Abstract

Spatial precipitation of Dy2(MoO4)3 crystal in the glass is achieved by using 800 nm, 250 kHz femtosecond laser. Micro-Raman spectra show that multiple crystalline phases of Dy2(MoO4)3 can be formed in femtosecond laser-modified region. Their distributions depend mainly on femtosecond laser-induced temperature field, which is asymmetric along the light propagation direction. This phenomenon results from an inhomogeneous intensity distribution of the incident pulse due to both of self-focusing effect and spherical aberration effect. Furthermore, the EPMA mapping demonstrates that the O element concentration is reduced in the center of the modified region, while the Mo element one increases. The composition change is according strongly with the phase transformation of Dy2(MoO4)3 crystal. The present study implies that the asymmetry of the temperature field is an important factor to influence the crystal precipitation.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
    [CrossRef] [PubMed]
  2. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  3. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
    [CrossRef] [PubMed]
  4. Y. Teng, J. Zhou, F. Luo, G. Lin, and J. Qiu, “Controllable space selective precipitation of copper nanoparticles in borosilicate glasses using ultrafast laser irradiation,” J. Non-Cryst. Solids357(11-13), 2380–2383 (2011).
    [CrossRef]
  5. Y. Teng, B. Qian, N. Jiang, Y. Liu, F. Luo, S. Ye, J. Zhou, B. Zhu, H. Zeng, and J. Qiu, “Light and heat driven precipitation of copper nanoparticles inside Cu2+-doped borate glasses,” Chem. Phys. Lett.485(1-3), 91–94 (2010).
    [CrossRef]
  6. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
    [CrossRef]
  7. K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull.31(08), 620–625 (2006).
    [CrossRef]
  8. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
    [CrossRef]
  9. P. P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. S. Taylor, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Memory in nonlinear ionization of transparent solids,” Phys. Rev. Lett.97(25), 253001 (2006).
    [CrossRef] [PubMed]
  10. M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett.93(23), 231112 (2008).
    [CrossRef]
  11. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express13(12), 4708–4716 (2005).
    [CrossRef] [PubMed]
  12. Y. Liu, B. Zhu, Y. Dai, X. Qiao, S. Ye, Y. Teng, Q. Guo, H. Ma, X. Fan, and J. Qiu, “Femtosecond laser writing of Er3+-doped CaF2 crystalline patterns in glass,” Opt. Lett.34(21), 3433–3435 (2009).
    [CrossRef] [PubMed]
  13. K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses,” Opt. Lett.25(6), 408–410 (2000).
    [CrossRef] [PubMed]
  14. A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers,” J. Non-Cryst. Solids356(52-54), 3059–3065 (2010).
    [CrossRef]
  15. A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation,” Opt. Express17(25), 23284–23289 (2009).
    [CrossRef] [PubMed]
  16. Y. Dai, H. Ma, B. Lu, B. Yu, B. Zhu, and J. Qiu, “Femtosecond laser-induced oriented precipitation of Ba2TiGe2O8 crystals in glass,” Opt. Express16(6), 3912–3917 (2008).
    [CrossRef] [PubMed]
  17. A. Stone, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Unexpected influence of focal depth on nucleation during femtosecond laser crystallization of glass,” Opt. Mater. Express1(5), 990–995 (2011).
    [CrossRef]
  18. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys.98(1), 013517 (2005).
    [CrossRef]
  19. J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett.92(9), 092904 (2008).
    [CrossRef]
  20. F. Luo, B. Qian, G. Lin, J. Xu, Y. Liao, J. Song, H. Sun, B. Zhu, J. Qiu, Q. Zhao, and Z. Xu, “Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser,” Opt. Express18(6), 6262–6269 (2010).
    [CrossRef] [PubMed]
  21. M. Roy, R. N. P. Choudhary, and H. N. Acharya, “X-ray and thermal studies of ferroelectric Dy2(MoO4)3,” J. Therm. Anal.35(5), 1471–1476 (1989).
    [CrossRef]
  22. A. Kumada, “Optical properties of gadolinium molybdate and their device applications,” Ferroelectrics3(1), 115–123 (1972).
    [CrossRef]
  23. A. A. Kaminskii, “New room-temperature laser-diode pumped efficient quasi-cw and cw single-mode laser based on ferroelectric and ferroelastic Gd2(MoO4)3: Nd3+ crystal,” Phys. Status Solidi A149(2), K39–K42 (1995).
    [CrossRef]
  24. Z. Wang, H. Liang, M. Gong, and Q. Su, “Novel red phosphor of Bi3+, Sm3+ co-activated NaEu(MoO4)2,” Opt. Mater.29(7), 896–900 (2007).
    [CrossRef]
  25. Y. Tsukada, T. Honma, and T. Komatsu, “Corrected article: ‘Self-organized periodic domain structure for second harmonic generations in ferroelastic β′-(Sm, Gd)2(MoO4)3 crystal lines on glass surfaces [Appl. Phys. Lett. 94, 041915 (2009)]’,” Appl. Phys. Lett.94(5), 059901 (2009).
    [CrossRef]
  26. R. Nakajima, M. Abe, Y. Benino, T. Fujiwara, H. G. Kim, and T. Komatsu, “Laser-induced crystallization of β′-RE2(MoO4)3 ferroelectrics (RE: Sm, Gd, Dy) in glasses and their surface morphologies,” J. Non-Cryst. Solids353(1), 85–93 (2007).
    [CrossRef]
  27. M. Abe, Y. Benino, T. Fujiwara, T. Komatsu, and R. Sato, “Writing of nonlinear optical Sm2(MoO4)3 crystal lines at the surface of glass by samarium atom heat processing,” J. Appl. Phys.97(12), 123516 (2005).
    [CrossRef]
  28. Y. Wang, T. Honma, and T. Komatsu, “Synthesis and laser patterning of ferroelastic β′-RE2(MoO4)3 crystals (RE: Sm, Gd, Tb, Dy) in rare-earth molybdenum borate glasses,” Mater. Chem. Phys.133(1), 118–125 (2012).
    [CrossRef]
  29. A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process.76(2), 257–260 (2003).
    [CrossRef]
  30. C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express16(8), 5481–5492 (2008).
    [CrossRef] [PubMed]
  31. Y. Dai, G. Yu, G. Wu, H. Ma, X. Yan, and G. Ma, “The effect of spherical aberration on temperature distribution inside glass by irradiation of a high repetition rate femtosecond pulse laser,” Chin. Phys. B21(2), 025201 (2012).
    [CrossRef]
  32. J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron.4, 35–110 (1975).
    [CrossRef]
  33. K. Nassau, J. W. Shiever, and E. T. Keve, “Structural and phase relationships among trivalent tungstates and molybdates,” J. Solid State Chem.3(3), 411–419 (1971).
    [CrossRef]
  34. H. Behrens and M. Haack, “Cation diffusion in soda-lime-silicate glass melts,” J. Non-Cryst. Solids353(52-54), 4743–4752 (2007).
    [CrossRef]
  35. L. H. Brixner, J. R. Barkley, and W. Jeitschko, Handbook on the Physics and Chemistry of Rare Earths (North-Holland Publishing Company, 1979), Chap. 30.

2012 (2)

Y. Wang, T. Honma, and T. Komatsu, “Synthesis and laser patterning of ferroelastic β′-RE2(MoO4)3 crystals (RE: Sm, Gd, Tb, Dy) in rare-earth molybdenum borate glasses,” Mater. Chem. Phys.133(1), 118–125 (2012).
[CrossRef]

Y. Dai, G. Yu, G. Wu, H. Ma, X. Yan, and G. Ma, “The effect of spherical aberration on temperature distribution inside glass by irradiation of a high repetition rate femtosecond pulse laser,” Chin. Phys. B21(2), 025201 (2012).
[CrossRef]

2011 (2)

Y. Teng, J. Zhou, F. Luo, G. Lin, and J. Qiu, “Controllable space selective precipitation of copper nanoparticles in borosilicate glasses using ultrafast laser irradiation,” J. Non-Cryst. Solids357(11-13), 2380–2383 (2011).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Unexpected influence of focal depth on nucleation during femtosecond laser crystallization of glass,” Opt. Mater. Express1(5), 990–995 (2011).
[CrossRef]

2010 (3)

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers,” J. Non-Cryst. Solids356(52-54), 3059–3065 (2010).
[CrossRef]

Y. Teng, B. Qian, N. Jiang, Y. Liu, F. Luo, S. Ye, J. Zhou, B. Zhu, H. Zeng, and J. Qiu, “Light and heat driven precipitation of copper nanoparticles inside Cu2+-doped borate glasses,” Chem. Phys. Lett.485(1-3), 91–94 (2010).
[CrossRef]

F. Luo, B. Qian, G. Lin, J. Xu, Y. Liao, J. Song, H. Sun, B. Zhu, J. Qiu, Q. Zhao, and Z. Xu, “Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser,” Opt. Express18(6), 6262–6269 (2010).
[CrossRef] [PubMed]

2009 (3)

2008 (5)

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett.93(23), 231112 (2008).
[CrossRef]

Y. Dai, H. Ma, B. Lu, B. Yu, B. Zhu, and J. Qiu, “Femtosecond laser-induced oriented precipitation of Ba2TiGe2O8 crystals in glass,” Opt. Express16(6), 3912–3917 (2008).
[CrossRef] [PubMed]

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett.92(9), 092904 (2008).
[CrossRef]

C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express16(8), 5481–5492 (2008).
[CrossRef] [PubMed]

2007 (4)

H. Behrens and M. Haack, “Cation diffusion in soda-lime-silicate glass melts,” J. Non-Cryst. Solids353(52-54), 4743–4752 (2007).
[CrossRef]

R. Nakajima, M. Abe, Y. Benino, T. Fujiwara, H. G. Kim, and T. Komatsu, “Laser-induced crystallization of β′-RE2(MoO4)3 ferroelectrics (RE: Sm, Gd, Dy) in glasses and their surface morphologies,” J. Non-Cryst. Solids353(1), 85–93 (2007).
[CrossRef]

Z. Wang, H. Liang, M. Gong, and Q. Su, “Novel red phosphor of Bi3+, Sm3+ co-activated NaEu(MoO4)2,” Opt. Mater.29(7), 896–900 (2007).
[CrossRef]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
[CrossRef]

2006 (2)

P. P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. S. Taylor, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Memory in nonlinear ionization of transparent solids,” Phys. Rev. Lett.97(25), 253001 (2006).
[CrossRef] [PubMed]

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull.31(08), 620–625 (2006).
[CrossRef]

2005 (3)

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys.98(1), 013517 (2005).
[CrossRef]

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express13(12), 4708–4716 (2005).
[CrossRef] [PubMed]

M. Abe, Y. Benino, T. Fujiwara, T. Komatsu, and R. Sato, “Writing of nonlinear optical Sm2(MoO4)3 crystal lines at the surface of glass by samarium atom heat processing,” J. Appl. Phys.97(12), 123516 (2005).
[CrossRef]

2004 (1)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

2003 (2)

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process.76(2), 257–260 (2003).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

2000 (1)

1996 (1)

1995 (1)

A. A. Kaminskii, “New room-temperature laser-diode pumped efficient quasi-cw and cw single-mode laser based on ferroelectric and ferroelastic Gd2(MoO4)3: Nd3+ crystal,” Phys. Status Solidi A149(2), K39–K42 (1995).
[CrossRef]

1989 (1)

M. Roy, R. N. P. Choudhary, and H. N. Acharya, “X-ray and thermal studies of ferroelectric Dy2(MoO4)3,” J. Therm. Anal.35(5), 1471–1476 (1989).
[CrossRef]

1975 (1)

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron.4, 35–110 (1975).
[CrossRef]

1972 (1)

A. Kumada, “Optical properties of gadolinium molybdate and their device applications,” Ferroelectrics3(1), 115–123 (1972).
[CrossRef]

1971 (1)

K. Nassau, J. W. Shiever, and E. T. Keve, “Structural and phase relationships among trivalent tungstates and molybdates,” J. Solid State Chem.3(3), 411–419 (1971).
[CrossRef]

Abe, M.

R. Nakajima, M. Abe, Y. Benino, T. Fujiwara, H. G. Kim, and T. Komatsu, “Laser-induced crystallization of β′-RE2(MoO4)3 ferroelectrics (RE: Sm, Gd, Dy) in glasses and their surface morphologies,” J. Non-Cryst. Solids353(1), 85–93 (2007).
[CrossRef]

M. Abe, Y. Benino, T. Fujiwara, T. Komatsu, and R. Sato, “Writing of nonlinear optical Sm2(MoO4)3 crystal lines at the surface of glass by samarium atom heat processing,” J. Appl. Phys.97(12), 123516 (2005).
[CrossRef]

Acharya, H. N.

M. Roy, R. N. P. Choudhary, and H. N. Acharya, “X-ray and thermal studies of ferroelectric Dy2(MoO4)3,” J. Therm. Anal.35(5), 1471–1476 (1989).
[CrossRef]

Arai, A. Y.

Audouard, E.

C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express16(8), 5481–5492 (2008).
[CrossRef] [PubMed]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
[CrossRef]

Behrens, H.

H. Behrens and M. Haack, “Cation diffusion in soda-lime-silicate glass melts,” J. Non-Cryst. Solids353(52-54), 4743–4752 (2007).
[CrossRef]

Benino, Y.

R. Nakajima, M. Abe, Y. Benino, T. Fujiwara, H. G. Kim, and T. Komatsu, “Laser-induced crystallization of β′-RE2(MoO4)3 ferroelectrics (RE: Sm, Gd, Dy) in glasses and their surface morphologies,” J. Non-Cryst. Solids353(1), 85–93 (2007).
[CrossRef]

M. Abe, Y. Benino, T. Fujiwara, T. Komatsu, and R. Sato, “Writing of nonlinear optical Sm2(MoO4)3 crystal lines at the surface of glass by samarium atom heat processing,” J. Appl. Phys.97(12), 123516 (2005).
[CrossRef]

Bhardwaj, V. R.

P. P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. S. Taylor, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Memory in nonlinear ionization of transparent solids,” Phys. Rev. Lett.97(25), 253001 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys.98(1), 013517 (2005).
[CrossRef]

Bovatsek, J.

Bulgakova, N. M.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
[CrossRef]

Burakov, I. M.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
[CrossRef]

Busch, K.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

Cheng, Y.

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett.92(9), 092904 (2008).
[CrossRef]

Choudhary, R. N. P.

M. Roy, R. N. P. Choudhary, and H. N. Acharya, “X-ray and thermal studies of ferroelectric Dy2(MoO4)3,” J. Therm. Anal.35(5), 1471–1476 (1989).
[CrossRef]

Corkum, P. B.

P. P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. S. Taylor, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Memory in nonlinear ionization of transparent solids,” Phys. Rev. Lett.97(25), 253001 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys.98(1), 013517 (2005).
[CrossRef]

Dai, Y.

Y. Dai, G. Yu, G. Wu, H. Ma, X. Yan, and G. Ma, “The effect of spherical aberration on temperature distribution inside glass by irradiation of a high repetition rate femtosecond pulse laser,” Chin. Phys. B21(2), 025201 (2012).
[CrossRef]

Y. Liu, B. Zhu, Y. Dai, X. Qiao, S. Ye, Y. Teng, Q. Guo, H. Ma, X. Fan, and J. Qiu, “Femtosecond laser writing of Er3+-doped CaF2 crystalline patterns in glass,” Opt. Lett.34(21), 3433–3435 (2009).
[CrossRef] [PubMed]

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett.92(9), 092904 (2008).
[CrossRef]

Y. Dai, H. Ma, B. Lu, B. Yu, B. Zhu, and J. Qiu, “Femtosecond laser-induced oriented precipitation of Ba2TiGe2O8 crystals in glass,” Opt. Express16(6), 3912–3917 (2008).
[CrossRef] [PubMed]

Davis, K. M.

Deubel, M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

Dierolf, V.

Eaton, S. M.

Fan, X.

Fujiwara, T.

R. Nakajima, M. Abe, Y. Benino, T. Fujiwara, H. G. Kim, and T. Komatsu, “Laser-induced crystallization of β′-RE2(MoO4)3 ferroelectrics (RE: Sm, Gd, Dy) in glasses and their surface morphologies,” J. Non-Cryst. Solids353(1), 85–93 (2007).
[CrossRef]

M. Abe, Y. Benino, T. Fujiwara, T. Komatsu, and R. Sato, “Writing of nonlinear optical Sm2(MoO4)3 crystal lines at the surface of glass by samarium atom heat processing,” J. Appl. Phys.97(12), 123516 (2005).
[CrossRef]

Gattass, R.

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

Gertsvolf, M.

P. P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. S. Taylor, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Memory in nonlinear ionization of transparent solids,” Phys. Rev. Lett.97(25), 253001 (2006).
[CrossRef] [PubMed]

Gong, M.

Z. Wang, H. Liang, M. Gong, and Q. Su, “Novel red phosphor of Bi3+, Sm3+ co-activated NaEu(MoO4)2,” Opt. Mater.29(7), 896–900 (2007).
[CrossRef]

Guo, Q.

Gupta, P.

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers,” J. Non-Cryst. Solids356(52-54), 3059–3065 (2010).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation,” Opt. Express17(25), 23284–23289 (2009).
[CrossRef] [PubMed]

Haack, M.

H. Behrens and M. Haack, “Cation diffusion in soda-lime-silicate glass melts,” J. Non-Cryst. Solids353(52-54), 4743–4752 (2007).
[CrossRef]

Herman, P. R.

Hertel, I. V.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
[CrossRef]

Hirao, K.

A. Stone, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Unexpected influence of focal depth on nucleation during femtosecond laser crystallization of glass,” Opt. Mater. Express1(5), 990–995 (2011).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers,” J. Non-Cryst. Solids356(52-54), 3059–3065 (2010).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation,” Opt. Express17(25), 23284–23289 (2009).
[CrossRef] [PubMed]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett.93(23), 231112 (2008).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses,” Opt. Lett.25(6), 408–410 (2000).
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Hnatovsky, C.

P. P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. S. Taylor, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Memory in nonlinear ionization of transparent solids,” Phys. Rev. Lett.97(25), 253001 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys.98(1), 013517 (2005).
[CrossRef]

Honma, T.

Y. Wang, T. Honma, and T. Komatsu, “Synthesis and laser patterning of ferroelastic β′-RE2(MoO4)3 crystals (RE: Sm, Gd, Tb, Dy) in rare-earth molybdenum borate glasses,” Mater. Chem. Phys.133(1), 118–125 (2012).
[CrossRef]

Y. Tsukada, T. Honma, and T. Komatsu, “Corrected article: ‘Self-organized periodic domain structure for second harmonic generations in ferroelastic β′-(Sm, Gd)2(MoO4)3 crystal lines on glass surfaces [Appl. Phys. Lett. 94, 041915 (2009)]’,” Appl. Phys. Lett.94(5), 059901 (2009).
[CrossRef]

Hu, X.

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett.92(9), 092904 (2008).
[CrossRef]

Huot, N.

Husakou, A.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
[CrossRef]

Itoh, K.

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull.31(08), 620–625 (2006).
[CrossRef]

Jain, H.

Jiang, N.

Y. Teng, B. Qian, N. Jiang, Y. Liu, F. Luo, S. Ye, J. Zhou, B. Zhu, H. Zeng, and J. Qiu, “Light and heat driven precipitation of copper nanoparticles inside Cu2+-doped borate glasses,” Chem. Phys. Lett.485(1-3), 91–94 (2010).
[CrossRef]

Juodkazis, S.

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process.76(2), 257–260 (2003).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, “New room-temperature laser-diode pumped efficient quasi-cw and cw single-mode laser based on ferroelectric and ferroelastic Gd2(MoO4)3: Nd3+ crystal,” Phys. Status Solidi A149(2), K39–K42 (1995).
[CrossRef]

Kazansky, P. G.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Keve, E. T.

K. Nassau, J. W. Shiever, and E. T. Keve, “Structural and phase relationships among trivalent tungstates and molybdates,” J. Solid State Chem.3(3), 411–419 (1971).
[CrossRef]

Kim, H. G.

R. Nakajima, M. Abe, Y. Benino, T. Fujiwara, H. G. Kim, and T. Komatsu, “Laser-induced crystallization of β′-RE2(MoO4)3 ferroelectrics (RE: Sm, Gd, Dy) in glasses and their surface morphologies,” J. Non-Cryst. Solids353(1), 85–93 (2007).
[CrossRef]

Komatsu, T.

Y. Wang, T. Honma, and T. Komatsu, “Synthesis and laser patterning of ferroelastic β′-RE2(MoO4)3 crystals (RE: Sm, Gd, Tb, Dy) in rare-earth molybdenum borate glasses,” Mater. Chem. Phys.133(1), 118–125 (2012).
[CrossRef]

Y. Tsukada, T. Honma, and T. Komatsu, “Corrected article: ‘Self-organized periodic domain structure for second harmonic generations in ferroelastic β′-(Sm, Gd)2(MoO4)3 crystal lines on glass surfaces [Appl. Phys. Lett. 94, 041915 (2009)]’,” Appl. Phys. Lett.94(5), 059901 (2009).
[CrossRef]

R. Nakajima, M. Abe, Y. Benino, T. Fujiwara, H. G. Kim, and T. Komatsu, “Laser-induced crystallization of β′-RE2(MoO4)3 ferroelectrics (RE: Sm, Gd, Dy) in glasses and their surface morphologies,” J. Non-Cryst. Solids353(1), 85–93 (2007).
[CrossRef]

M. Abe, Y. Benino, T. Fujiwara, T. Komatsu, and R. Sato, “Writing of nonlinear optical Sm2(MoO4)3 crystal lines at the surface of glass by samarium atom heat processing,” J. Appl. Phys.97(12), 123516 (2005).
[CrossRef]

Kumada, A.

A. Kumada, “Optical properties of gadolinium molybdate and their device applications,” Ferroelectrics3(1), 115–123 (1972).
[CrossRef]

Liang, H.

Z. Wang, H. Liang, M. Gong, and Q. Su, “Novel red phosphor of Bi3+, Sm3+ co-activated NaEu(MoO4)2,” Opt. Mater.29(7), 896–900 (2007).
[CrossRef]

Liao, Y.

Lin, G.

Y. Teng, J. Zhou, F. Luo, G. Lin, and J. Qiu, “Controllable space selective precipitation of copper nanoparticles in borosilicate glasses using ultrafast laser irradiation,” J. Non-Cryst. Solids357(11-13), 2380–2383 (2011).
[CrossRef]

F. Luo, B. Qian, G. Lin, J. Xu, Y. Liao, J. Song, H. Sun, B. Zhu, J. Qiu, Q. Zhao, and Z. Xu, “Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser,” Opt. Express18(6), 6262–6269 (2010).
[CrossRef] [PubMed]

Liu, Y.

Y. Teng, B. Qian, N. Jiang, Y. Liu, F. Luo, S. Ye, J. Zhou, B. Zhu, H. Zeng, and J. Qiu, “Light and heat driven precipitation of copper nanoparticles inside Cu2+-doped borate glasses,” Chem. Phys. Lett.485(1-3), 91–94 (2010).
[CrossRef]

Y. Liu, B. Zhu, Y. Dai, X. Qiao, S. Ye, Y. Teng, Q. Guo, H. Ma, X. Fan, and J. Qiu, “Femtosecond laser writing of Er3+-doped CaF2 crystalline patterns in glass,” Opt. Lett.34(21), 3433–3435 (2009).
[CrossRef] [PubMed]

Lu, B.

Luo, F.

Y. Teng, J. Zhou, F. Luo, G. Lin, and J. Qiu, “Controllable space selective precipitation of copper nanoparticles in borosilicate glasses using ultrafast laser irradiation,” J. Non-Cryst. Solids357(11-13), 2380–2383 (2011).
[CrossRef]

Y. Teng, B. Qian, N. Jiang, Y. Liu, F. Luo, S. Ye, J. Zhou, B. Zhu, H. Zeng, and J. Qiu, “Light and heat driven precipitation of copper nanoparticles inside Cu2+-doped borate glasses,” Chem. Phys. Lett.485(1-3), 91–94 (2010).
[CrossRef]

F. Luo, B. Qian, G. Lin, J. Xu, Y. Liao, J. Song, H. Sun, B. Zhu, J. Qiu, Q. Zhao, and Z. Xu, “Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser,” Opt. Express18(6), 6262–6269 (2010).
[CrossRef] [PubMed]

Ma, G.

Y. Dai, G. Yu, G. Wu, H. Ma, X. Yan, and G. Ma, “The effect of spherical aberration on temperature distribution inside glass by irradiation of a high repetition rate femtosecond pulse laser,” Chin. Phys. B21(2), 025201 (2012).
[CrossRef]

Ma, H.

Marburger, J. H.

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron.4, 35–110 (1975).
[CrossRef]

Marcinkevicius, A.

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process.76(2), 257–260 (2003).
[CrossRef]

Matsuo, S.

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process.76(2), 257–260 (2003).
[CrossRef]

Mauclair, C.

Mazur, E.

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

Mermillod-Blondin, A.

C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express16(8), 5481–5492 (2008).
[CrossRef] [PubMed]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
[CrossRef]

Misawa, H.

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process.76(2), 257–260 (2003).
[CrossRef]

Mitsuyu, T.

Miura, K.

Mizeikis, V.

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process.76(2), 257–260 (2003).
[CrossRef]

Nakajima, R.

R. Nakajima, M. Abe, Y. Benino, T. Fujiwara, H. G. Kim, and T. Komatsu, “Laser-induced crystallization of β′-RE2(MoO4)3 ferroelectrics (RE: Sm, Gd, Dy) in glasses and their surface morphologies,” J. Non-Cryst. Solids353(1), 85–93 (2007).
[CrossRef]

Nassau, K.

K. Nassau, J. W. Shiever, and E. T. Keve, “Structural and phase relationships among trivalent tungstates and molybdates,” J. Solid State Chem.3(3), 411–419 (1971).
[CrossRef]

Nolte, S.

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull.31(08), 620–625 (2006).
[CrossRef]

Pereira, S.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

Qian, B.

Y. Teng, B. Qian, N. Jiang, Y. Liu, F. Luo, S. Ye, J. Zhou, B. Zhu, H. Zeng, and J. Qiu, “Light and heat driven precipitation of copper nanoparticles inside Cu2+-doped borate glasses,” Chem. Phys. Lett.485(1-3), 91–94 (2010).
[CrossRef]

F. Luo, B. Qian, G. Lin, J. Xu, Y. Liao, J. Song, H. Sun, B. Zhu, J. Qiu, Q. Zhao, and Z. Xu, “Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser,” Opt. Express18(6), 6262–6269 (2010).
[CrossRef] [PubMed]

Qiao, X.

Qiu, J.

Y. Teng, J. Zhou, F. Luo, G. Lin, and J. Qiu, “Controllable space selective precipitation of copper nanoparticles in borosilicate glasses using ultrafast laser irradiation,” J. Non-Cryst. Solids357(11-13), 2380–2383 (2011).
[CrossRef]

Y. Teng, B. Qian, N. Jiang, Y. Liu, F. Luo, S. Ye, J. Zhou, B. Zhu, H. Zeng, and J. Qiu, “Light and heat driven precipitation of copper nanoparticles inside Cu2+-doped borate glasses,” Chem. Phys. Lett.485(1-3), 91–94 (2010).
[CrossRef]

F. Luo, B. Qian, G. Lin, J. Xu, Y. Liao, J. Song, H. Sun, B. Zhu, J. Qiu, Q. Zhao, and Z. Xu, “Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser,” Opt. Express18(6), 6262–6269 (2010).
[CrossRef] [PubMed]

Y. Liu, B. Zhu, Y. Dai, X. Qiao, S. Ye, Y. Teng, Q. Guo, H. Ma, X. Fan, and J. Qiu, “Femtosecond laser writing of Er3+-doped CaF2 crystalline patterns in glass,” Opt. Lett.34(21), 3433–3435 (2009).
[CrossRef] [PubMed]

Y. Dai, H. Ma, B. Lu, B. Yu, B. Zhu, and J. Qiu, “Femtosecond laser-induced oriented precipitation of Ba2TiGe2O8 crystals in glass,” Opt. Express16(6), 3912–3917 (2008).
[CrossRef] [PubMed]

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett.92(9), 092904 (2008).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses,” Opt. Lett.25(6), 408–410 (2000).
[CrossRef] [PubMed]

Rajeev, P. P.

P. P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. S. Taylor, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Memory in nonlinear ionization of transparent solids,” Phys. Rev. Lett.97(25), 253001 (2006).
[CrossRef] [PubMed]

Rayner, D. M.

P. P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. S. Taylor, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Memory in nonlinear ionization of transparent solids,” Phys. Rev. Lett.97(25), 253001 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys.98(1), 013517 (2005).
[CrossRef]

Rosenfeld, A.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
[CrossRef]

Roy, M.

M. Roy, R. N. P. Choudhary, and H. N. Acharya, “X-ray and thermal studies of ferroelectric Dy2(MoO4)3,” J. Therm. Anal.35(5), 1471–1476 (1989).
[CrossRef]

Sakakura, M.

A. Stone, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Unexpected influence of focal depth on nucleation during femtosecond laser crystallization of glass,” Opt. Mater. Express1(5), 990–995 (2011).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers,” J. Non-Cryst. Solids356(52-54), 3059–3065 (2010).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation,” Opt. Express17(25), 23284–23289 (2009).
[CrossRef] [PubMed]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett.93(23), 231112 (2008).
[CrossRef]

Sato, R.

M. Abe, Y. Benino, T. Fujiwara, T. Komatsu, and R. Sato, “Writing of nonlinear optical Sm2(MoO4)3 crystal lines at the surface of glass by samarium atom heat processing,” J. Appl. Phys.97(12), 123516 (2005).
[CrossRef]

Schaffer, C.

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull.31(08), 620–625 (2006).
[CrossRef]

Shah, L.

Shiever, J. W.

K. Nassau, J. W. Shiever, and E. T. Keve, “Structural and phase relationships among trivalent tungstates and molybdates,” J. Solid State Chem.3(3), 411–419 (1971).
[CrossRef]

Shimizu, M.

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett.93(23), 231112 (2008).
[CrossRef]

Shimotsuma, Y.

A. Stone, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Unexpected influence of focal depth on nucleation during femtosecond laser crystallization of glass,” Opt. Mater. Express1(5), 990–995 (2011).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers,” J. Non-Cryst. Solids356(52-54), 3059–3065 (2010).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation,” Opt. Express17(25), 23284–23289 (2009).
[CrossRef] [PubMed]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett.93(23), 231112 (2008).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Simova, E.

P. P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. S. Taylor, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Memory in nonlinear ionization of transparent solids,” Phys. Rev. Lett.97(25), 253001 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys.98(1), 013517 (2005).
[CrossRef]

Song, J.

F. Luo, B. Qian, G. Lin, J. Xu, Y. Liao, J. Song, H. Sun, B. Zhu, J. Qiu, Q. Zhao, and Z. Xu, “Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser,” Opt. Express18(6), 6262–6269 (2010).
[CrossRef] [PubMed]

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett.92(9), 092904 (2008).
[CrossRef]

Soukoulis, C. M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

Stoian, R.

C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express16(8), 5481–5492 (2008).
[CrossRef] [PubMed]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
[CrossRef]

Stone, A.

Stone, G.

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers,” J. Non-Cryst. Solids356(52-54), 3059–3065 (2010).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation,” Opt. Express17(25), 23284–23289 (2009).
[CrossRef] [PubMed]

Su, Q.

Z. Wang, H. Liang, M. Gong, and Q. Su, “Novel red phosphor of Bi3+, Sm3+ co-activated NaEu(MoO4)2,” Opt. Mater.29(7), 896–900 (2007).
[CrossRef]

Sugimoto, N.

Sun, H.

Taylor, R. S.

P. P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. S. Taylor, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Memory in nonlinear ionization of transparent solids,” Phys. Rev. Lett.97(25), 253001 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys.98(1), 013517 (2005).
[CrossRef]

Teng, Y.

Y. Teng, J. Zhou, F. Luo, G. Lin, and J. Qiu, “Controllable space selective precipitation of copper nanoparticles in borosilicate glasses using ultrafast laser irradiation,” J. Non-Cryst. Solids357(11-13), 2380–2383 (2011).
[CrossRef]

Y. Teng, B. Qian, N. Jiang, Y. Liu, F. Luo, S. Ye, J. Zhou, B. Zhu, H. Zeng, and J. Qiu, “Light and heat driven precipitation of copper nanoparticles inside Cu2+-doped borate glasses,” Chem. Phys. Lett.485(1-3), 91–94 (2010).
[CrossRef]

Y. Liu, B. Zhu, Y. Dai, X. Qiao, S. Ye, Y. Teng, Q. Guo, H. Ma, X. Fan, and J. Qiu, “Femtosecond laser writing of Er3+-doped CaF2 crystalline patterns in glass,” Opt. Lett.34(21), 3433–3435 (2009).
[CrossRef] [PubMed]

Tsukada, Y.

Y. Tsukada, T. Honma, and T. Komatsu, “Corrected article: ‘Self-organized periodic domain structure for second harmonic generations in ferroelastic β′-(Sm, Gd)2(MoO4)3 crystal lines on glass surfaces [Appl. Phys. Lett. 94, 041915 (2009)]’,” Appl. Phys. Lett.94(5), 059901 (2009).
[CrossRef]

von Freymann, G.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

Wang, X.

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett.92(9), 092904 (2008).
[CrossRef]

Wang, Y.

Y. Wang, T. Honma, and T. Komatsu, “Synthesis and laser patterning of ferroelastic β′-RE2(MoO4)3 crystals (RE: Sm, Gd, Tb, Dy) in rare-earth molybdenum borate glasses,” Mater. Chem. Phys.133(1), 118–125 (2012).
[CrossRef]

Wang, Z.

Z. Wang, H. Liang, M. Gong, and Q. Su, “Novel red phosphor of Bi3+, Sm3+ co-activated NaEu(MoO4)2,” Opt. Mater.29(7), 896–900 (2007).
[CrossRef]

Watanabe, W.

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull.31(08), 620–625 (2006).
[CrossRef]

Wegener, M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

Wu, G.

Y. Dai, G. Yu, G. Wu, H. Ma, X. Yan, and G. Ma, “The effect of spherical aberration on temperature distribution inside glass by irradiation of a high repetition rate femtosecond pulse laser,” Chin. Phys. B21(2), 025201 (2012).
[CrossRef]

Xu, J.

Xu, Z.

F. Luo, B. Qian, G. Lin, J. Xu, Y. Liao, J. Song, H. Sun, B. Zhu, J. Qiu, Q. Zhao, and Z. Xu, “Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser,” Opt. Express18(6), 6262–6269 (2010).
[CrossRef] [PubMed]

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett.92(9), 092904 (2008).
[CrossRef]

Yan, X.

Y. Dai, G. Yu, G. Wu, H. Ma, X. Yan, and G. Ma, “The effect of spherical aberration on temperature distribution inside glass by irradiation of a high repetition rate femtosecond pulse laser,” Chin. Phys. B21(2), 025201 (2012).
[CrossRef]

Ye, S.

Y. Teng, B. Qian, N. Jiang, Y. Liu, F. Luo, S. Ye, J. Zhou, B. Zhu, H. Zeng, and J. Qiu, “Light and heat driven precipitation of copper nanoparticles inside Cu2+-doped borate glasses,” Chem. Phys. Lett.485(1-3), 91–94 (2010).
[CrossRef]

Y. Liu, B. Zhu, Y. Dai, X. Qiao, S. Ye, Y. Teng, Q. Guo, H. Ma, X. Fan, and J. Qiu, “Femtosecond laser writing of Er3+-doped CaF2 crystalline patterns in glass,” Opt. Lett.34(21), 3433–3435 (2009).
[CrossRef] [PubMed]

Yoshino, F.

Yu, B.

Yu, G.

Y. Dai, G. Yu, G. Wu, H. Ma, X. Yan, and G. Ma, “The effect of spherical aberration on temperature distribution inside glass by irradiation of a high repetition rate femtosecond pulse laser,” Chin. Phys. B21(2), 025201 (2012).
[CrossRef]

Zeng, H.

Y. Teng, B. Qian, N. Jiang, Y. Liu, F. Luo, S. Ye, J. Zhou, B. Zhu, H. Zeng, and J. Qiu, “Light and heat driven precipitation of copper nanoparticles inside Cu2+-doped borate glasses,” Chem. Phys. Lett.485(1-3), 91–94 (2010).
[CrossRef]

Zhang, H.

Zhao, Q.

Zhou, J.

Y. Teng, J. Zhou, F. Luo, G. Lin, and J. Qiu, “Controllable space selective precipitation of copper nanoparticles in borosilicate glasses using ultrafast laser irradiation,” J. Non-Cryst. Solids357(11-13), 2380–2383 (2011).
[CrossRef]

Y. Teng, B. Qian, N. Jiang, Y. Liu, F. Luo, S. Ye, J. Zhou, B. Zhu, H. Zeng, and J. Qiu, “Light and heat driven precipitation of copper nanoparticles inside Cu2+-doped borate glasses,” Chem. Phys. Lett.485(1-3), 91–94 (2010).
[CrossRef]

Zhu, B.

Appl. Phys. Lett. (3)

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett.93(23), 231112 (2008).
[CrossRef]

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett.92(9), 092904 (2008).
[CrossRef]

Y. Tsukada, T. Honma, and T. Komatsu, “Corrected article: ‘Self-organized periodic domain structure for second harmonic generations in ferroelastic β′-(Sm, Gd)2(MoO4)3 crystal lines on glass surfaces [Appl. Phys. Lett. 94, 041915 (2009)]’,” Appl. Phys. Lett.94(5), 059901 (2009).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process.76(2), 257–260 (2003).
[CrossRef]

Chem. Phys. Lett. (1)

Y. Teng, B. Qian, N. Jiang, Y. Liu, F. Luo, S. Ye, J. Zhou, B. Zhu, H. Zeng, and J. Qiu, “Light and heat driven precipitation of copper nanoparticles inside Cu2+-doped borate glasses,” Chem. Phys. Lett.485(1-3), 91–94 (2010).
[CrossRef]

Chin. Phys. B (1)

Y. Dai, G. Yu, G. Wu, H. Ma, X. Yan, and G. Ma, “The effect of spherical aberration on temperature distribution inside glass by irradiation of a high repetition rate femtosecond pulse laser,” Chin. Phys. B21(2), 025201 (2012).
[CrossRef]

Ferroelectrics (1)

A. Kumada, “Optical properties of gadolinium molybdate and their device applications,” Ferroelectrics3(1), 115–123 (1972).
[CrossRef]

J. Appl. Phys. (3)

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys.98(1), 013517 (2005).
[CrossRef]

M. Abe, Y. Benino, T. Fujiwara, T. Komatsu, and R. Sato, “Writing of nonlinear optical Sm2(MoO4)3 crystal lines at the surface of glass by samarium atom heat processing,” J. Appl. Phys.97(12), 123516 (2005).
[CrossRef]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007).
[CrossRef]

J. Non-Cryst. Solids (4)

Y. Teng, J. Zhou, F. Luo, G. Lin, and J. Qiu, “Controllable space selective precipitation of copper nanoparticles in borosilicate glasses using ultrafast laser irradiation,” J. Non-Cryst. Solids357(11-13), 2380–2383 (2011).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers,” J. Non-Cryst. Solids356(52-54), 3059–3065 (2010).
[CrossRef]

R. Nakajima, M. Abe, Y. Benino, T. Fujiwara, H. G. Kim, and T. Komatsu, “Laser-induced crystallization of β′-RE2(MoO4)3 ferroelectrics (RE: Sm, Gd, Dy) in glasses and their surface morphologies,” J. Non-Cryst. Solids353(1), 85–93 (2007).
[CrossRef]

H. Behrens and M. Haack, “Cation diffusion in soda-lime-silicate glass melts,” J. Non-Cryst. Solids353(52-54), 4743–4752 (2007).
[CrossRef]

J. Solid State Chem. (1)

K. Nassau, J. W. Shiever, and E. T. Keve, “Structural and phase relationships among trivalent tungstates and molybdates,” J. Solid State Chem.3(3), 411–419 (1971).
[CrossRef]

J. Therm. Anal. (1)

M. Roy, R. N. P. Choudhary, and H. N. Acharya, “X-ray and thermal studies of ferroelectric Dy2(MoO4)3,” J. Therm. Anal.35(5), 1471–1476 (1989).
[CrossRef]

Mater. Chem. Phys. (1)

Y. Wang, T. Honma, and T. Komatsu, “Synthesis and laser patterning of ferroelastic β′-RE2(MoO4)3 crystals (RE: Sm, Gd, Tb, Dy) in rare-earth molybdenum borate glasses,” Mater. Chem. Phys.133(1), 118–125 (2012).
[CrossRef]

MRS Bull. (1)

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull.31(08), 620–625 (2006).
[CrossRef]

Nat. Mater. (1)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

Nat. Photonics (1)

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Opt. Mater. (1)

Z. Wang, H. Liang, M. Gong, and Q. Su, “Novel red phosphor of Bi3+, Sm3+ co-activated NaEu(MoO4)2,” Opt. Mater.29(7), 896–900 (2007).
[CrossRef]

Opt. Mater. Express (1)

Phys. Rev. Lett. (2)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

P. P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. S. Taylor, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Memory in nonlinear ionization of transparent solids,” Phys. Rev. Lett.97(25), 253001 (2006).
[CrossRef] [PubMed]

Phys. Status Solidi A (1)

A. A. Kaminskii, “New room-temperature laser-diode pumped efficient quasi-cw and cw single-mode laser based on ferroelectric and ferroelastic Gd2(MoO4)3: Nd3+ crystal,” Phys. Status Solidi A149(2), K39–K42 (1995).
[CrossRef]

Prog. Quantum Electron. (1)

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron.4, 35–110 (1975).
[CrossRef]

Other (1)

L. H. Brixner, J. R. Barkley, and W. Jeitschko, Handbook on the Physics and Chemistry of Rare Earths (North-Holland Publishing Company, 1979), Chap. 30.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical microscopic images of the induced microstructures after 400 mW fs laser irradiated 30 s at different focal depths inside the molybdate glass, (a) topview and (b) sideview. (c) Transmittance of the glass sample.

Fig. 2
Fig. 2

(a) Micro-Raman spectra of the unmodified and the modified regions. Curves I and II correspond to the middle parts of line A and B indicated by the arrows in insert. The irradiated power and time are respectively 250 mW and 60 s, the focal depth is 120 μm. (b) Micro-Raman spectra in the centers of the modified regions with varied irradiation times. The laser power and the focal depth are the same as in (a).

Fig. 3
Fig. 3

(a) The sketch map of the Raman scanning from both of topview and sideview (irradiation time: 60 s; laser power: 250 mW; depth: 120 μm). (b) Micro-Raman mapping at the 963 cm−1 peak for the modified region. (c) and (d) the intensity distribution at 963 cm−1 peak along the lines A and B, respectively.

Fig. 4
Fig. 4

(a) Backscattering electron image and (b-d) EPMA mapping for the concentration of different elements (O), Dy and Mo) in the fs laser-modified region (irradiation time: 60 s; laser power: 250 mW; depth: 120 μm).

Metrics