Abstract

Highly transparent Yb doped YAG single crystals with diameter more than 90mm have been grown by Bagdasarov method also known as Horizontal Direct Crystallization.

© 2012 OSA

Full Article  |  PDF Article
Related Articles
Titanium sapphire laser characteristics

W. R. Rapoport and Chandra P. Khattak
Appl. Opt. 27(13) 2677-2684 (1988)

Characterization and laser performance of a new material: 2 at. % Nd:YAG grown by the Czochralski method

Johannes A. L’huillier, Gunter Bitz, Volker Wesemann, Patric von Loewis of Menar, Richard Wallenstein, Annette Borsutzky, Lothar Ackermann, Klaus Dupré, Daniel Rytz, and Sophie Vernay
Appl. Opt. 41(21) 4377-4384 (2002)

808-nm diode-pumped continuous-wave Tm:GdVO4 laser at room temperature

Yoshiharu Urata and Satoshi Wada
Appl. Opt. 44(15) 3087-3092 (2005)

References

  • View by:
  • |
  • |
  • |

  1. M. Dunne, “A high-power laser fusion facility for Europe,” Nat. Phys. 2(1), 2–5 (2006).
    [Crossref]
  2. W. R. Meier, “Systems modeling for a laser-driven IFE power plant using direct conversion,” J. Phys.: Conf. Ser. 112(3), 032036 (2008).
    [Crossref]
  3. J.-C. Chanteloup, D. Albach, G. Bourdet, P. Hollander, and B. Vincent, “Impact of variable doped gain medium on HiPER multiple kJ / ~10Hz diode pumped beam lines design,” in Advanced Solid State Photonics Topical Meeting and Tabletop Exhibit (ASSP), Denver, Colorado, USA (1–4 Feb. 2009).
  4. J-C. Chanteloup, D. Albach, A. Lucianetti, T. Novo and B. Vincent, “6.6 J / 2 Hz Yb:YAG diode-pumped laser chain activation,” in Advanced Solid-State Photonics (ASSP), Istanbul, Turkey, (13–16 Feb. 2011).
  5. J. Zhao, J. Si, X. Xu, J. Xu, H. Song, and Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth 252(1-3), 355–359 (2003).
    [Crossref]
  6. G. Zhao, X. Zeng, J. Xu, Y. Xu, and Y. Zhou, “Characteristics of large-sized Ce:YAG scintillation crystal grown by temperature gradient technique,” J. Cryst. Growth 253(1-4), 290–296 (2003).
    [Crossref]
  7. X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth 257(3-4), 297–300 (2003).
    [Crossref]
  8. Kh. S. Bagdasarov, “Vysokotemperaturnaya kristallizatsiya iz rasplava” (M.: Fizmatlit, 2004).
  9. M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG growth with controlled doping distribution using modified horizontal direct crystallization,” J. Cryst. Growth 329(1), 39–43 (2011).
    [Crossref]
  10. M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG crystal growth with controlled doping distribution,” Opt. Mater. Express 2(1), 20–30 (2012).
    [Crossref]
  11. Kh. S. Bagdasarov and L. A. Goryainov, “Teplo- i massoperenos pri vyrashchivanii monokristallov napravlennoi kristallizatsiei” (M.: Fizmatlit, 2007).
  12. W. Koechner, Solid-State Laser Engineering (Springer, 1999).

2012 (1)

2011 (1)

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG growth with controlled doping distribution using modified horizontal direct crystallization,” J. Cryst. Growth 329(1), 39–43 (2011).
[Crossref]

2008 (1)

W. R. Meier, “Systems modeling for a laser-driven IFE power plant using direct conversion,” J. Phys.: Conf. Ser. 112(3), 032036 (2008).
[Crossref]

2006 (1)

M. Dunne, “A high-power laser fusion facility for Europe,” Nat. Phys. 2(1), 2–5 (2006).
[Crossref]

2003 (3)

J. Zhao, J. Si, X. Xu, J. Xu, H. Song, and Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth 252(1-3), 355–359 (2003).
[Crossref]

G. Zhao, X. Zeng, J. Xu, Y. Xu, and Y. Zhou, “Characteristics of large-sized Ce:YAG scintillation crystal grown by temperature gradient technique,” J. Cryst. Growth 253(1-4), 290–296 (2003).
[Crossref]

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth 257(3-4), 297–300 (2003).
[Crossref]

Albach, D.

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG crystal growth with controlled doping distribution,” Opt. Mater. Express 2(1), 20–30 (2012).
[Crossref]

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG growth with controlled doping distribution using modified horizontal direct crystallization,” J. Cryst. Growth 329(1), 39–43 (2011).
[Crossref]

Ananyan, N.

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG crystal growth with controlled doping distribution,” Opt. Mater. Express 2(1), 20–30 (2012).
[Crossref]

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG growth with controlled doping distribution using modified horizontal direct crystallization,” J. Cryst. Growth 329(1), 39–43 (2011).
[Crossref]

Azrakantsyan, M.

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG crystal growth with controlled doping distribution,” Opt. Mater. Express 2(1), 20–30 (2012).
[Crossref]

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG growth with controlled doping distribution using modified horizontal direct crystallization,” J. Cryst. Growth 329(1), 39–43 (2011).
[Crossref]

Chanteloup, J.-C.

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG crystal growth with controlled doping distribution,” Opt. Mater. Express 2(1), 20–30 (2012).
[Crossref]

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG growth with controlled doping distribution using modified horizontal direct crystallization,” J. Cryst. Growth 329(1), 39–43 (2011).
[Crossref]

Deng, P.

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth 257(3-4), 297–300 (2003).
[Crossref]

Dunne, M.

M. Dunne, “A high-power laser fusion facility for Europe,” Nat. Phys. 2(1), 2–5 (2006).
[Crossref]

Gevorgyan, V.

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG crystal growth with controlled doping distribution,” Opt. Mater. Express 2(1), 20–30 (2012).
[Crossref]

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG growth with controlled doping distribution using modified horizontal direct crystallization,” J. Cryst. Growth 329(1), 39–43 (2011).
[Crossref]

Meier, W. R.

W. R. Meier, “Systems modeling for a laser-driven IFE power plant using direct conversion,” J. Phys.: Conf. Ser. 112(3), 032036 (2008).
[Crossref]

Si, J.

J. Zhao, J. Si, X. Xu, J. Xu, H. Song, and Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth 252(1-3), 355–359 (2003).
[Crossref]

Song, H.

J. Zhao, J. Si, X. Xu, J. Xu, H. Song, and Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth 252(1-3), 355–359 (2003).
[Crossref]

Song, P. X.

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth 257(3-4), 297–300 (2003).
[Crossref]

Xu, J.

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth 257(3-4), 297–300 (2003).
[Crossref]

G. Zhao, X. Zeng, J. Xu, Y. Xu, and Y. Zhou, “Characteristics of large-sized Ce:YAG scintillation crystal grown by temperature gradient technique,” J. Cryst. Growth 253(1-4), 290–296 (2003).
[Crossref]

J. Zhao, J. Si, X. Xu, J. Xu, H. Song, and Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth 252(1-3), 355–359 (2003).
[Crossref]

Xu, X.

J. Zhao, J. Si, X. Xu, J. Xu, H. Song, and Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth 252(1-3), 355–359 (2003).
[Crossref]

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth 257(3-4), 297–300 (2003).
[Crossref]

Xu, Y.

G. Zhao, X. Zeng, J. Xu, Y. Xu, and Y. Zhou, “Characteristics of large-sized Ce:YAG scintillation crystal grown by temperature gradient technique,” J. Cryst. Growth 253(1-4), 290–296 (2003).
[Crossref]

Zeng, X.

G. Zhao, X. Zeng, J. Xu, Y. Xu, and Y. Zhou, “Characteristics of large-sized Ce:YAG scintillation crystal grown by temperature gradient technique,” J. Cryst. Growth 253(1-4), 290–296 (2003).
[Crossref]

Zhao, G.

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth 257(3-4), 297–300 (2003).
[Crossref]

G. Zhao, X. Zeng, J. Xu, Y. Xu, and Y. Zhou, “Characteristics of large-sized Ce:YAG scintillation crystal grown by temperature gradient technique,” J. Cryst. Growth 253(1-4), 290–296 (2003).
[Crossref]

Zhao, J.

J. Zhao, J. Si, X. Xu, J. Xu, H. Song, and Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth 252(1-3), 355–359 (2003).
[Crossref]

Zhao, Z.

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth 257(3-4), 297–300 (2003).
[Crossref]

Zhou, Y.

G. Zhao, X. Zeng, J. Xu, Y. Xu, and Y. Zhou, “Characteristics of large-sized Ce:YAG scintillation crystal grown by temperature gradient technique,” J. Cryst. Growth 253(1-4), 290–296 (2003).
[Crossref]

J. Zhao, J. Si, X. Xu, J. Xu, H. Song, and Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth 252(1-3), 355–359 (2003).
[Crossref]

J. Cryst. Growth (4)

J. Zhao, J. Si, X. Xu, J. Xu, H. Song, and Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth 252(1-3), 355–359 (2003).
[Crossref]

G. Zhao, X. Zeng, J. Xu, Y. Xu, and Y. Zhou, “Characteristics of large-sized Ce:YAG scintillation crystal grown by temperature gradient technique,” J. Cryst. Growth 253(1-4), 290–296 (2003).
[Crossref]

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth 257(3-4), 297–300 (2003).
[Crossref]

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG growth with controlled doping distribution using modified horizontal direct crystallization,” J. Cryst. Growth 329(1), 39–43 (2011).
[Crossref]

J. Phys.: Conf. Ser. (1)

W. R. Meier, “Systems modeling for a laser-driven IFE power plant using direct conversion,” J. Phys.: Conf. Ser. 112(3), 032036 (2008).
[Crossref]

Nat. Phys. (1)

M. Dunne, “A high-power laser fusion facility for Europe,” Nat. Phys. 2(1), 2–5 (2006).
[Crossref]

Opt. Mater. Express (1)

Other (5)

Kh. S. Bagdasarov and L. A. Goryainov, “Teplo- i massoperenos pri vyrashchivanii monokristallov napravlennoi kristallizatsiei” (M.: Fizmatlit, 2007).

W. Koechner, Solid-State Laser Engineering (Springer, 1999).

Kh. S. Bagdasarov, “Vysokotemperaturnaya kristallizatsiya iz rasplava” (M.: Fizmatlit, 2004).

J.-C. Chanteloup, D. Albach, G. Bourdet, P. Hollander, and B. Vincent, “Impact of variable doped gain medium on HiPER multiple kJ / ~10Hz diode pumped beam lines design,” in Advanced Solid State Photonics Topical Meeting and Tabletop Exhibit (ASSP), Denver, Colorado, USA (1–4 Feb. 2009).

J-C. Chanteloup, D. Albach, A. Lucianetti, T. Novo and B. Vincent, “6.6 J / 2 Hz Yb:YAG diode-pumped laser chain activation,” in Advanced Solid-State Photonics (ASSP), Istanbul, Turkey, (13–16 Feb. 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Regular (left) and “wide”(right) crucibles for HDC method.

Fig. 2
Fig. 2

Respective positions of the heater and the crucible and the nature of its content during the crystallization phase.

Fig. 3
Fig. 3

92 mm diameter extracted crystal (left) and its absorption spectrum (right).

Fig. 4
Fig. 4

Transmission near 1030nm and extrapolated respective concentrations at 6 different points 5mm away from periphery.

Fig. 5
Fig. 5

Crystal under crossed polarizer for visible light.

Fig. 6
Fig. 6

Transmitted light intensity vs analyzer rotation for three different cases.

Fig. 7
Fig. 7

77mm YAG crystals for LUCIA cryogenic amplifier.

Metrics