Abstract

Here we demonstrate enhanced optical absorptions within three-dimensional inversed woodpile metallic photonic crystals fabricated via the combination of the direct laser writing method and the electrodeposition method. These metallic microstructures operating in the optical wavelengths are found to possess multiple enhanced absorption peaks over a broad spectral range. We characterize the optical properties with detailed numerical simulations and show that the broadband enhanced absorptions originate from the excitation of robust localized plasmon resonances and enhanced interactions at the photonic band edge within the metallic photonic crystals.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. V. Teperik, V. V. Popov, and F. J. Garcia De Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B71(8), 085408 (2005).
    [CrossRef]
  2. Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B27(3), 498–504 (2010).
    [CrossRef]
  3. S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Efficient light absorption in metal-semiconductor-metal nanostructures,” Appl. Phys. Lett.85(2), 194–196 (2004).
    [CrossRef]
  4. E. Popov, D. Maystre, R. C. McPhedran, M. Nevière, M. C. Hutley, and G. H. Derrick, “Total absorption of unpolarized light by crossed gratings,” Opt. Express16(9), 6146–6155 (2008).
    [CrossRef] [PubMed]
  5. N. Bonod, G. Tayeb, D. Maystre, S. Enoch, and E. Popov, “Total absorption of light by lamellar metallic gratings,” Opt. Express16(20), 15431–15438 (2008).
    [CrossRef] [PubMed]
  6. T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics2(5), 299–301 (2008).
    [CrossRef]
  7. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature417(6884), 52–55 (2002).
    [CrossRef] [PubMed]
  8. S. Y. Lin, J. G. Fleming, and I. El-Kady, “Three-dimensional photonic-crystal emission through thermal excitation,” Opt. Lett.28(20), 1909–1911 (2003).
    [CrossRef] [PubMed]
  9. S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B20(7), 1538–1541 (2003).
    [CrossRef]
  10. M. M. Hossain, G. Chen, B. Jia, X. H. Wang, and M. Gu, “Optimization of enhanced absorption in 3D-woodpile metallic photonic crystals,” Opt. Express18(9), 9048–9054 (2010).
    [CrossRef] [PubMed]
  11. J. Li, M. M. Hossain, B. Jia, D. Buso, and M. Gu, “Three-dimensional hybrid photonic crystals merged with localized plasmon resonances,” Opt. Express18(5), 4491–4498 (2010).
    [CrossRef] [PubMed]
  12. H. Y. Sang, Z. Y. Li, and B. Y. Gu, “Engineering the structure-induced enhanced absorption in three-dimensional metallic photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(6), 066611 (2004).
    [CrossRef] [PubMed]
  13. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett.83(2), 380–382 (2003).
    [CrossRef]
  14. S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett.99(5), 053906 (2007).
    [CrossRef] [PubMed]
  15. P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett.8(10), 3238–3243 (2008).
    [CrossRef] [PubMed]
  16. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  17. F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A205(12), 2844–2861 (2008).
    [CrossRef]
  18. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett.8(12), 4391–4397 (2008).
    [CrossRef] [PubMed]
  19. J. H. Lee, Y. S. Kim, K. Constant, and K. M. Ho, “Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission,” Adv. Mater. (Deerfield Beach Fla.)19(6), 791–794 (2007).
    [CrossRef]
  20. E. Nicoletti, D. Bulla, B. Luther-Davies, and M. Gu, “Planar defects in three-dimensional chalcogenide glass photonic crystals,” Opt. Lett.36(12), 2248–2250 (2011).
    [CrossRef] [PubMed]
  21. I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett.35(7), 1094–1096 (2010).
    [CrossRef] [PubMed]
  22. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1998).

2011 (1)

2010 (5)

2008 (6)

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A205(12), 2844–2861 (2008).
[CrossRef]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett.8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

E. Popov, D. Maystre, R. C. McPhedran, M. Nevière, M. C. Hutley, and G. H. Derrick, “Total absorption of unpolarized light by crossed gratings,” Opt. Express16(9), 6146–6155 (2008).
[CrossRef] [PubMed]

N. Bonod, G. Tayeb, D. Maystre, S. Enoch, and E. Popov, “Total absorption of light by lamellar metallic gratings,” Opt. Express16(20), 15431–15438 (2008).
[CrossRef] [PubMed]

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics2(5), 299–301 (2008).
[CrossRef]

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett.8(10), 3238–3243 (2008).
[CrossRef] [PubMed]

2007 (2)

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett.99(5), 053906 (2007).
[CrossRef] [PubMed]

J. H. Lee, Y. S. Kim, K. Constant, and K. M. Ho, “Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission,” Adv. Mater. (Deerfield Beach Fla.)19(6), 791–794 (2007).
[CrossRef]

2005 (1)

T. V. Teperik, V. V. Popov, and F. J. Garcia De Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B71(8), 085408 (2005).
[CrossRef]

2004 (2)

H. Y. Sang, Z. Y. Li, and B. Y. Gu, “Engineering the structure-induced enhanced absorption in three-dimensional metallic photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(6), 066611 (2004).
[CrossRef] [PubMed]

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Efficient light absorption in metal-semiconductor-metal nanostructures,” Appl. Phys. Lett.85(2), 194–196 (2004).
[CrossRef]

2003 (3)

2002 (1)

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Abdelsalam, M.

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics2(5), 299–301 (2008).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett.8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Bartlett, P. N.

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics2(5), 299–301 (2008).
[CrossRef]

Baumberg, J. J.

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics2(5), 299–301 (2008).
[CrossRef]

Biswas, R.

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B20(7), 1538–1541 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Bonod, N.

Borisov, A. G.

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics2(5), 299–301 (2008).
[CrossRef]

Bulla, D.

Busch, K.

Buso, D.

Chen, G.

Collin, S.

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Efficient light absorption in metal-semiconductor-metal nanostructures,” Appl. Phys. Lett.85(2), 194–196 (2004).
[CrossRef]

Constant, K.

J. H. Lee, Y. S. Kim, K. Constant, and K. M. Ho, “Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission,” Adv. Mater. (Deerfield Beach Fla.)19(6), 791–794 (2007).
[CrossRef]

Derrick, G. H.

El-Kady, I.

Enoch, S.

Essig, S.

Fahr, S.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A205(12), 2844–2861 (2008).
[CrossRef]

Ferry, V. E.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett.8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Fleming, J. G.

S. Y. Lin, J. G. Fleming, and I. El-Kady, “Three-dimensional photonic-crystal emission through thermal excitation,” Opt. Lett.28(20), 1909–1911 (2003).
[CrossRef] [PubMed]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett.83(2), 380–382 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B20(7), 1538–1541 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Garcia De Abajo, F. J.

T. V. Teperik, V. V. Popov, and F. J. Garcia De Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B71(8), 085408 (2005).
[CrossRef]

García De Abajo, F. J.

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics2(5), 299–301 (2008).
[CrossRef]

Graener, H.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A205(12), 2844–2861 (2008).
[CrossRef]

Gu, B. Y.

H. Y. Sang, Z. Y. Li, and B. Y. Gu, “Engineering the structure-induced enhanced absorption in three-dimensional metallic photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(6), 066611 (2004).
[CrossRef] [PubMed]

Gu, M.

Hallermann, F.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A205(12), 2844–2861 (2008).
[CrossRef]

Han, S. E.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett.8(10), 3238–3243 (2008).
[CrossRef] [PubMed]

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett.99(5), 053906 (2007).
[CrossRef] [PubMed]

He, S.

Ho, K. M.

J. H. Lee, Y. S. Kim, K. Constant, and K. M. Ho, “Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission,” Adv. Mater. (Deerfield Beach Fla.)19(6), 791–794 (2007).
[CrossRef]

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B20(7), 1538–1541 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Hossain, M. M.

Hutley, M. C.

Jia, B.

Jin, Y.

Kim, Y. S.

J. H. Lee, Y. S. Kim, K. Constant, and K. M. Ho, “Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission,” Adv. Mater. (Deerfield Beach Fla.)19(6), 791–794 (2007).
[CrossRef]

Lederer, F.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A205(12), 2844–2861 (2008).
[CrossRef]

Lee, J. H.

J. H. Lee, Y. S. Kim, K. Constant, and K. M. Ho, “Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission,” Adv. Mater. (Deerfield Beach Fla.)19(6), 791–794 (2007).
[CrossRef]

Li, J.

Li, Z. Y.

H. Y. Sang, Z. Y. Li, and B. Y. Gu, “Engineering the structure-induced enhanced absorption in three-dimensional metallic photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(6), 066611 (2004).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B20(7), 1538–1541 (2003).
[CrossRef]

Lin, S. Y.

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B20(7), 1538–1541 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, and I. El-Kady, “Three-dimensional photonic-crystal emission through thermal excitation,” Opt. Lett.28(20), 1909–1911 (2003).
[CrossRef] [PubMed]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett.83(2), 380–382 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Luther-Davies, B.

Maystre, D.

McPhedran, R. C.

Moreno, J.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett.83(2), 380–382 (2003).
[CrossRef]

Nagpal, P.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett.8(10), 3238–3243 (2008).
[CrossRef] [PubMed]

Nevière, M.

Nicoletti, E.

Norris, D. J.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett.8(10), 3238–3243 (2008).
[CrossRef] [PubMed]

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett.99(5), 053906 (2007).
[CrossRef] [PubMed]

Pacifici, D.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett.8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Pardo, F.

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Efficient light absorption in metal-semiconductor-metal nanostructures,” Appl. Phys. Lett.85(2), 194–196 (2004).
[CrossRef]

Pelouard, J. L.

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Efficient light absorption in metal-semiconductor-metal nanostructures,” Appl. Phys. Lett.85(2), 194–196 (2004).
[CrossRef]

Plessen, G. V.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A205(12), 2844–2861 (2008).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Popov, E.

Popov, V. V.

T. V. Teperik, V. V. Popov, and F. J. Garcia De Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B71(8), 085408 (2005).
[CrossRef]

Rockstuhl, C.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A205(12), 2844–2861 (2008).
[CrossRef]

Sang, H. Y.

H. Y. Sang, Z. Y. Li, and B. Y. Gu, “Engineering the structure-induced enhanced absorption in three-dimensional metallic photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(6), 066611 (2004).
[CrossRef] [PubMed]

Seifert, G.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A205(12), 2844–2861 (2008).
[CrossRef]

Staude, I.

Stein, A.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett.8(10), 3238–3243 (2008).
[CrossRef] [PubMed]

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett.99(5), 053906 (2007).
[CrossRef] [PubMed]

Sugawara, Y.

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics2(5), 299–301 (2008).
[CrossRef]

Sweatlock, L. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett.8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Tayeb, G.

Teissier, R.

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Efficient light absorption in metal-semiconductor-metal nanostructures,” Appl. Phys. Lett.85(2), 194–196 (2004).
[CrossRef]

Teperik, T. V.

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics2(5), 299–301 (2008).
[CrossRef]

T. V. Teperik, V. V. Popov, and F. J. Garcia De Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B71(8), 085408 (2005).
[CrossRef]

Thiel, M.

von Freymann, G.

Wackerow, S.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A205(12), 2844–2861 (2008).
[CrossRef]

Wang, X. H.

Wegener, M.

Wolff, C.

Ye, Y. Q.

Adv. Mater. (Deerfield Beach Fla.) (1)

J. H. Lee, Y. S. Kim, K. Constant, and K. M. Ho, “Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission,” Adv. Mater. (Deerfield Beach Fla.)19(6), 791–794 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett.83(2), 380–382 (2003).
[CrossRef]

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Efficient light absorption in metal-semiconductor-metal nanostructures,” Appl. Phys. Lett.85(2), 194–196 (2004).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nano Lett. (2)

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett.8(10), 3238–3243 (2008).
[CrossRef] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett.8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics2(5), 299–301 (2008).
[CrossRef]

Nature (1)

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. B (1)

T. V. Teperik, V. V. Popov, and F. J. Garcia De Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B71(8), 085408 (2005).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

H. Y. Sang, Z. Y. Li, and B. Y. Gu, “Engineering the structure-induced enhanced absorption in three-dimensional metallic photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(6), 066611 (2004).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett.99(5), 053906 (2007).
[CrossRef] [PubMed]

Phys. Status Solidi A (1)

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A205(12), 2844–2861 (2008).
[CrossRef]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the fabrication of inversed woodpile MPCs (a) Woodpile dielectric PC template on the ITO coated cover slip. (b) Metal is infiltrated into the woodpile PC template.

Fig. 2
Fig. 2

(a) SEM images of an electrodeposited nickel film on an ITO coated glass substrate. Inset shows the magnified view of the high quality nickel film with a dust particle in the middle. (b) SEM image of a nickel infiltrated woodpile PC. (c) High contrast image showing the top layers of the woodpile microstructure.

Fig. 3
Fig. 3

(a) FTIR reflection measurement of the inversed woodpile nickel MPC sample with the angle of incidence of 18°-41°. (b) Calculated reflection and transmission spectra of the inversed woodpile nickel MPC with an angle of incidence of 25°.

Fig. 4
Fig. 4

(a) Amplitude plot of the electric field distributions of the first reflection dip within the nickel inversed woodpile MPC at λ = 2.4 µm (b) Amplitude plot of the electric field distributions of the second reflection dip at λ = 2.1 µm. (c) Amplitude plot of the electric field distributions of the third reflection dip at λ = 1.84 µm. The scale bar applies to all the figures.

Metrics