Abstract

We report a unique study performed on the modal transition laser fluence of agglomerated nanoparticle size distributions and their averages in three-dimensional nanostructures that were formed on aluminosilicate ceramic using a megahertz femtosecond laser. At low repetition rates, bimodal particle distributions were obtained and changed to unimodal distributions with the increase in repetition rate. The distribution modals obtained depend only on the laser fluence and the presence of photoionized species were the possible reason for the formation of bimodal distributions. Laser fluence and heat accumulation could have played key roles in determining the average particle sizes. Our study would help to enhance the properties of 3-D agglomerated nanostructures.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Stankic, M. Müller, O. Diwald, M. Sterrer, E. Knözinger, and J. Bernardi, “Size-dependent optical properties of MgO nanocubes,” Angew. Chem. Int. Ed. Engl.44(31), 4917–4920 (2005).
    [CrossRef] [PubMed]
  2. S. Kan, T. Mokari, E. Rothenberg, and U. Banin, “Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods,” Nat. Mater.2(3), 155–158 (2003).
    [CrossRef] [PubMed]
  3. L. L. Shaw, D. Goberman, R. Ren, M. Gell, S. Jiang, Y. Wang, D. T. Xiao, and P. R. Strutt, “The dependency of microstructure and properties of nanostructured coatings on plasma spray conditions,” Surf. Coat. Tech.130(1), 1–8 (2000).
    [CrossRef]
  4. C. N. R. Rao, G. U. Kulkarni, P. J. Thomas, and P. P. Edwards, “Size-dependent chemistry: properties of nanocrystals,” Chemistry8(1), 28–35 (2002).
    [CrossRef] [PubMed]
  5. S. R. Emory, W. E. Haskins, and S. Nie, “Direct observation of size-dependent optical enhancement in single metal nanoparticles,” J. Am. Chem. Soc.120(31), 8009–8010 (1998).
    [CrossRef]
  6. W. Jiang, B. Y. S. Kim, J. T. Rutka, and W. C. W. Chan, “Nanoparticle-mediated cellular response is size-dependent,” Nat. Nanotechnol.3(3), 145–150 (2008).
    [CrossRef] [PubMed]
  7. C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B105(24), 5599–5611 (2001).
    [CrossRef]
  8. Y. Mao and S. S. Wong, “Size- and shape-dependent transformation of nanosized titanate into analogous anatase titania nanostructures,” J. Am. Chem. Soc.128(25), 8217–8226 (2006).
    [CrossRef] [PubMed]
  9. T. J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, “Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles,” Nano Lett.7(3), 766–772 (2007).
    [CrossRef] [PubMed]
  10. M. Zhang, M. Y. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S. L. Lai, T. Wisleder, J. E. Greene, and L. H. Allen, “Size-dependent melting point depression of nanostructures: nanocalorimetric measurements,” Phys. Rev. B62(15), 10548–10557 (2000).
    [CrossRef]
  11. J. Koch, A. V. Bohlen, R. Hergenröder, and K. Niemax, “Particle size distributions and compositions of aerosols produced by near-IR femto- and nanosecond laser ablation of brass,” J. Anal. At. Spectrom.19(2), 267–272 (2004).
    [CrossRef]
  12. C. H. Hung, M. J. Krasnopoler, and J. L. Katz, “is Condensation of a supersaturated vapor. VIII. The homogeneous nucleation of n-nonane,” J. Chem. Phys.90(3), 1856–1865 (1989).
    [CrossRef]
  13. K. Y. Park and H. J. Jeong, “Effect of temperature on particle size for vapor - phase synthesis of Ultrafine Iron particles,” Korean J. Chem. Eng.16(1), 64–68 (1999).
    [CrossRef]
  14. H. Lihavainen, Y. Viisanen, and M. Kulmala, “Homogeneous nucleation of n-pentanol in a laminar flow diffusion chamber,” J. Chem. Phys.114(22), 10031–10038 (2001).
    [CrossRef]
  15. M. S. Tillack, D. W. Blair, and S. S. Harilal, “The effect of ionization on cluster formation in laser ablation plumes,” Nanotechnology15(3), 390–403 (2004).
    [CrossRef]
  16. F. Mafuné, J.-y. Kohno, Y. Takeda, and T. Kondow, “Dissociation and aggregation of gold nanoparticles under laser irradiation,” J. Phys. Chem. B105(38), 9050–9056 (2001).
    [CrossRef]
  17. W. Marine, L. Patrone, B. Luk’yanchuk, and M. Sentis, “Strategy of nanocluster and nanostructure synthesis by conventional pulsed laser ablation,” Appl. Surf. Sci.154–155, 345–352 (2000).
    [CrossRef]
  18. S. Barcikowski, A. Hahn, A. V. Kabashin, and B. N. Chichkov, “Properties of nanoparticles generated during femtosecond laser machining in air and water,” Appl. Phys., A Mater. Sci. Process.87(1), 47–55 (2007).
    [CrossRef]
  19. A. Menéndez-Manjón, S. Barcikowski, G. A. Shafeev, V. I. Mazhukin, and B. N. Chichkov, “Influence of beam intensity profile on the aerodynamic particle size distributions generated by femtosecond laser ablation,” Laser Part. Beams28(01), 45–52 (2010).
    [CrossRef]
  20. B. Tan and K. Venkatakrishnan, “Synthesis of fibrous nanoparticle aggregates by femtosecond laser ablation in air,” Opt. Express17(2), 1064–1069 (2009).
    [CrossRef] [PubMed]
  21. M. Sivakumar, K. Venkatakrishnan, and B. Tan, “Study of metallic fibrous nanoparticle aggregate produced using femtosecond laser radiation under ambient conditions,” Nanotechnology21(22), 225601 (2010).
    [CrossRef] [PubMed]
  22. T. Takiya, I. Umezu, M. Yaga, and M. Han, “Nanoparticle formation in the expansion process of a laser ablated plume,” J. Phys.59, 445–448 (2007).
    [CrossRef]
  23. F. Yu and R. P. Turco, “Ultrafine aerosol formation via ion-mediated nucleation,” Geophys. Res. Lett.27(6), 883–886 (2000).
    [CrossRef]
  24. N. A. Fuchs and A. G. Sutugin, Highly Dispersed Aerosols (Ann Arbor, 1970), Chap. 1.
  25. A. C. Zettlemoyer, Nucleation, R. Andres, ed. (Marcel Dekker Inc., 1969), Chap. 2.
  26. V. Piñon and D. Anglos, “Optical emission studies of plasma induced by single and double femtosecond laser pulses,” Spectrochim. Acta, B At. Spectrosc.64(10), 950–960 (2009).
    [CrossRef]
  27. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express13(12), 4708–4716 (2005).
    [CrossRef] [PubMed]
  28. F. Brygo, C. Dutouquet, F. Le Guern, R. Oltra, A. Semerok, and J. M. Weulersse, “Laser fluence, repetition rate and pulse duration effects on paint ablation,” Appl. Surf. Sci.252(6), 2131–2138 (2006).
    [CrossRef]
  29. B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” Appl. Phys., A Mater. Sci. Process.95(2), 537–545 (2009).
    [CrossRef]
  30. M. Vitiello, S. Amoruso, C. Altucci, C. de Lisio, and X. Wang, “The emission of atoms and nanoparticles during femtosecond laser ablation of gold,” Appl. Surf. Sci.248(1-4), 163–166 (2005).
    [CrossRef]

2010 (2)

A. Menéndez-Manjón, S. Barcikowski, G. A. Shafeev, V. I. Mazhukin, and B. N. Chichkov, “Influence of beam intensity profile on the aerodynamic particle size distributions generated by femtosecond laser ablation,” Laser Part. Beams28(01), 45–52 (2010).
[CrossRef]

M. Sivakumar, K. Venkatakrishnan, and B. Tan, “Study of metallic fibrous nanoparticle aggregate produced using femtosecond laser radiation under ambient conditions,” Nanotechnology21(22), 225601 (2010).
[CrossRef] [PubMed]

2009 (3)

V. Piñon and D. Anglos, “Optical emission studies of plasma induced by single and double femtosecond laser pulses,” Spectrochim. Acta, B At. Spectrosc.64(10), 950–960 (2009).
[CrossRef]

B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” Appl. Phys., A Mater. Sci. Process.95(2), 537–545 (2009).
[CrossRef]

B. Tan and K. Venkatakrishnan, “Synthesis of fibrous nanoparticle aggregates by femtosecond laser ablation in air,” Opt. Express17(2), 1064–1069 (2009).
[CrossRef] [PubMed]

2008 (1)

W. Jiang, B. Y. S. Kim, J. T. Rutka, and W. C. W. Chan, “Nanoparticle-mediated cellular response is size-dependent,” Nat. Nanotechnol.3(3), 145–150 (2008).
[CrossRef] [PubMed]

2007 (3)

T. J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, “Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles,” Nano Lett.7(3), 766–772 (2007).
[CrossRef] [PubMed]

S. Barcikowski, A. Hahn, A. V. Kabashin, and B. N. Chichkov, “Properties of nanoparticles generated during femtosecond laser machining in air and water,” Appl. Phys., A Mater. Sci. Process.87(1), 47–55 (2007).
[CrossRef]

T. Takiya, I. Umezu, M. Yaga, and M. Han, “Nanoparticle formation in the expansion process of a laser ablated plume,” J. Phys.59, 445–448 (2007).
[CrossRef]

2006 (2)

F. Brygo, C. Dutouquet, F. Le Guern, R. Oltra, A. Semerok, and J. M. Weulersse, “Laser fluence, repetition rate and pulse duration effects on paint ablation,” Appl. Surf. Sci.252(6), 2131–2138 (2006).
[CrossRef]

Y. Mao and S. S. Wong, “Size- and shape-dependent transformation of nanosized titanate into analogous anatase titania nanostructures,” J. Am. Chem. Soc.128(25), 8217–8226 (2006).
[CrossRef] [PubMed]

2005 (3)

S. Stankic, M. Müller, O. Diwald, M. Sterrer, E. Knözinger, and J. Bernardi, “Size-dependent optical properties of MgO nanocubes,” Angew. Chem. Int. Ed. Engl.44(31), 4917–4920 (2005).
[CrossRef] [PubMed]

M. Vitiello, S. Amoruso, C. Altucci, C. de Lisio, and X. Wang, “The emission of atoms and nanoparticles during femtosecond laser ablation of gold,” Appl. Surf. Sci.248(1-4), 163–166 (2005).
[CrossRef]

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express13(12), 4708–4716 (2005).
[CrossRef] [PubMed]

2004 (2)

J. Koch, A. V. Bohlen, R. Hergenröder, and K. Niemax, “Particle size distributions and compositions of aerosols produced by near-IR femto- and nanosecond laser ablation of brass,” J. Anal. At. Spectrom.19(2), 267–272 (2004).
[CrossRef]

M. S. Tillack, D. W. Blair, and S. S. Harilal, “The effect of ionization on cluster formation in laser ablation plumes,” Nanotechnology15(3), 390–403 (2004).
[CrossRef]

2003 (1)

S. Kan, T. Mokari, E. Rothenberg, and U. Banin, “Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods,” Nat. Mater.2(3), 155–158 (2003).
[CrossRef] [PubMed]

2002 (1)

C. N. R. Rao, G. U. Kulkarni, P. J. Thomas, and P. P. Edwards, “Size-dependent chemistry: properties of nanocrystals,” Chemistry8(1), 28–35 (2002).
[CrossRef] [PubMed]

2001 (3)

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B105(24), 5599–5611 (2001).
[CrossRef]

F. Mafuné, J.-y. Kohno, Y. Takeda, and T. Kondow, “Dissociation and aggregation of gold nanoparticles under laser irradiation,” J. Phys. Chem. B105(38), 9050–9056 (2001).
[CrossRef]

H. Lihavainen, Y. Viisanen, and M. Kulmala, “Homogeneous nucleation of n-pentanol in a laminar flow diffusion chamber,” J. Chem. Phys.114(22), 10031–10038 (2001).
[CrossRef]

2000 (4)

W. Marine, L. Patrone, B. Luk’yanchuk, and M. Sentis, “Strategy of nanocluster and nanostructure synthesis by conventional pulsed laser ablation,” Appl. Surf. Sci.154–155, 345–352 (2000).
[CrossRef]

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S. L. Lai, T. Wisleder, J. E. Greene, and L. H. Allen, “Size-dependent melting point depression of nanostructures: nanocalorimetric measurements,” Phys. Rev. B62(15), 10548–10557 (2000).
[CrossRef]

L. L. Shaw, D. Goberman, R. Ren, M. Gell, S. Jiang, Y. Wang, D. T. Xiao, and P. R. Strutt, “The dependency of microstructure and properties of nanostructured coatings on plasma spray conditions,” Surf. Coat. Tech.130(1), 1–8 (2000).
[CrossRef]

F. Yu and R. P. Turco, “Ultrafine aerosol formation via ion-mediated nucleation,” Geophys. Res. Lett.27(6), 883–886 (2000).
[CrossRef]

1999 (1)

K. Y. Park and H. J. Jeong, “Effect of temperature on particle size for vapor - phase synthesis of Ultrafine Iron particles,” Korean J. Chem. Eng.16(1), 64–68 (1999).
[CrossRef]

1998 (1)

S. R. Emory, W. E. Haskins, and S. Nie, “Direct observation of size-dependent optical enhancement in single metal nanoparticles,” J. Am. Chem. Soc.120(31), 8009–8010 (1998).
[CrossRef]

1989 (1)

C. H. Hung, M. J. Krasnopoler, and J. L. Katz, “is Condensation of a supersaturated vapor. VIII. The homogeneous nucleation of n-nonane,” J. Chem. Phys.90(3), 1856–1865 (1989).
[CrossRef]

Allen, L. H.

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S. L. Lai, T. Wisleder, J. E. Greene, and L. H. Allen, “Size-dependent melting point depression of nanostructures: nanocalorimetric measurements,” Phys. Rev. B62(15), 10548–10557 (2000).
[CrossRef]

Altucci, C.

M. Vitiello, S. Amoruso, C. Altucci, C. de Lisio, and X. Wang, “The emission of atoms and nanoparticles during femtosecond laser ablation of gold,” Appl. Surf. Sci.248(1-4), 163–166 (2005).
[CrossRef]

Amoruso, S.

M. Vitiello, S. Amoruso, C. Altucci, C. de Lisio, and X. Wang, “The emission of atoms and nanoparticles during femtosecond laser ablation of gold,” Appl. Surf. Sci.248(1-4), 163–166 (2005).
[CrossRef]

Anglos, D.

V. Piñon and D. Anglos, “Optical emission studies of plasma induced by single and double femtosecond laser pulses,” Spectrochim. Acta, B At. Spectrosc.64(10), 950–960 (2009).
[CrossRef]

Arai, A. Y.

Banin, U.

S. Kan, T. Mokari, E. Rothenberg, and U. Banin, “Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods,” Nat. Mater.2(3), 155–158 (2003).
[CrossRef] [PubMed]

Barcikowski, S.

A. Menéndez-Manjón, S. Barcikowski, G. A. Shafeev, V. I. Mazhukin, and B. N. Chichkov, “Influence of beam intensity profile on the aerodynamic particle size distributions generated by femtosecond laser ablation,” Laser Part. Beams28(01), 45–52 (2010).
[CrossRef]

S. Barcikowski, A. Hahn, A. V. Kabashin, and B. N. Chichkov, “Properties of nanoparticles generated during femtosecond laser machining in air and water,” Appl. Phys., A Mater. Sci. Process.87(1), 47–55 (2007).
[CrossRef]

Bernardi, J.

S. Stankic, M. Müller, O. Diwald, M. Sterrer, E. Knözinger, and J. Bernardi, “Size-dependent optical properties of MgO nanocubes,” Angew. Chem. Int. Ed. Engl.44(31), 4917–4920 (2005).
[CrossRef] [PubMed]

Blair, D. W.

M. S. Tillack, D. W. Blair, and S. S. Harilal, “The effect of ionization on cluster formation in laser ablation plumes,” Nanotechnology15(3), 390–403 (2004).
[CrossRef]

Bohlen, A. V.

J. Koch, A. V. Bohlen, R. Hergenröder, and K. Niemax, “Particle size distributions and compositions of aerosols produced by near-IR femto- and nanosecond laser ablation of brass,” J. Anal. At. Spectrom.19(2), 267–272 (2004).
[CrossRef]

Bovatsek, J.

Brygo, F.

F. Brygo, C. Dutouquet, F. Le Guern, R. Oltra, A. Semerok, and J. M. Weulersse, “Laser fluence, repetition rate and pulse duration effects on paint ablation,” Appl. Surf. Sci.252(6), 2131–2138 (2006).
[CrossRef]

Chan, W. C. W.

W. Jiang, B. Y. S. Kim, J. T. Rutka, and W. C. W. Chan, “Nanoparticle-mediated cellular response is size-dependent,” Nat. Nanotechnol.3(3), 145–150 (2008).
[CrossRef] [PubMed]

Chichkov, B. N.

A. Menéndez-Manjón, S. Barcikowski, G. A. Shafeev, V. I. Mazhukin, and B. N. Chichkov, “Influence of beam intensity profile on the aerodynamic particle size distributions generated by femtosecond laser ablation,” Laser Part. Beams28(01), 45–52 (2010).
[CrossRef]

S. Barcikowski, A. Hahn, A. V. Kabashin, and B. N. Chichkov, “Properties of nanoparticles generated during femtosecond laser machining in air and water,” Appl. Phys., A Mater. Sci. Process.87(1), 47–55 (2007).
[CrossRef]

Dalili, A.

B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” Appl. Phys., A Mater. Sci. Process.95(2), 537–545 (2009).
[CrossRef]

de Lisio, C.

M. Vitiello, S. Amoruso, C. Altucci, C. de Lisio, and X. Wang, “The emission of atoms and nanoparticles during femtosecond laser ablation of gold,” Appl. Surf. Sci.248(1-4), 163–166 (2005).
[CrossRef]

Diwald, O.

S. Stankic, M. Müller, O. Diwald, M. Sterrer, E. Knözinger, and J. Bernardi, “Size-dependent optical properties of MgO nanocubes,” Angew. Chem. Int. Ed. Engl.44(31), 4917–4920 (2005).
[CrossRef] [PubMed]

Dutouquet, C.

F. Brygo, C. Dutouquet, F. Le Guern, R. Oltra, A. Semerok, and J. M. Weulersse, “Laser fluence, repetition rate and pulse duration effects on paint ablation,” Appl. Surf. Sci.252(6), 2131–2138 (2006).
[CrossRef]

Eaton, S. M.

Edwards, P. P.

C. N. R. Rao, G. U. Kulkarni, P. J. Thomas, and P. P. Edwards, “Size-dependent chemistry: properties of nanocrystals,” Chemistry8(1), 28–35 (2002).
[CrossRef] [PubMed]

Efremov, M. Y.

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S. L. Lai, T. Wisleder, J. E. Greene, and L. H. Allen, “Size-dependent melting point depression of nanostructures: nanocalorimetric measurements,” Phys. Rev. B62(15), 10548–10557 (2000).
[CrossRef]

Emory, S. R.

S. R. Emory, W. E. Haskins, and S. Nie, “Direct observation of size-dependent optical enhancement in single metal nanoparticles,” J. Am. Chem. Soc.120(31), 8009–8010 (1998).
[CrossRef]

Gell, M.

L. L. Shaw, D. Goberman, R. Ren, M. Gell, S. Jiang, Y. Wang, D. T. Xiao, and P. R. Strutt, “The dependency of microstructure and properties of nanostructured coatings on plasma spray conditions,” Surf. Coat. Tech.130(1), 1–8 (2000).
[CrossRef]

Goberman, D.

L. L. Shaw, D. Goberman, R. Ren, M. Gell, S. Jiang, Y. Wang, D. T. Xiao, and P. R. Strutt, “The dependency of microstructure and properties of nanostructured coatings on plasma spray conditions,” Surf. Coat. Tech.130(1), 1–8 (2000).
[CrossRef]

Greene, J. E.

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S. L. Lai, T. Wisleder, J. E. Greene, and L. H. Allen, “Size-dependent melting point depression of nanostructures: nanocalorimetric measurements,” Phys. Rev. B62(15), 10548–10557 (2000).
[CrossRef]

Hahn, A.

S. Barcikowski, A. Hahn, A. V. Kabashin, and B. N. Chichkov, “Properties of nanoparticles generated during femtosecond laser machining in air and water,” Appl. Phys., A Mater. Sci. Process.87(1), 47–55 (2007).
[CrossRef]

Han, M.

T. Takiya, I. Umezu, M. Yaga, and M. Han, “Nanoparticle formation in the expansion process of a laser ablated plume,” J. Phys.59, 445–448 (2007).
[CrossRef]

Harilal, S. S.

M. S. Tillack, D. W. Blair, and S. S. Harilal, “The effect of ionization on cluster formation in laser ablation plumes,” Nanotechnology15(3), 390–403 (2004).
[CrossRef]

Haskins, W. E.

S. R. Emory, W. E. Haskins, and S. Nie, “Direct observation of size-dependent optical enhancement in single metal nanoparticles,” J. Am. Chem. Soc.120(31), 8009–8010 (1998).
[CrossRef]

Haynes, C. L.

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B105(24), 5599–5611 (2001).
[CrossRef]

Hergenröder, R.

J. Koch, A. V. Bohlen, R. Hergenröder, and K. Niemax, “Particle size distributions and compositions of aerosols produced by near-IR femto- and nanosecond laser ablation of brass,” J. Anal. At. Spectrom.19(2), 267–272 (2004).
[CrossRef]

Herman, P. R.

Hung, C. H.

C. H. Hung, M. J. Krasnopoler, and J. L. Katz, “is Condensation of a supersaturated vapor. VIII. The homogeneous nucleation of n-nonane,” J. Chem. Phys.90(3), 1856–1865 (1989).
[CrossRef]

Jeong, H. J.

K. Y. Park and H. J. Jeong, “Effect of temperature on particle size for vapor - phase synthesis of Ultrafine Iron particles,” Korean J. Chem. Eng.16(1), 64–68 (1999).
[CrossRef]

Jiang, S.

L. L. Shaw, D. Goberman, R. Ren, M. Gell, S. Jiang, Y. Wang, D. T. Xiao, and P. R. Strutt, “The dependency of microstructure and properties of nanostructured coatings on plasma spray conditions,” Surf. Coat. Tech.130(1), 1–8 (2000).
[CrossRef]

Jiang, W.

W. Jiang, B. Y. S. Kim, J. T. Rutka, and W. C. W. Chan, “Nanoparticle-mediated cellular response is size-dependent,” Nat. Nanotechnol.3(3), 145–150 (2008).
[CrossRef] [PubMed]

Kabashin, A. V.

S. Barcikowski, A. Hahn, A. V. Kabashin, and B. N. Chichkov, “Properties of nanoparticles generated during femtosecond laser machining in air and water,” Appl. Phys., A Mater. Sci. Process.87(1), 47–55 (2007).
[CrossRef]

Kan, S.

S. Kan, T. Mokari, E. Rothenberg, and U. Banin, “Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods,” Nat. Mater.2(3), 155–158 (2003).
[CrossRef] [PubMed]

Katz, J. L.

C. H. Hung, M. J. Krasnopoler, and J. L. Katz, “is Condensation of a supersaturated vapor. VIII. The homogeneous nucleation of n-nonane,” J. Chem. Phys.90(3), 1856–1865 (1989).
[CrossRef]

Kim, B. Y. S.

W. Jiang, B. Y. S. Kim, J. T. Rutka, and W. C. W. Chan, “Nanoparticle-mediated cellular response is size-dependent,” Nat. Nanotechnol.3(3), 145–150 (2008).
[CrossRef] [PubMed]

Knözinger, E.

S. Stankic, M. Müller, O. Diwald, M. Sterrer, E. Knözinger, and J. Bernardi, “Size-dependent optical properties of MgO nanocubes,” Angew. Chem. Int. Ed. Engl.44(31), 4917–4920 (2005).
[CrossRef] [PubMed]

Koch, J.

J. Koch, A. V. Bohlen, R. Hergenröder, and K. Niemax, “Particle size distributions and compositions of aerosols produced by near-IR femto- and nanosecond laser ablation of brass,” J. Anal. At. Spectrom.19(2), 267–272 (2004).
[CrossRef]

Kohno, J.-y.

F. Mafuné, J.-y. Kohno, Y. Takeda, and T. Kondow, “Dissociation and aggregation of gold nanoparticles under laser irradiation,” J. Phys. Chem. B105(38), 9050–9056 (2001).
[CrossRef]

Kondow, T.

F. Mafuné, J.-y. Kohno, Y. Takeda, and T. Kondow, “Dissociation and aggregation of gold nanoparticles under laser irradiation,” J. Phys. Chem. B105(38), 9050–9056 (2001).
[CrossRef]

Krasnopoler, M. J.

C. H. Hung, M. J. Krasnopoler, and J. L. Katz, “is Condensation of a supersaturated vapor. VIII. The homogeneous nucleation of n-nonane,” J. Chem. Phys.90(3), 1856–1865 (1989).
[CrossRef]

Kulkarni, G. U.

C. N. R. Rao, G. U. Kulkarni, P. J. Thomas, and P. P. Edwards, “Size-dependent chemistry: properties of nanocrystals,” Chemistry8(1), 28–35 (2002).
[CrossRef] [PubMed]

Kulmala, M.

H. Lihavainen, Y. Viisanen, and M. Kulmala, “Homogeneous nucleation of n-pentanol in a laminar flow diffusion chamber,” J. Chem. Phys.114(22), 10031–10038 (2001).
[CrossRef]

Kwan, A. T.

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S. L. Lai, T. Wisleder, J. E. Greene, and L. H. Allen, “Size-dependent melting point depression of nanostructures: nanocalorimetric measurements,” Phys. Rev. B62(15), 10548–10557 (2000).
[CrossRef]

Lai, S. L.

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S. L. Lai, T. Wisleder, J. E. Greene, and L. H. Allen, “Size-dependent melting point depression of nanostructures: nanocalorimetric measurements,” Phys. Rev. B62(15), 10548–10557 (2000).
[CrossRef]

Le Guern, F.

F. Brygo, C. Dutouquet, F. Le Guern, R. Oltra, A. Semerok, and J. M. Weulersse, “Laser fluence, repetition rate and pulse duration effects on paint ablation,” Appl. Surf. Sci.252(6), 2131–2138 (2006).
[CrossRef]

Lihavainen, H.

H. Lihavainen, Y. Viisanen, and M. Kulmala, “Homogeneous nucleation of n-pentanol in a laminar flow diffusion chamber,” J. Chem. Phys.114(22), 10031–10038 (2001).
[CrossRef]

Luk’yanchuk, B.

W. Marine, L. Patrone, B. Luk’yanchuk, and M. Sentis, “Strategy of nanocluster and nanostructure synthesis by conventional pulsed laser ablation,” Appl. Surf. Sci.154–155, 345–352 (2000).
[CrossRef]

Mafuné, F.

F. Mafuné, J.-y. Kohno, Y. Takeda, and T. Kondow, “Dissociation and aggregation of gold nanoparticles under laser irradiation,” J. Phys. Chem. B105(38), 9050–9056 (2001).
[CrossRef]

Mao, Y.

Y. Mao and S. S. Wong, “Size- and shape-dependent transformation of nanosized titanate into analogous anatase titania nanostructures,” J. Am. Chem. Soc.128(25), 8217–8226 (2006).
[CrossRef] [PubMed]

Marine, W.

W. Marine, L. Patrone, B. Luk’yanchuk, and M. Sentis, “Strategy of nanocluster and nanostructure synthesis by conventional pulsed laser ablation,” Appl. Surf. Sci.154–155, 345–352 (2000).
[CrossRef]

Mazhukin, V. I.

A. Menéndez-Manjón, S. Barcikowski, G. A. Shafeev, V. I. Mazhukin, and B. N. Chichkov, “Influence of beam intensity profile on the aerodynamic particle size distributions generated by femtosecond laser ablation,” Laser Part. Beams28(01), 45–52 (2010).
[CrossRef]

Menéndez-Manjón, A.

A. Menéndez-Manjón, S. Barcikowski, G. A. Shafeev, V. I. Mazhukin, and B. N. Chichkov, “Influence of beam intensity profile on the aerodynamic particle size distributions generated by femtosecond laser ablation,” Laser Part. Beams28(01), 45–52 (2010).
[CrossRef]

Mokari, T.

S. Kan, T. Mokari, E. Rothenberg, and U. Banin, “Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods,” Nat. Mater.2(3), 155–158 (2003).
[CrossRef] [PubMed]

Moodenbaugh, A. R.

T. J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, “Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles,” Nano Lett.7(3), 766–772 (2007).
[CrossRef] [PubMed]

Müller, M.

S. Stankic, M. Müller, O. Diwald, M. Sterrer, E. Knözinger, and J. Bernardi, “Size-dependent optical properties of MgO nanocubes,” Angew. Chem. Int. Ed. Engl.44(31), 4917–4920 (2005).
[CrossRef] [PubMed]

Nie, S.

S. R. Emory, W. E. Haskins, and S. Nie, “Direct observation of size-dependent optical enhancement in single metal nanoparticles,” J. Am. Chem. Soc.120(31), 8009–8010 (1998).
[CrossRef]

Niemax, K.

J. Koch, A. V. Bohlen, R. Hergenröder, and K. Niemax, “Particle size distributions and compositions of aerosols produced by near-IR femto- and nanosecond laser ablation of brass,” J. Anal. At. Spectrom.19(2), 267–272 (2004).
[CrossRef]

Olson, E. A.

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S. L. Lai, T. Wisleder, J. E. Greene, and L. H. Allen, “Size-dependent melting point depression of nanostructures: nanocalorimetric measurements,” Phys. Rev. B62(15), 10548–10557 (2000).
[CrossRef]

Oltra, R.

F. Brygo, C. Dutouquet, F. Le Guern, R. Oltra, A. Semerok, and J. M. Weulersse, “Laser fluence, repetition rate and pulse duration effects on paint ablation,” Appl. Surf. Sci.252(6), 2131–2138 (2006).
[CrossRef]

Papaefthymiou, G. C.

T. J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, “Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles,” Nano Lett.7(3), 766–772 (2007).
[CrossRef] [PubMed]

Park, K. Y.

K. Y. Park and H. J. Jeong, “Effect of temperature on particle size for vapor - phase synthesis of Ultrafine Iron particles,” Korean J. Chem. Eng.16(1), 64–68 (1999).
[CrossRef]

Park, T. J.

T. J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, “Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles,” Nano Lett.7(3), 766–772 (2007).
[CrossRef] [PubMed]

Patrone, L.

W. Marine, L. Patrone, B. Luk’yanchuk, and M. Sentis, “Strategy of nanocluster and nanostructure synthesis by conventional pulsed laser ablation,” Appl. Surf. Sci.154–155, 345–352 (2000).
[CrossRef]

Piñon, V.

V. Piñon and D. Anglos, “Optical emission studies of plasma induced by single and double femtosecond laser pulses,” Spectrochim. Acta, B At. Spectrosc.64(10), 950–960 (2009).
[CrossRef]

Rao, C. N. R.

C. N. R. Rao, G. U. Kulkarni, P. J. Thomas, and P. P. Edwards, “Size-dependent chemistry: properties of nanocrystals,” Chemistry8(1), 28–35 (2002).
[CrossRef] [PubMed]

Ren, R.

L. L. Shaw, D. Goberman, R. Ren, M. Gell, S. Jiang, Y. Wang, D. T. Xiao, and P. R. Strutt, “The dependency of microstructure and properties of nanostructured coatings on plasma spray conditions,” Surf. Coat. Tech.130(1), 1–8 (2000).
[CrossRef]

Rothenberg, E.

S. Kan, T. Mokari, E. Rothenberg, and U. Banin, “Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods,” Nat. Mater.2(3), 155–158 (2003).
[CrossRef] [PubMed]

Rutka, J. T.

W. Jiang, B. Y. S. Kim, J. T. Rutka, and W. C. W. Chan, “Nanoparticle-mediated cellular response is size-dependent,” Nat. Nanotechnol.3(3), 145–150 (2008).
[CrossRef] [PubMed]

Schiettekatte, F.

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S. L. Lai, T. Wisleder, J. E. Greene, and L. H. Allen, “Size-dependent melting point depression of nanostructures: nanocalorimetric measurements,” Phys. Rev. B62(15), 10548–10557 (2000).
[CrossRef]

Semerok, A.

F. Brygo, C. Dutouquet, F. Le Guern, R. Oltra, A. Semerok, and J. M. Weulersse, “Laser fluence, repetition rate and pulse duration effects on paint ablation,” Appl. Surf. Sci.252(6), 2131–2138 (2006).
[CrossRef]

Sentis, M.

W. Marine, L. Patrone, B. Luk’yanchuk, and M. Sentis, “Strategy of nanocluster and nanostructure synthesis by conventional pulsed laser ablation,” Appl. Surf. Sci.154–155, 345–352 (2000).
[CrossRef]

Shafeev, G. A.

A. Menéndez-Manjón, S. Barcikowski, G. A. Shafeev, V. I. Mazhukin, and B. N. Chichkov, “Influence of beam intensity profile on the aerodynamic particle size distributions generated by femtosecond laser ablation,” Laser Part. Beams28(01), 45–52 (2010).
[CrossRef]

Shah, L.

Shaw, L. L.

L. L. Shaw, D. Goberman, R. Ren, M. Gell, S. Jiang, Y. Wang, D. T. Xiao, and P. R. Strutt, “The dependency of microstructure and properties of nanostructured coatings on plasma spray conditions,” Surf. Coat. Tech.130(1), 1–8 (2000).
[CrossRef]

Sivakumar, M.

M. Sivakumar, K. Venkatakrishnan, and B. Tan, “Study of metallic fibrous nanoparticle aggregate produced using femtosecond laser radiation under ambient conditions,” Nanotechnology21(22), 225601 (2010).
[CrossRef] [PubMed]

Stankic, S.

S. Stankic, M. Müller, O. Diwald, M. Sterrer, E. Knözinger, and J. Bernardi, “Size-dependent optical properties of MgO nanocubes,” Angew. Chem. Int. Ed. Engl.44(31), 4917–4920 (2005).
[CrossRef] [PubMed]

Sterrer, M.

S. Stankic, M. Müller, O. Diwald, M. Sterrer, E. Knözinger, and J. Bernardi, “Size-dependent optical properties of MgO nanocubes,” Angew. Chem. Int. Ed. Engl.44(31), 4917–4920 (2005).
[CrossRef] [PubMed]

Strutt, P. R.

L. L. Shaw, D. Goberman, R. Ren, M. Gell, S. Jiang, Y. Wang, D. T. Xiao, and P. R. Strutt, “The dependency of microstructure and properties of nanostructured coatings on plasma spray conditions,” Surf. Coat. Tech.130(1), 1–8 (2000).
[CrossRef]

Takeda, Y.

F. Mafuné, J.-y. Kohno, Y. Takeda, and T. Kondow, “Dissociation and aggregation of gold nanoparticles under laser irradiation,” J. Phys. Chem. B105(38), 9050–9056 (2001).
[CrossRef]

Takiya, T.

T. Takiya, I. Umezu, M. Yaga, and M. Han, “Nanoparticle formation in the expansion process of a laser ablated plume,” J. Phys.59, 445–448 (2007).
[CrossRef]

Tan, B.

M. Sivakumar, K. Venkatakrishnan, and B. Tan, “Study of metallic fibrous nanoparticle aggregate produced using femtosecond laser radiation under ambient conditions,” Nanotechnology21(22), 225601 (2010).
[CrossRef] [PubMed]

B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” Appl. Phys., A Mater. Sci. Process.95(2), 537–545 (2009).
[CrossRef]

B. Tan and K. Venkatakrishnan, “Synthesis of fibrous nanoparticle aggregates by femtosecond laser ablation in air,” Opt. Express17(2), 1064–1069 (2009).
[CrossRef] [PubMed]

Thomas, P. J.

C. N. R. Rao, G. U. Kulkarni, P. J. Thomas, and P. P. Edwards, “Size-dependent chemistry: properties of nanocrystals,” Chemistry8(1), 28–35 (2002).
[CrossRef] [PubMed]

Tillack, M. S.

M. S. Tillack, D. W. Blair, and S. S. Harilal, “The effect of ionization on cluster formation in laser ablation plumes,” Nanotechnology15(3), 390–403 (2004).
[CrossRef]

Turco, R. P.

F. Yu and R. P. Turco, “Ultrafine aerosol formation via ion-mediated nucleation,” Geophys. Res. Lett.27(6), 883–886 (2000).
[CrossRef]

Umezu, I.

T. Takiya, I. Umezu, M. Yaga, and M. Han, “Nanoparticle formation in the expansion process of a laser ablated plume,” J. Phys.59, 445–448 (2007).
[CrossRef]

Van Duyne, R. P.

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B105(24), 5599–5611 (2001).
[CrossRef]

Venkatakrishnan, K.

M. Sivakumar, K. Venkatakrishnan, and B. Tan, “Study of metallic fibrous nanoparticle aggregate produced using femtosecond laser radiation under ambient conditions,” Nanotechnology21(22), 225601 (2010).
[CrossRef] [PubMed]

B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” Appl. Phys., A Mater. Sci. Process.95(2), 537–545 (2009).
[CrossRef]

B. Tan and K. Venkatakrishnan, “Synthesis of fibrous nanoparticle aggregates by femtosecond laser ablation in air,” Opt. Express17(2), 1064–1069 (2009).
[CrossRef] [PubMed]

Viescas, A. J.

T. J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, “Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles,” Nano Lett.7(3), 766–772 (2007).
[CrossRef] [PubMed]

Viisanen, Y.

H. Lihavainen, Y. Viisanen, and M. Kulmala, “Homogeneous nucleation of n-pentanol in a laminar flow diffusion chamber,” J. Chem. Phys.114(22), 10031–10038 (2001).
[CrossRef]

Vitiello, M.

M. Vitiello, S. Amoruso, C. Altucci, C. de Lisio, and X. Wang, “The emission of atoms and nanoparticles during femtosecond laser ablation of gold,” Appl. Surf. Sci.248(1-4), 163–166 (2005).
[CrossRef]

Wang, X.

M. Vitiello, S. Amoruso, C. Altucci, C. de Lisio, and X. Wang, “The emission of atoms and nanoparticles during femtosecond laser ablation of gold,” Appl. Surf. Sci.248(1-4), 163–166 (2005).
[CrossRef]

Wang, Y.

L. L. Shaw, D. Goberman, R. Ren, M. Gell, S. Jiang, Y. Wang, D. T. Xiao, and P. R. Strutt, “The dependency of microstructure and properties of nanostructured coatings on plasma spray conditions,” Surf. Coat. Tech.130(1), 1–8 (2000).
[CrossRef]

Weulersse, J. M.

F. Brygo, C. Dutouquet, F. Le Guern, R. Oltra, A. Semerok, and J. M. Weulersse, “Laser fluence, repetition rate and pulse duration effects on paint ablation,” Appl. Surf. Sci.252(6), 2131–2138 (2006).
[CrossRef]

Wisleder, T.

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S. L. Lai, T. Wisleder, J. E. Greene, and L. H. Allen, “Size-dependent melting point depression of nanostructures: nanocalorimetric measurements,” Phys. Rev. B62(15), 10548–10557 (2000).
[CrossRef]

Wong, S. S.

T. J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, “Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles,” Nano Lett.7(3), 766–772 (2007).
[CrossRef] [PubMed]

Y. Mao and S. S. Wong, “Size- and shape-dependent transformation of nanosized titanate into analogous anatase titania nanostructures,” J. Am. Chem. Soc.128(25), 8217–8226 (2006).
[CrossRef] [PubMed]

Xiao, D. T.

L. L. Shaw, D. Goberman, R. Ren, M. Gell, S. Jiang, Y. Wang, D. T. Xiao, and P. R. Strutt, “The dependency of microstructure and properties of nanostructured coatings on plasma spray conditions,” Surf. Coat. Tech.130(1), 1–8 (2000).
[CrossRef]

Yaga, M.

T. Takiya, I. Umezu, M. Yaga, and M. Han, “Nanoparticle formation in the expansion process of a laser ablated plume,” J. Phys.59, 445–448 (2007).
[CrossRef]

Yoshino, F.

Yu, F.

F. Yu and R. P. Turco, “Ultrafine aerosol formation via ion-mediated nucleation,” Geophys. Res. Lett.27(6), 883–886 (2000).
[CrossRef]

Zhang, H.

Zhang, M.

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S. L. Lai, T. Wisleder, J. E. Greene, and L. H. Allen, “Size-dependent melting point depression of nanostructures: nanocalorimetric measurements,” Phys. Rev. B62(15), 10548–10557 (2000).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

S. Stankic, M. Müller, O. Diwald, M. Sterrer, E. Knözinger, and J. Bernardi, “Size-dependent optical properties of MgO nanocubes,” Angew. Chem. Int. Ed. Engl.44(31), 4917–4920 (2005).
[CrossRef] [PubMed]

Appl. Phys., A Mater. Sci. Process. (2)

S. Barcikowski, A. Hahn, A. V. Kabashin, and B. N. Chichkov, “Properties of nanoparticles generated during femtosecond laser machining in air and water,” Appl. Phys., A Mater. Sci. Process.87(1), 47–55 (2007).
[CrossRef]

B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” Appl. Phys., A Mater. Sci. Process.95(2), 537–545 (2009).
[CrossRef]

Appl. Surf. Sci. (3)

M. Vitiello, S. Amoruso, C. Altucci, C. de Lisio, and X. Wang, “The emission of atoms and nanoparticles during femtosecond laser ablation of gold,” Appl. Surf. Sci.248(1-4), 163–166 (2005).
[CrossRef]

F. Brygo, C. Dutouquet, F. Le Guern, R. Oltra, A. Semerok, and J. M. Weulersse, “Laser fluence, repetition rate and pulse duration effects on paint ablation,” Appl. Surf. Sci.252(6), 2131–2138 (2006).
[CrossRef]

W. Marine, L. Patrone, B. Luk’yanchuk, and M. Sentis, “Strategy of nanocluster and nanostructure synthesis by conventional pulsed laser ablation,” Appl. Surf. Sci.154–155, 345–352 (2000).
[CrossRef]

Chemistry (1)

C. N. R. Rao, G. U. Kulkarni, P. J. Thomas, and P. P. Edwards, “Size-dependent chemistry: properties of nanocrystals,” Chemistry8(1), 28–35 (2002).
[CrossRef] [PubMed]

Geophys. Res. Lett. (1)

F. Yu and R. P. Turco, “Ultrafine aerosol formation via ion-mediated nucleation,” Geophys. Res. Lett.27(6), 883–886 (2000).
[CrossRef]

J. Am. Chem. Soc. (2)

S. R. Emory, W. E. Haskins, and S. Nie, “Direct observation of size-dependent optical enhancement in single metal nanoparticles,” J. Am. Chem. Soc.120(31), 8009–8010 (1998).
[CrossRef]

Y. Mao and S. S. Wong, “Size- and shape-dependent transformation of nanosized titanate into analogous anatase titania nanostructures,” J. Am. Chem. Soc.128(25), 8217–8226 (2006).
[CrossRef] [PubMed]

J. Anal. At. Spectrom. (1)

J. Koch, A. V. Bohlen, R. Hergenröder, and K. Niemax, “Particle size distributions and compositions of aerosols produced by near-IR femto- and nanosecond laser ablation of brass,” J. Anal. At. Spectrom.19(2), 267–272 (2004).
[CrossRef]

J. Chem. Phys. (2)

C. H. Hung, M. J. Krasnopoler, and J. L. Katz, “is Condensation of a supersaturated vapor. VIII. The homogeneous nucleation of n-nonane,” J. Chem. Phys.90(3), 1856–1865 (1989).
[CrossRef]

H. Lihavainen, Y. Viisanen, and M. Kulmala, “Homogeneous nucleation of n-pentanol in a laminar flow diffusion chamber,” J. Chem. Phys.114(22), 10031–10038 (2001).
[CrossRef]

J. Phys. (1)

T. Takiya, I. Umezu, M. Yaga, and M. Han, “Nanoparticle formation in the expansion process of a laser ablated plume,” J. Phys.59, 445–448 (2007).
[CrossRef]

J. Phys. Chem. B (2)

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B105(24), 5599–5611 (2001).
[CrossRef]

F. Mafuné, J.-y. Kohno, Y. Takeda, and T. Kondow, “Dissociation and aggregation of gold nanoparticles under laser irradiation,” J. Phys. Chem. B105(38), 9050–9056 (2001).
[CrossRef]

Korean J. Chem. Eng. (1)

K. Y. Park and H. J. Jeong, “Effect of temperature on particle size for vapor - phase synthesis of Ultrafine Iron particles,” Korean J. Chem. Eng.16(1), 64–68 (1999).
[CrossRef]

Laser Part. Beams (1)

A. Menéndez-Manjón, S. Barcikowski, G. A. Shafeev, V. I. Mazhukin, and B. N. Chichkov, “Influence of beam intensity profile on the aerodynamic particle size distributions generated by femtosecond laser ablation,” Laser Part. Beams28(01), 45–52 (2010).
[CrossRef]

Nano Lett. (1)

T. J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, “Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles,” Nano Lett.7(3), 766–772 (2007).
[CrossRef] [PubMed]

Nanotechnology (2)

M. Sivakumar, K. Venkatakrishnan, and B. Tan, “Study of metallic fibrous nanoparticle aggregate produced using femtosecond laser radiation under ambient conditions,” Nanotechnology21(22), 225601 (2010).
[CrossRef] [PubMed]

M. S. Tillack, D. W. Blair, and S. S. Harilal, “The effect of ionization on cluster formation in laser ablation plumes,” Nanotechnology15(3), 390–403 (2004).
[CrossRef]

Nat. Mater. (1)

S. Kan, T. Mokari, E. Rothenberg, and U. Banin, “Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods,” Nat. Mater.2(3), 155–158 (2003).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

W. Jiang, B. Y. S. Kim, J. T. Rutka, and W. C. W. Chan, “Nanoparticle-mediated cellular response is size-dependent,” Nat. Nanotechnol.3(3), 145–150 (2008).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Rev. B (1)

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S. L. Lai, T. Wisleder, J. E. Greene, and L. H. Allen, “Size-dependent melting point depression of nanostructures: nanocalorimetric measurements,” Phys. Rev. B62(15), 10548–10557 (2000).
[CrossRef]

Spectrochim. Acta, B At. Spectrosc. (1)

V. Piñon and D. Anglos, “Optical emission studies of plasma induced by single and double femtosecond laser pulses,” Spectrochim. Acta, B At. Spectrosc.64(10), 950–960 (2009).
[CrossRef]

Surf. Coat. Tech. (1)

L. L. Shaw, D. Goberman, R. Ren, M. Gell, S. Jiang, Y. Wang, D. T. Xiao, and P. R. Strutt, “The dependency of microstructure and properties of nanostructured coatings on plasma spray conditions,” Surf. Coat. Tech.130(1), 1–8 (2000).
[CrossRef]

Other (2)

N. A. Fuchs and A. G. Sutugin, Highly Dispersed Aerosols (Ann Arbor, 1970), Chap. 1.

A. C. Zettlemoyer, Nucleation, R. Andres, ed. (Marcel Dekker Inc., 1969), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Laser plume evolution, formation of nanoparticles and their agglomeration in the plume and the 3-D agglomerated nanostructures obtained.

Fig. 2
Fig. 2

Sample of TEM images obtained from the 3-D nanostructure at repetition rates of (a) 2.1, (b) 4.2, (c) 8.4, (d) 12.6, and (e) 25.2MHz, at the constant power of 10.5W.

Fig. 3
Fig. 3

Particle size distributions obtained at the repetition rates of (a) 2.1, (b) 4.2, (c) 8.4, (d) 12.6, and (e) 25.2MHz, at the constant power of 10.5W.

Fig. 4
Fig. 4

Average sizes of agglomerated vapour condensed particles obtained in the 3-D nanostructure at constant laser power of 10.5W.

Fig. 5
Fig. 5

(a) Threshold power and (b) Threshold fluence of aluminosilicate ceramic.

Fig. 6
Fig. 6

Sample of TEM images obtained from the 3-D nanostructure at repetition rates of (a) 4.2, (b) 6.3, (c) 8.4, (d) 12.6, and (e) 25.2MHz, at constant fluence ratio of 3.2.

Fig. 7
Fig. 7

Agglomerated particle size distributions obtained at (a) 4.2, (b) 6.3, (c) 8.4, (d) 12.6, and (e) 25.2MHz during the laser ablation of aluminosilicate ceramic at constant fluence ratio of 3.2.

Fig. 8
Fig. 8

Average sizes of agglomerated particles obtained in the 3-D nanostructure at constant fluence ratio of 3.2.

Fig. 9
Fig. 9

Effect of laser fluence on the distribution modals at the constant power of 10.5W and at the constant fluence ratio of 3.2.

Metrics