scr. Mater.63(12), 1193–1196 (2010).
[CrossRef]

Link, S.

S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of gold and silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B103(18), 3529–3533 (1999).
[CrossRef]

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A103(9), 1165–1170 (1999).
[CrossRef]

Liu, S.

S. Liu, G. Chen, P. N. Prasad, and M. T. Swihart, “Synthesis of monodisperse Au, Ag, and Au and Ag alloy nanoparticles with tunable size and surface plasmon resonance Frequency,” Chem. Mater.23, 4098–4101 (2011).

Liu, X. L.

Z. S. Zhang, Z. J. Yang, X. L. Liu, M. Li, and L. Zhou, “Multiple plasmon resonances of Au/Ag alloyed hollow nanoshells,” Scr. Mater.63(12), 1193–1196 (2010).
[CrossRef]

Lopez, R.

M. Mcmahon, R. Lopez, H. Meyer, L. Feldman, and R. Haglund., “Rapid tarnishing of silver nanoparticles in ambient laboratory air,” Appl. Phys. B80(7), 915–921 (2005).
[CrossRef]

Lordan, F.

F. Lordan, J. H. Rice, B. Jose, R. J. Forster, and T. E. Keyes, “Site selective surface enhanced Raman on nanostructured cavities,” Appl. Phys. Lett.99(3), 033104 (2011).
[CrossRef]

Mcmahon, M.

M. Mcmahon, R. Lopez, H. Meyer, L. Feldman, and R. Haglund., “Rapid tarnishing of silver nanoparticles in ambient laboratory air,” Appl. Phys. B80(7), 915–921 (2005).
[CrossRef]

Mende, H. H.

V. Kuckermann, G. Thummes, H. H. Mende, and M. D. Tiwari, “Electrical deviations from Matthiessen's rule in a Ag:Au alloy,” Solid State Commun.54(8), 749–752 (1985).
[CrossRef]

Meyer, H.

M. Mcmahon, R. Lopez, H. Meyer, L. Feldman, and R. Haglund., “Rapid tarnishing of silver nanoparticles in ambient laboratory air,” Appl. Phys. B80(7), 915–921 (2005).
[CrossRef]

Misawa, H.

L. Wang, W. Xiong, Y. Nishijima, Y. Yokota, K. Ueno, H. Misawa, G. Bi, and J. R. Qiu, “Spectral properties and mechanism of instability of nanoengineered silver blocks,” Opt. Express19(11), 10640–10646 (2011).
[CrossRef] [PubMed]

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett.1(13), 2031–2036 (2010).
[CrossRef]

K. Ueno, S. Juodkazis, V. Mizeikis, D. Ohnishi, K. Sasaki, and H. Misawa, “Inhibition of multipolar plasmon excitation in periodic chains of gold nanoblocks,” Opt. Express15(25), 16527–16539 (2007).
[CrossRef] [PubMed]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc.128(44), 14226–14227 (2006).
[CrossRef] [PubMed]

Mizeikis, V.

K. Ueno, S. Juodkazis, V. Mizeikis, D. Ohnishi, K. Sasaki, and H. Misawa, “Inhibition of multipolar plasmon excitation in periodic chains of gold nanoblocks,” Opt. Express15(25), 16527–16539 (2007).
[CrossRef] [PubMed]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc.128(44), 14226–14227 (2006).
[CrossRef] [PubMed]

Modi, S.

M. Valodkar, S. Modi, A. Pal, and S. Thakore, “Synthesis and anti-bacterial activity of Cu, Ag and Cu and Ag alloy nanoparticles: A green approach,” Mater. Res. Bull.46(3), 384–389 (2011).
[CrossRef]

Mohamed, M. B.

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A103(9), 1165–1170 (1999).
[CrossRef]

Motl, N. E.

N. E. Motl, E. Ewusi-Annan, I. T. Sines, L. Jensen, and R. E. Schaak, “Au and Cu alloy nanoparticles with tunable compositions and plasmonic properties: experimental determination of composition and correlation with theory,” J. Phys. Chem. C114(45), 19263–19269 (2010).
[CrossRef]

Mulvaney, P.

P. Mulvaney, M. Giersig, and A. Henglein, “Electrochemistry of multilayer colloids: preparation and absorption spectrum of gold-coated silver particles,” J. Phys. Chem.97(27), 7061–7064 (1993).
[CrossRef]

Murakoshi, K.

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett.1(13), 2031–2036 (2010).
[CrossRef]

Y. Sawai, B. Takimoto, H. Nabika, K. Ajito, and K. Murakoshi, “Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering,” J. Am. Chem. Soc.129(6), 1658–1662 (2007).
[CrossRef] [PubMed]

Nabika, H.

Y. Sawai, B. Takimoto, H. Nabika, K. Ajito, and K. Murakoshi, “Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering,” J. Am. Chem. Soc.129(6), 1658–1662 (2007).
[CrossRef] [PubMed]

Nakamura, T.

Y. Herbani, T. Nakamura, and S. Sato, “Synthesis of near-monodispersed Au and Ag nanoalloys by high intensity laser irradiation of metal ions in hexane,” J. Phys. Chem. C115(44), 21592–21598 (2011).
[CrossRef]

Y. Herbani, T. Nakamura, and S. Sato, “Femtosecond laser -induced formation of Au-rich nanoalloys from the aqueous mixture of Au-Ag ions,” J. Nanomater.2010, 154210 (2010).
[CrossRef]

Nikoobakht, B.

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A103(9), 1165–1170 (1999).
[CrossRef]

Nishijima, Y.

Ohnishi, D.

On, K.

S. W. Hsu, K. On, and A. R. Tao, “Localized surface plasmon resonances of anisotropic semiconductor nanocrystals,” J. Am. Chem. Soc.133(47), 19072–19075 (2011).
[CrossRef] [PubMed]

Pal, A.

M. Valodkar, S. Modi, A. Pal, and S. Thakore, “Synthesis and anti-bacterial activity of Cu, Ag and Cu and Ag alloy nanoparticles: A green approach,” Mater. Res. Bull.46(3), 384–389 (2011).
[CrossRef]

Pauling, L.

L. Pauling, “The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms,” J. Am. Chem. Soc.54(9), 3570–3582 (1932).
[CrossRef]

Pipino, A.

A. Pipino and V. Silin, “Gold nanoparticle response to nitro-compounds probed by cavity ring-down spectroscopy,” Chem. Phys. Lett.404(4-6), 361–364 (2005).
[CrossRef]

Prasad, P. N.

S. Liu, G. Chen, P. N. Prasad, and M. T. Swihart, “Synthesis of monodisperse Au, Ag, and Au and Ag alloy nanoparticles with tunable size and surface plasmon resonance Frequency,” Chem. Mater.23, 4098–4101 (2011).

Qiu, J. R.

Rao, D. N.

Rice, J. H.

F. Lordan, J. H. Rice, B. Jose, R. J. Forster, and T. E. Keyes, “Site selective surface enhanced Raman on nanostructured cavities,” Appl. Phys. Lett.99(3), 033104 (2011).
[CrossRef]

Rochow, E. G.

A. L. Allred and E. G. Rochow, “A scale of electronegativity based on electrostatic force,” J. Inorg. Nucl. Chem.5(4), 264–268 (1958).
[CrossRef]

Rosa, L.

Sasaki, K.

K. Ueno, S. Juodkazis, V. Mizeikis, D. Ohnishi, K. Sasaki, and H. Misawa, “Inhibition of multipolar plasmon excitation in periodic chains of gold nanoblocks,” Opt. Express15(25), 16527–16539 (2007).
[CrossRef] [PubMed]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc.128(44), 14226–14227 (2006).
[CrossRef] [PubMed]

Sato, S.

Y. Herbani, T. Nakamura, and S. Sato, “Synthesis of near-monodispersed Au and Ag nanoalloys by high intensity laser irradiation of metal ions in hexane,” J. Phys. Chem. C115(44), 21592–21598 (2011).
[CrossRef]

Y. Herbani, T. Nakamura, and S. Sato, “Femtosecond laser -induced formation of Au-rich nanoalloys from the aqueous mixture of Au-Ag ions,” J. Nanomater.2010, 154210 (2010).
[CrossRef]

Sawai, Y.

Y. Sawai, B. Takimoto, H. Nabika, K. Ajito, and K. Murakoshi, “Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering,” J. Am. Chem. Soc.129(6), 1658–1662 (2007).
[CrossRef] [PubMed]

Schaak, R. E.

N. E. Motl, E. Ewusi-Annan, I. T. Sines, L. Jensen, and R. E. Schaak, “Au and Cu alloy nanoparticles with tunable compositions and plasmonic properties: experimental determination of composition and correlation with theory,” J. Phys. Chem. C114(45), 19263–19269 (2010).
[CrossRef]

Shimizu, R.

Y. Tsuboi, R. Shimizu, T. Shoji, and N. Kitamura, “Near-infrared continuous-wave light driving a two-photon photochromic reaction with the assistance of localized surface plasmon,” J. Am. Chem. Soc.131(35), 12623–12627 (2009).
[CrossRef] [PubMed]

Shoji, T.

Y. Tsuboi, R. Shimizu, T. Shoji, and N. Kitamura, “Near-infrared continuous-wave light driving a two-photon photochromic reaction with the assistance of localized surface plasmon,” J. Am. Chem. Soc.131(35), 12623–12627 (2009).
[CrossRef] [PubMed]

Silin, V.

A. Pipino and V. Silin, “Gold nanoparticle response to nitro-compounds probed by cavity ring-down spectroscopy,” Chem. Phys. Lett.404(4-6), 361–364 (2005).
[CrossRef]

Sines, I. T.

N. E. Motl, E. Ewusi-Annan, I. T. Sines, L. Jensen, and R. E. Schaak, “Au and Cu alloy nanoparticles with tunable compositions and plasmonic properties: experimental determination of composition and correlation with theory,” J. Phys. Chem. C114(45), 19263–19269 (2010).
[CrossRef]

Swihart, M. T.

S. Liu, G. Chen, P. N. Prasad, and M. T. Swihart, “Synthesis of monodisperse Au, Ag, and Au and Ag alloy nanoparticles with tunable size and surface plasmon resonance Frequency,” Chem. Mater.23, 4098–4101 (2011).

Takimoto, B.

Y. Sawai, B. Takimoto, H. Nabika, K. Ajito, and K. Murakoshi, “Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering,” J. Am. Chem. Soc.129(6), 1658–1662 (2007).
[CrossRef] [PubMed]

Tao, A. R.

S. W. Hsu, K. On, and A. R. Tao, “Localized surface plasmon resonances of anisotropic semiconductor nanocrystals,” J. Am. Chem. Soc.133(47), 19072–19075 (2011).
[CrossRef] [PubMed]

Thakore, S.

M. Valodkar, S. Modi, A. Pal, and S. Thakore, “Synthesis and anti-bacterial activity of Cu, Ag and Cu and Ag alloy nanoparticles: A green approach,” Mater. Res. Bull.46(3), 384–389 (2011).
[CrossRef]

Thummes, G.

V. Kuckermann, G. Thummes, H. H. Mende, and M. D. Tiwari, “Electrical deviations from Matthiessen's rule in a Ag:Au alloy,” Solid State Commun.54(8), 749–752 (1985).
[CrossRef]

Tiwari, M. D.

V. Kuckermann, G. Thummes, H. H. Mende, and M. D. Tiwari, “Electrical deviations from Matthiessen's rule in a Ag:Au alloy,” Solid State Commun.54(8), 749–752 (1985).
[CrossRef]

Toshima, N.

M. Harada, K. Asakura, Y. Ueki, and N. Toshima, “Structure of polymer-protected palladium-platinum bimetallic clusters at the oxidized state: extended x-ray absorption fine structure analysis,” J. Phys. Chem.96(24), 9730–9738 (1992).
[CrossRef]

N. Toshima, M. Harada, Y. Yamazaki, and K. Asakura, “Catalytic activity and structural analysis of polymer-protected gold-palladium bimetallic clusters prepared by the simultaneous reduction of hydrogen tetrachloroaurate and palladium dichloride,” J. Phys. Chem.96(24), 9927–9933 (1992).
[CrossRef]

Trager, F.

F. Hubenthal, N. Borg, and F. Trager, “Optical properties and ultrafast electron dynamics in gold and silver alloy and core and shell nanoparticles,” Appl. Phys. B93(1), 39–45 (2008).
[CrossRef]

Tsuboi, Y.

Y. Tsuboi, R. Shimizu, T. Shoji, and N. Kitamura, “Near-infrared continuous-wave light driving a two-photon photochromic reaction with the assistance of localized surface plasmon,” J. Am. Chem. Soc.131(35), 12623–12627 (2009).
[CrossRef] [PubMed]

Ueki, Y.

M. Harada, K. Asakura, Y. Ueki, and N. Toshima, “Structure of polymer-protected palladium-platinum bimetallic clusters at the oxidized state: extended x-ray absorption fine structure analysis,” J. Phys. Chem.96(24), 9730–9738 (1992).
[CrossRef]

Ueno, K.

L. Wang, W. Xiong, Y. Nishijima, Y. Yokota, K. Ueno, H. Misawa, G. Bi, and J. R. Qiu, “Spectral properties and mechanism of instability of nanoengineered silver blocks,” Opt. Express19(11), 10640–10646 (2011).
[CrossRef] [PubMed]

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett.1(13), 2031–2036 (2010).
[CrossRef]

K. Ueno, S. Juodkazis, V. Mizeikis, D. Ohnishi, K. Sasaki, and H. Misawa, “Inhibition of multipolar plasmon excitation in periodic chains of gold nanoblocks,” Opt. Express15(25), 16527–16539 (2007).
[CrossRef] [PubMed]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc.128(44), 14226–14227 (2006).
[CrossRef] [PubMed]

Valodkar, M.

M. Valodkar, S. Modi, A. Pal, and S. Thakore, “Synthesis and anti-bacterial activity of Cu, Ag and Cu and Ag alloy nanoparticles: A green approach,” Mater. Res. Bull.46(3), 384–389 (2011).
[CrossRef]

Wang, L.

Wang, Z. L.

S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of gold and silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B103(18), 3529–3533 (1999).
[CrossRef]

Xiong, W.

Yamauchi, M.

K. Kusada, M. Yamauchi, H. Kobayashi, H. Kitagawa, and Y. Kubota, “Hydrogen-storage properties of solid-solution alloys of immiscible neighboring elements with Pd,” J. Am. Chem. Soc.132(45), 15896–15898 (2010).
[CrossRef] [PubMed]

Yamazaki, Y.

N. Toshima, M. Harada, Y. Yamazaki, and K. Asakura, “Catalytic activity and structural analysis of polymer-protected gold-palladium bimetallic clusters prepared by the simultaneous reduction of hydrogen tetrachloroaurate and palladium dichloride,” J. Phys. Chem.96(24), 9927–9933 (1992).
[CrossRef]

Yang, Z. J.

Z. S. Zhang, Z. J. Yang, X. L. Liu, M. Li, and L. Zhou, “Multiple plasmon resonances of Au/Ag alloyed hollow nanoshells,” Scr. Mater.63(12), 1193–1196 (2010).
[CrossRef]

Yokota, Y.

L. Wang, W. Xiong, Y. Nishijima, Y. Yokota, K. Ueno, H. Misawa, G. Bi, and J. R. Qiu, “Spectral properties and mechanism of instability of nanoengineered silver blocks,” Opt. Express19(11), 10640–10646 (2011).
[CrossRef] [PubMed]

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett.1(13), 2031–2036 (2010).
[CrossRef]

Zhang, Z. S.

Z. S. Zhang, Z. J. Yang, X. L. Liu, M. Li, and L. Zhou, “Multiple plasmon resonances of Au/Ag alloyed hollow nanoshells,” Scr. Mater.63(12), 1193–1196 (2010).
[CrossRef]

Zhou, L.

Z. S. Zhang, Z. J. Yang, X. L. Liu, M. Li, and L. Zhou, “Multiple plasmon resonances of Au/Ag alloyed hollow nanoshells,” Scr. Mater.63(12), 1193–1196 (2010).
[CrossRef]

Appl. Phys. B (2)

F. Hubenthal, N. Borg, and F. Trager, “Optical properties and ultrafast electron dynamics in gold and silver alloy and core and shell nanoparticles,” Appl. Phys. B93(1), 39–45 (2008).
[CrossRef]

M. Mcmahon, R. Lopez, H. Meyer, L. Feldman, and R. Haglund., “Rapid tarnishing of silver nanoparticles in ambient laboratory air,” Appl. Phys. B80(7), 915–921 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

F. Lordan, J. H. Rice, B. Jose, R. J. Forster, and T. E. Keyes, “Site selective surface enhanced Raman on nanostructured cavities,” Appl. Phys. Lett.99(3), 033104 (2011).
[CrossRef]

Chem. Mater. (1)

S. Liu, G. Chen, P. N. Prasad, and M. T. Swihart, “Synthesis of monodisperse Au, Ag, and Au and Ag alloy nanoparticles with tunable size and surface plasmon resonance Frequency,” Chem. Mater.23, 4098–4101 (2011).

Chem. Phys. Lett. (1)

A. Pipino and V. Silin, “Gold nanoparticle response to nitro-compounds probed by cavity ring-down spectroscopy,” Chem. Phys. Lett.404(4-6), 361–364 (2005).
[CrossRef]

J. Am. Chem. Soc. (6)

Y. Sawai, B. Takimoto, H. Nabika, K. Ajito, and K. Murakoshi, “Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering,” J. Am. Chem. Soc.129(6), 1658–1662 (2007).
[CrossRef] [PubMed]

Y. Tsuboi, R. Shimizu, T. Shoji, and N. Kitamura, “Near-infrared continuous-wave light driving a two-photon photochromic reaction with the assistance of localized surface plasmon,” J. Am. Chem. Soc.131(35), 12623–12627 (2009).
[CrossRef] [PubMed]

K. Kusada, M. Yamauchi, H. Kobayashi, H. Kitagawa, and Y. Kubota, “Hydrogen-storage properties of solid-solution alloys of immiscible neighboring elements with Pd,” J. Am. Chem. Soc.132(45), 15896–15898 (2010).
[CrossRef] [PubMed]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc.128(44), 14226–14227 (2006).
[CrossRef] [PubMed]

L. Pauling, “The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms,” J. Am. Chem. Soc.54(9), 3570–3582 (1932).
[CrossRef]

S. W. Hsu, K. On, and A. R. Tao, “Localized surface plasmon resonances of anisotropic semiconductor nanocrystals,” J. Am. Chem. Soc.133(47), 19072–19075 (2011).
[CrossRef] [PubMed]

J. Inorg. Nucl. Chem. (1)

A. L. Allred and E. G. Rochow, “A scale of electronegativity based on electrostatic force,” J. Inorg. Nucl. Chem.5(4), 264–268 (1958).
[CrossRef]

J. Nanomater. (1)

Y. Herbani, T. Nakamura, and S. Sato, “Femtosecond laser -induced formation of Au-rich nanoalloys from the aqueous mixture of Au-Ag ions,” J. Nanomater.2010, 154210 (2010).
[CrossRef]

J. Phys. Chem. (3)

P. Mulvaney, M. Giersig, and A. Henglein, “Electrochemistry of multilayer colloids: preparation and absorption spectrum of gold-coated silver particles,” J. Phys. Chem.97(27), 7061–7064 (1993).
[CrossRef]

M. Harada, K. Asakura, Y. Ueki, and N. Toshima, “Structure of polymer-protected palladium-platinum bimetallic clusters at the oxidized state: extended x-ray absorption fine structure analysis,” J. Phys. Chem.96(24), 9730–9738 (1992).
[CrossRef]

N. Toshima, M. Harada, Y. Yamazaki, and K. Asakura, “Catalytic activity and structural analysis of polymer-protected gold-palladium bimetallic clusters prepared by the simultaneous reduction of hydrogen tetrachloroaurate and palladium dichloride,” J. Phys. Chem.96(24), 9927–9933 (1992).
[CrossRef]

J. Phys. Chem. A (1)

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A103(9), 1165–1170 (1999).
[CrossRef]

J. Phys. Chem. B (2)

S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of gold and silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B103(18), 3529–3533 (1999).
[CrossRef]

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B110(39), 19220–19225 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. C (2)

N. E. Motl, E. Ewusi-Annan, I. T. Sines, L. Jensen, and R. E. Schaak, “Au and Cu alloy nanoparticles with tunable compositions and plasmonic properties: experimental determination of composition and correlation with theory,” J. Phys. Chem. C114(45), 19263–19269 (2010).
[CrossRef]

Y. Herbani, T. Nakamura, and S. Sato, “Synthesis of near-monodispersed Au and Ag nanoalloys by high intensity laser irradiation of metal ions in hexane,” J. Phys. Chem. C115(44), 21592–21598 (2011).
[CrossRef]

J. Phys. Chem. Lett. (1)

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett.1(13), 2031–2036 (2010).
[CrossRef]

Mater. Res. Bull. (1)

M. Valodkar, S. Modi, A. Pal, and S. Thakore, “Synthesis and anti-bacterial activity of Cu, Ag and Cu and Ag alloy nanoparticles: A green approach,” Mater. Res. Bull.46(3), 384–389 (2011).
[CrossRef]

Opt. Express (3)

Opt. Mater. Express (1)

Phys. Rev. A (1)

A. R. Denton and N. W. Ashcroft, “Vegard’s law,” Phys. Rev. A43(6), 3161–3164 (1991).
[CrossRef] [PubMed]

Phys. Rev. B (4)

P. B. Johnson and R. W. Christy, “Optical constants of copper and nickel as a function of temperature,” Phys. Rev. B11(4), 1315–1323 (1975).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B9(12), 5056–5070 (1974).
[CrossRef]

H. L. Engquist and G. Grimvall, “Electrical transport and deviations from Matthiessen's rule in alloys,” Phys. Rev. B21(6), 2072–2077 (1980).
[CrossRef]

Scr. Mater. (1)

Z. S. Zhang, Z. J. Yang, X. L. Liu, M. Li, and L. Zhou, “Multiple plasmon resonances of Au/Ag alloyed hollow nanoshells,” Scr. Mater.63(12), 1193–1196 (2010).
[CrossRef]

Solid State Commun. (1)

V. Kuckermann, G. Thummes, H. H. Mende, and M. D. Tiwari, “Electrical deviations from Matthiessen's rule in a Ag:Au alloy,” Solid State Commun.54(8), 749–752 (1985).
[CrossRef]

Other (4)

G. Burns, Solid State Physics (Academic Press, 1985).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press Handbook Series, 1985).

ASM, ASM Handbook: Volume 3: Alloy Phase Diagrams (ASM International, 1992).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Phase diagram of Au/Ag alloy. (a) Melting point values in the phase diagram are obtained from [25] and inset shows a photograph of bulk alloys with Au concentration ranging from 0% (pure Au), 16.7%, 50%, 70% and to 100%. (b) X-ray crystal diffraction spectroscopy of Au, Ag, and Au/Ag alloy (Au:Ag = 1:1).

Fig. 2
Fig. 2

(a) SEM image of Au/Ag alloy and (d) EDS mapping of Au and Ag in pure Au, Ag, and 50% alloy.

Fig. 3
Fig. 3

Extinction spectra of the Au/Ag alloy with various compositions and for 250 (a) and 350 nm (b) diameter nanodisc patterns; period is 450 nm, thickness of metal 35 nm.

Fig. 4
Fig. 4

The refractive index, n and k, of pure Au, Ag, and 50% Au/Ag alloy determined experimentally and the arithmetic average of pure Au and Ag reference data.

Fig. 5
Fig. 5

FDTD analysis of Au/Ag alloy with experimentally obtained (solid line) and arithmetical average of gold and silver (dashed line) n, k values: (a) extinction spectra, (b) electromagnetic field enhancement; the inset shows the field mapping of gold at peak wavelength of LSPR.

Fig. 6
Fig. 6

The plasma frequency and relaxation time, calculated by Drude model with experimentally determined values of n, k and by arithmetical average of gold and silver constants.

Fig. 7
Fig. 7

(a) The ε1 and ε2 dependence on the ωp with fixed τ ( = 9.3 × 10−15 s) and ωp = 12.0 ~15.5 × 1015 s−1; (b) with fixed ωp ( = 13.8 × 1015 s−1) and τ = 5.56 ~50.0 × 10−15 s. (c) Extinction spectra obtained by FDTD calculations with permittivity values modeled in (a) and (b).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)= ε 1 +i ε 2 = ε ω p 2 ω 2 + Γ 2 +i ω p 2 Γ ω( ω 2 + Γ 2 )

Metrics