Abstract

A versatile procedure for the low-temperature bonding of silicon and indium-phosphide to silicon is proposed and demonstrated. The procedure relies on the deposition and functionalization of self-assembled, single molecular layers on the surface of one substrate, and the subsequent attachment of the monolayer to the surface of the other substrate with or without its own monolayer coating. The process is applicable to the fabrication of hybrid-silicon, active photonic devices.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley, 2002).
  2. L. Pavesi and D. J. Lockwood, eds., Silicon Photonics (Springer-Verlag, 2004).
  3. G. T. Reed, Silicon-Photonics: The State of the Art (John Wiley, 2008)
  4. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
    [CrossRef]
  5. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  6. D. J. Thomson, F. Y. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “High data rate silicon optical modulator with self-aligned fabrication process,” paper OM2E.3 in technical digest of Optical Fiber Communication 2012 (OFC2012) Conference, Los Angeles, CA (Optical Society of America, 2012).
  7. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. J. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
    [CrossRef] [PubMed]
  8. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express14(20), 9203–9210 (2006).
    [CrossRef] [PubMed]
  9. H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs–silicon evanescent amplifier,” IEEE Photon. Technol. Lett.19(4), 230–232 (2007).
    [CrossRef]
  10. J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J. M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express15(11), 6744–6749 (2007).
    [CrossRef] [PubMed]
  11. H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent waveguide photodetector,” Opt. Express15(10), 6044–6052 (2007).
    [CrossRef] [PubMed]
  12. Y. H. Kuo, H. W. Chen, and J. E. Bowers, “High speed hybrid silicon evanescent electroabsorption modulator,” Opt. Express16(13), 9936–9941 (2008).
    [CrossRef] [PubMed]
  13. H. W. Chen, Y. H. Kuo, and J. E. Bowers, “A Hybrid silicon–AlGaInAs phase modulator,” IEEE Photon. Technol. Lett.20(23), 1920–1922 (2008).
    [CrossRef]
  14. H. W. Chen, Y. H. Kuo, and J. E. Bowers, “High speed hybrid silicon evanescent Mach-Zehnder modulator and switch,” Opt. Express16(25), 20571–20576 (2008).
    [CrossRef] [PubMed]
  15. X. K. Sun, A. Zadok, M. J. Shearn, K. A. Diest, A. Ghaffari, H. A. Atwater, A. Scherer, and A. Yariv, “Electrically pumped hybrid evanescent Si/InGaAsP lasers,” Opt. Lett.34(9), 1345–1347 (2009).
    [CrossRef] [PubMed]
  16. Y. Tang, J. Peters, and J. E. Bowers, “1.3μm hybrid silicon electroabsorption modulator with bandwidth beyond 67 GHz,” paper PDP5A.5 in technical digest of Optical Fiber Communication 2012 (OFC2012) Conference, Los Angeles, CA (Optical Society of America, 2012).
  17. H. Kroemer, T.-Y. Liu, and P. M. Petroff, “GaAs on Si and related systems: problems and prospects,” J. Cryst. Growth95(1–4), 96–102 (1989).
    [CrossRef]
  18. D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials3(3), 1782–1802 (2010).
    [CrossRef]
  19. D. Pasquariello, C. Hedlund, and K. Hjort, “Oxidation and induced damages in oxygen plasma in situ wafer bonding,” J. Electrochem. Soc.147(7), 2699–2703 (2000).
    [CrossRef]
  20. J. Sagiv, “Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces,” J. Am. Chem. Soc.102(1), 92–98 (1980).
    [CrossRef]
  21. S. Onclin, B. J. Ravoo, and D. N. Reinhoudt, “Engineering silicon oxide surfaces using self-assembled monolayers,” Angew. Chem. Int. Ed. Engl.44(39), 6282–6304 (2005).
    [CrossRef] [PubMed]
  22. A. Ulman, “Formation and structure of self-assembled monolayers,” Chem. Rev.96(4), 1533–1554 (1996).
    [CrossRef] [PubMed]
  23. W. Wang, T. Lee, and M. A. Reed, “Mechanism of electron conduction in self-assembled alkanethiol monolayer devices,” Phys. Rev. B68(3), 035416 (2003).
    [CrossRef]
  24. W. Y. Zhang, J. P. Labukas, S. Tatic-Lucic, L. Larson, T. Bannuru, R. P. Vinci, and G. S. Ferguson, “Novel room-temperature first-level packaging process for microscale devices,” Sens. Actuators A Phys.123–124, 646–654 (2005).
    [CrossRef]
  25. G. Kräuter, Y. Bluhm, C. Batz-Sohn, and U. Gösele, “The joining of parallel plates via organic monolayers: chemical reactions in a spatially confined system,” Adv. Mater. (Deerfield Beach Fla.)11(12), 1035–1038 (1999).
    [CrossRef]
  26. V. Artel, I. Bakish, T. Kraus, M. Shubely, Y. Ben-Ezra, E. Shekel, S. Zach, A. Zadok, and C. N. Sukenik, “Low temperature wafer bonding of silicon to InP and silicon to LiNbO3 using self-assembled monolayers,” paper OM3E.4 in technical digest of Optical Fiber Communication 2012 (OFC2012) Conference, Los Angeles, CA (Optical Society of America, 2012).
  27. N. Balachander and C. N. Sukenik, “Monolayer transformation by nucleophilic substitution: applications to the Creation of new monolayer assemblies,” Langmuir6(11), 1621–1627 (1990).
    [CrossRef]
  28. S. Meth and C. N. Sukenik, “Siloxane-anchored thin films on silicon dioxide-modified stainless steel,” Thin Solid Films425(1-2), 49–58 (2003).
    [CrossRef]
  29. R. J. Collins and C. N. Sukenik, “Sulfonate-functionalized, siloxane-anchored, self-assembled monolayers,” Langmuir11(6), 2322–2324 (1995).
    [CrossRef]
  30. I. Aped, Y. Mazuz, and C. N. Sukenik, “Variations in the structure and reactivity of thioester functionalized self-assembled monolayers and their use for controlled surface modification,” Beilstein J. Nanotechnol.3, 213–220 (2012).
    [CrossRef] [PubMed]
  31. V. Artel, I. Aped, R. Cohen, and C. N. Sukenik, “Controlled formation of thiol and disulfide interfaces” (submitted for publication).
  32. Y. Gu, Z. Lin, R. A. Butera, V. S. Smentkowski, and D. H. Waldeck, “Preparation of self-assembled monolayers on InP,” Langmuir11(6), 1849–1851 (1995).
    [CrossRef]
  33. H. Lim, C. Carraro, R. Maboudian, M. W. Pruessner, and R. Ghodssi, “Chemical and thermal stability of alkanethiol and sulfur passivated InP(100),” Langmuir20(3), 743–747 (2004).
    [CrossRef] [PubMed]
  34. H. F. Gilbert, “Thiol/disulfide exchange equilibria and disulfide bond stability,” Methods Enzymol.251, 8–28 (1995).
    [CrossRef] [PubMed]
  35. U. Gösele and Q.-Y. Tong, “Semiconductor wafer bonding,” Annu. Rev. Mater. Sci.28(1), 215–241 (1998).
    [CrossRef]
  36. M. M. R. Howlader, T. Watanabe, and T. Suga, “Characterization of the bonding strength and interface current of p-Si/n-InP wafers bonded by surface activated bonding method at room temperature,” J. Appl. Phys.91(5), 3062–3066 (2002).
    [CrossRef]
  37. D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron.8(1), 118–131 (2002).
    [CrossRef]

2012 (1)

I. Aped, Y. Mazuz, and C. N. Sukenik, “Variations in the structure and reactivity of thioester functionalized self-assembled monolayers and their use for controlled surface modification,” Beilstein J. Nanotechnol.3, 213–220 (2012).
[CrossRef] [PubMed]

2010 (1)

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials3(3), 1782–1802 (2010).
[CrossRef]

2009 (1)

2008 (3)

2007 (3)

2006 (1)

2005 (4)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. J. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

S. Onclin, B. J. Ravoo, and D. N. Reinhoudt, “Engineering silicon oxide surfaces using self-assembled monolayers,” Angew. Chem. Int. Ed. Engl.44(39), 6282–6304 (2005).
[CrossRef] [PubMed]

W. Y. Zhang, J. P. Labukas, S. Tatic-Lucic, L. Larson, T. Bannuru, R. P. Vinci, and G. S. Ferguson, “Novel room-temperature first-level packaging process for microscale devices,” Sens. Actuators A Phys.123–124, 646–654 (2005).
[CrossRef]

2004 (1)

H. Lim, C. Carraro, R. Maboudian, M. W. Pruessner, and R. Ghodssi, “Chemical and thermal stability of alkanethiol and sulfur passivated InP(100),” Langmuir20(3), 743–747 (2004).
[CrossRef] [PubMed]

2003 (2)

S. Meth and C. N. Sukenik, “Siloxane-anchored thin films on silicon dioxide-modified stainless steel,” Thin Solid Films425(1-2), 49–58 (2003).
[CrossRef]

W. Wang, T. Lee, and M. A. Reed, “Mechanism of electron conduction in self-assembled alkanethiol monolayer devices,” Phys. Rev. B68(3), 035416 (2003).
[CrossRef]

2002 (2)

M. M. R. Howlader, T. Watanabe, and T. Suga, “Characterization of the bonding strength and interface current of p-Si/n-InP wafers bonded by surface activated bonding method at room temperature,” J. Appl. Phys.91(5), 3062–3066 (2002).
[CrossRef]

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron.8(1), 118–131 (2002).
[CrossRef]

2000 (1)

D. Pasquariello, C. Hedlund, and K. Hjort, “Oxidation and induced damages in oxygen plasma in situ wafer bonding,” J. Electrochem. Soc.147(7), 2699–2703 (2000).
[CrossRef]

1999 (1)

G. Kräuter, Y. Bluhm, C. Batz-Sohn, and U. Gösele, “The joining of parallel plates via organic monolayers: chemical reactions in a spatially confined system,” Adv. Mater. (Deerfield Beach Fla.)11(12), 1035–1038 (1999).
[CrossRef]

1998 (1)

U. Gösele and Q.-Y. Tong, “Semiconductor wafer bonding,” Annu. Rev. Mater. Sci.28(1), 215–241 (1998).
[CrossRef]

1996 (1)

A. Ulman, “Formation and structure of self-assembled monolayers,” Chem. Rev.96(4), 1533–1554 (1996).
[CrossRef] [PubMed]

1995 (3)

H. F. Gilbert, “Thiol/disulfide exchange equilibria and disulfide bond stability,” Methods Enzymol.251, 8–28 (1995).
[CrossRef] [PubMed]

R. J. Collins and C. N. Sukenik, “Sulfonate-functionalized, siloxane-anchored, self-assembled monolayers,” Langmuir11(6), 2322–2324 (1995).
[CrossRef]

Y. Gu, Z. Lin, R. A. Butera, V. S. Smentkowski, and D. H. Waldeck, “Preparation of self-assembled monolayers on InP,” Langmuir11(6), 1849–1851 (1995).
[CrossRef]

1990 (1)

N. Balachander and C. N. Sukenik, “Monolayer transformation by nucleophilic substitution: applications to the Creation of new monolayer assemblies,” Langmuir6(11), 1621–1627 (1990).
[CrossRef]

1989 (1)

H. Kroemer, T.-Y. Liu, and P. M. Petroff, “GaAs on Si and related systems: problems and prospects,” J. Cryst. Growth95(1–4), 96–102 (1989).
[CrossRef]

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

1980 (1)

J. Sagiv, “Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces,” J. Am. Chem. Soc.102(1), 92–98 (1980).
[CrossRef]

Aped, I.

I. Aped, Y. Mazuz, and C. N. Sukenik, “Variations in the structure and reactivity of thioester functionalized self-assembled monolayers and their use for controlled surface modification,” Beilstein J. Nanotechnol.3, 213–220 (2012).
[CrossRef] [PubMed]

Atwater, H. A.

Baets, R.

Balachander, N.

N. Balachander and C. N. Sukenik, “Monolayer transformation by nucleophilic substitution: applications to the Creation of new monolayer assemblies,” Langmuir6(11), 1621–1627 (1990).
[CrossRef]

Bannuru, T.

W. Y. Zhang, J. P. Labukas, S. Tatic-Lucic, L. Larson, T. Bannuru, R. P. Vinci, and G. S. Ferguson, “Novel room-temperature first-level packaging process for microscale devices,” Sens. Actuators A Phys.123–124, 646–654 (2005).
[CrossRef]

Batz-Sohn, C.

G. Kräuter, Y. Bluhm, C. Batz-Sohn, and U. Gösele, “The joining of parallel plates via organic monolayers: chemical reactions in a spatially confined system,” Adv. Mater. (Deerfield Beach Fla.)11(12), 1035–1038 (1999).
[CrossRef]

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

Bluhm, Y.

G. Kräuter, Y. Bluhm, C. Batz-Sohn, and U. Gösele, “The joining of parallel plates via organic monolayers: chemical reactions in a spatially confined system,” Adv. Mater. (Deerfield Beach Fla.)11(12), 1035–1038 (1999).
[CrossRef]

Bowers, J. E.

Butera, R. A.

Y. Gu, Z. Lin, R. A. Butera, V. S. Smentkowski, and D. H. Waldeck, “Preparation of self-assembled monolayers on InP,” Langmuir11(6), 1849–1851 (1995).
[CrossRef]

Carraro, C.

H. Lim, C. Carraro, R. Maboudian, M. W. Pruessner, and R. Ghodssi, “Chemical and thermal stability of alkanethiol and sulfur passivated InP(100),” Langmuir20(3), 743–747 (2004).
[CrossRef] [PubMed]

Chen, H. W.

Cohen, O.

H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent waveguide photodetector,” Opt. Express15(10), 6044–6052 (2007).
[CrossRef] [PubMed]

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs–silicon evanescent amplifier,” IEEE Photon. Technol. Lett.19(4), 230–232 (2007).
[CrossRef]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. J. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Collins, R. J.

R. J. Collins and C. N. Sukenik, “Sulfonate-functionalized, siloxane-anchored, self-assembled monolayers,” Langmuir11(6), 2322–2324 (1995).
[CrossRef]

Di Cioccio, L.

Diest, K. A.

Fang, A. W.

H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent waveguide photodetector,” Opt. Express15(10), 6044–6052 (2007).
[CrossRef] [PubMed]

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs–silicon evanescent amplifier,” IEEE Photon. Technol. Lett.19(4), 230–232 (2007).
[CrossRef]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. J. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Fedeli, J. M.

Ferguson, G. S.

W. Y. Zhang, J. P. Labukas, S. Tatic-Lucic, L. Larson, T. Bannuru, R. P. Vinci, and G. S. Ferguson, “Novel room-temperature first-level packaging process for microscale devices,” Sens. Actuators A Phys.123–124, 646–654 (2005).
[CrossRef]

Ghaffari, A.

Ghodssi, R.

H. Lim, C. Carraro, R. Maboudian, M. W. Pruessner, and R. Ghodssi, “Chemical and thermal stability of alkanethiol and sulfur passivated InP(100),” Langmuir20(3), 743–747 (2004).
[CrossRef] [PubMed]

Gilbert, H. F.

H. F. Gilbert, “Thiol/disulfide exchange equilibria and disulfide bond stability,” Methods Enzymol.251, 8–28 (1995).
[CrossRef] [PubMed]

Gösele, U.

G. Kräuter, Y. Bluhm, C. Batz-Sohn, and U. Gösele, “The joining of parallel plates via organic monolayers: chemical reactions in a spatially confined system,” Adv. Mater. (Deerfield Beach Fla.)11(12), 1035–1038 (1999).
[CrossRef]

U. Gösele and Q.-Y. Tong, “Semiconductor wafer bonding,” Annu. Rev. Mater. Sci.28(1), 215–241 (1998).
[CrossRef]

Gu, Y.

Y. Gu, Z. Lin, R. A. Butera, V. S. Smentkowski, and D. H. Waldeck, “Preparation of self-assembled monolayers on InP,” Langmuir11(6), 1849–1851 (1995).
[CrossRef]

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. J. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Hedlund, C.

D. Pasquariello, C. Hedlund, and K. Hjort, “Oxidation and induced damages in oxygen plasma in situ wafer bonding,” J. Electrochem. Soc.147(7), 2699–2703 (2000).
[CrossRef]

Hjort, K.

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron.8(1), 118–131 (2002).
[CrossRef]

D. Pasquariello, C. Hedlund, and K. Hjort, “Oxidation and induced damages in oxygen plasma in situ wafer bonding,” J. Electrochem. Soc.147(7), 2699–2703 (2000).
[CrossRef]

Howlader, M. M. R.

M. M. R. Howlader, T. Watanabe, and T. Suga, “Characterization of the bonding strength and interface current of p-Si/n-InP wafers bonded by surface activated bonding method at room temperature,” J. Appl. Phys.91(5), 3062–3066 (2002).
[CrossRef]

Jones, R.

H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent waveguide photodetector,” Opt. Express15(10), 6044–6052 (2007).
[CrossRef] [PubMed]

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs–silicon evanescent amplifier,” IEEE Photon. Technol. Lett.19(4), 230–232 (2007).
[CrossRef]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. J. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Kräuter, G.

G. Kräuter, Y. Bluhm, C. Batz-Sohn, and U. Gösele, “The joining of parallel plates via organic monolayers: chemical reactions in a spatially confined system,” Adv. Mater. (Deerfield Beach Fla.)11(12), 1035–1038 (1999).
[CrossRef]

Kroemer, H.

H. Kroemer, T.-Y. Liu, and P. M. Petroff, “GaAs on Si and related systems: problems and prospects,” J. Cryst. Growth95(1–4), 96–102 (1989).
[CrossRef]

Kuo, Y. H.

Labukas, J. P.

W. Y. Zhang, J. P. Labukas, S. Tatic-Lucic, L. Larson, T. Bannuru, R. P. Vinci, and G. S. Ferguson, “Novel room-temperature first-level packaging process for microscale devices,” Sens. Actuators A Phys.123–124, 646–654 (2005).
[CrossRef]

Lagahe, C.

Larson, L.

W. Y. Zhang, J. P. Labukas, S. Tatic-Lucic, L. Larson, T. Bannuru, R. P. Vinci, and G. S. Ferguson, “Novel room-temperature first-level packaging process for microscale devices,” Sens. Actuators A Phys.123–124, 646–654 (2005).
[CrossRef]

Lee, T.

W. Wang, T. Lee, and M. A. Reed, “Mechanism of electron conduction in self-assembled alkanethiol monolayer devices,” Phys. Rev. B68(3), 035416 (2003).
[CrossRef]

Liang, D.

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials3(3), 1782–1802 (2010).
[CrossRef]

Lim, H.

H. Lim, C. Carraro, R. Maboudian, M. W. Pruessner, and R. Ghodssi, “Chemical and thermal stability of alkanethiol and sulfur passivated InP(100),” Langmuir20(3), 743–747 (2004).
[CrossRef] [PubMed]

Lin, Z.

Y. Gu, Z. Lin, R. A. Butera, V. S. Smentkowski, and D. H. Waldeck, “Preparation of self-assembled monolayers on InP,” Langmuir11(6), 1849–1851 (1995).
[CrossRef]

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Liu, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. J. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Liu, T.-Y.

H. Kroemer, T.-Y. Liu, and P. M. Petroff, “GaAs on Si and related systems: problems and prospects,” J. Cryst. Growth95(1–4), 96–102 (1989).
[CrossRef]

Maboudian, R.

H. Lim, C. Carraro, R. Maboudian, M. W. Pruessner, and R. Ghodssi, “Chemical and thermal stability of alkanethiol and sulfur passivated InP(100),” Langmuir20(3), 743–747 (2004).
[CrossRef] [PubMed]

Mazuz, Y.

I. Aped, Y. Mazuz, and C. N. Sukenik, “Variations in the structure and reactivity of thioester functionalized self-assembled monolayers and their use for controlled surface modification,” Beilstein J. Nanotechnol.3, 213–220 (2012).
[CrossRef] [PubMed]

Meth, S.

S. Meth and C. N. Sukenik, “Siloxane-anchored thin films on silicon dioxide-modified stainless steel,” Thin Solid Films425(1-2), 49–58 (2003).
[CrossRef]

Onclin, S.

S. Onclin, B. J. Ravoo, and D. N. Reinhoudt, “Engineering silicon oxide surfaces using self-assembled monolayers,” Angew. Chem. Int. Ed. Engl.44(39), 6282–6304 (2005).
[CrossRef] [PubMed]

Paniccia, M. J.

H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent waveguide photodetector,” Opt. Express15(10), 6044–6052 (2007).
[CrossRef] [PubMed]

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs–silicon evanescent amplifier,” IEEE Photon. Technol. Lett.19(4), 230–232 (2007).
[CrossRef]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. J. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Park, H.

Pasquariello, D.

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron.8(1), 118–131 (2002).
[CrossRef]

D. Pasquariello, C. Hedlund, and K. Hjort, “Oxidation and induced damages in oxygen plasma in situ wafer bonding,” J. Electrochem. Soc.147(7), 2699–2703 (2000).
[CrossRef]

Petroff, P. M.

H. Kroemer, T.-Y. Liu, and P. M. Petroff, “GaAs on Si and related systems: problems and prospects,” J. Cryst. Growth95(1–4), 96–102 (1989).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Pruessner, M. W.

H. Lim, C. Carraro, R. Maboudian, M. W. Pruessner, and R. Ghodssi, “Chemical and thermal stability of alkanethiol and sulfur passivated InP(100),” Langmuir20(3), 743–747 (2004).
[CrossRef] [PubMed]

Raday, O.

Ravoo, B. J.

S. Onclin, B. J. Ravoo, and D. N. Reinhoudt, “Engineering silicon oxide surfaces using self-assembled monolayers,” Angew. Chem. Int. Ed. Engl.44(39), 6282–6304 (2005).
[CrossRef] [PubMed]

Reed, M. A.

W. Wang, T. Lee, and M. A. Reed, “Mechanism of electron conduction in self-assembled alkanethiol monolayer devices,” Phys. Rev. B68(3), 035416 (2003).
[CrossRef]

Regreny, P.

Reinhoudt, D. N.

S. Onclin, B. J. Ravoo, and D. N. Reinhoudt, “Engineering silicon oxide surfaces using self-assembled monolayers,” Angew. Chem. Int. Ed. Engl.44(39), 6282–6304 (2005).
[CrossRef] [PubMed]

Roelkens, G.

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials3(3), 1782–1802 (2010).
[CrossRef]

Rojo Romeo, P.

Rong, H.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. J. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Sagiv, J.

J. Sagiv, “Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces,” J. Am. Chem. Soc.102(1), 92–98 (1980).
[CrossRef]

Scherer, A.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Seassal, C.

Shearn, M. J.

Smentkowski, V. S.

Y. Gu, Z. Lin, R. A. Butera, V. S. Smentkowski, and D. H. Waldeck, “Preparation of self-assembled monolayers on InP,” Langmuir11(6), 1849–1851 (1995).
[CrossRef]

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

Suga, T.

M. M. R. Howlader, T. Watanabe, and T. Suga, “Characterization of the bonding strength and interface current of p-Si/n-InP wafers bonded by surface activated bonding method at room temperature,” J. Appl. Phys.91(5), 3062–3066 (2002).
[CrossRef]

Sukenik, C. N.

I. Aped, Y. Mazuz, and C. N. Sukenik, “Variations in the structure and reactivity of thioester functionalized self-assembled monolayers and their use for controlled surface modification,” Beilstein J. Nanotechnol.3, 213–220 (2012).
[CrossRef] [PubMed]

S. Meth and C. N. Sukenik, “Siloxane-anchored thin films on silicon dioxide-modified stainless steel,” Thin Solid Films425(1-2), 49–58 (2003).
[CrossRef]

R. J. Collins and C. N. Sukenik, “Sulfonate-functionalized, siloxane-anchored, self-assembled monolayers,” Langmuir11(6), 2322–2324 (1995).
[CrossRef]

N. Balachander and C. N. Sukenik, “Monolayer transformation by nucleophilic substitution: applications to the Creation of new monolayer assemblies,” Langmuir6(11), 1621–1627 (1990).
[CrossRef]

Sun, X. K.

Sysak, M. N.

Tatic-Lucic, S.

W. Y. Zhang, J. P. Labukas, S. Tatic-Lucic, L. Larson, T. Bannuru, R. P. Vinci, and G. S. Ferguson, “Novel room-temperature first-level packaging process for microscale devices,” Sens. Actuators A Phys.123–124, 646–654 (2005).
[CrossRef]

Tong, Q.-Y.

U. Gösele and Q.-Y. Tong, “Semiconductor wafer bonding,” Annu. Rev. Mater. Sci.28(1), 215–241 (1998).
[CrossRef]

Ulman, A.

A. Ulman, “Formation and structure of self-assembled monolayers,” Chem. Rev.96(4), 1533–1554 (1996).
[CrossRef] [PubMed]

Van Campenhout, J.

Van Thourhout, D.

Verstuyft, S.

Vinci, R. P.

W. Y. Zhang, J. P. Labukas, S. Tatic-Lucic, L. Larson, T. Bannuru, R. P. Vinci, and G. S. Ferguson, “Novel room-temperature first-level packaging process for microscale devices,” Sens. Actuators A Phys.123–124, 646–654 (2005).
[CrossRef]

Waldeck, D. H.

Y. Gu, Z. Lin, R. A. Butera, V. S. Smentkowski, and D. H. Waldeck, “Preparation of self-assembled monolayers on InP,” Langmuir11(6), 1849–1851 (1995).
[CrossRef]

Wang, W.

W. Wang, T. Lee, and M. A. Reed, “Mechanism of electron conduction in self-assembled alkanethiol monolayer devices,” Phys. Rev. B68(3), 035416 (2003).
[CrossRef]

Watanabe, T.

M. M. R. Howlader, T. Watanabe, and T. Suga, “Characterization of the bonding strength and interface current of p-Si/n-InP wafers bonded by surface activated bonding method at room temperature,” J. Appl. Phys.91(5), 3062–3066 (2002).
[CrossRef]

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Yariv, A.

Zadok, A.

Zhang, W. Y.

W. Y. Zhang, J. P. Labukas, S. Tatic-Lucic, L. Larson, T. Bannuru, R. P. Vinci, and G. S. Ferguson, “Novel room-temperature first-level packaging process for microscale devices,” Sens. Actuators A Phys.123–124, 646–654 (2005).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

G. Kräuter, Y. Bluhm, C. Batz-Sohn, and U. Gösele, “The joining of parallel plates via organic monolayers: chemical reactions in a spatially confined system,” Adv. Mater. (Deerfield Beach Fla.)11(12), 1035–1038 (1999).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

S. Onclin, B. J. Ravoo, and D. N. Reinhoudt, “Engineering silicon oxide surfaces using self-assembled monolayers,” Angew. Chem. Int. Ed. Engl.44(39), 6282–6304 (2005).
[CrossRef] [PubMed]

Annu. Rev. Mater. Sci. (1)

U. Gösele and Q.-Y. Tong, “Semiconductor wafer bonding,” Annu. Rev. Mater. Sci.28(1), 215–241 (1998).
[CrossRef]

Beilstein J. Nanotechnol. (1)

I. Aped, Y. Mazuz, and C. N. Sukenik, “Variations in the structure and reactivity of thioester functionalized self-assembled monolayers and their use for controlled surface modification,” Beilstein J. Nanotechnol.3, 213–220 (2012).
[CrossRef] [PubMed]

Chem. Rev. (1)

A. Ulman, “Formation and structure of self-assembled monolayers,” Chem. Rev.96(4), 1533–1554 (1996).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron.8(1), 118–131 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs–silicon evanescent amplifier,” IEEE Photon. Technol. Lett.19(4), 230–232 (2007).
[CrossRef]

H. W. Chen, Y. H. Kuo, and J. E. Bowers, “A Hybrid silicon–AlGaInAs phase modulator,” IEEE Photon. Technol. Lett.20(23), 1920–1922 (2008).
[CrossRef]

J. Am. Chem. Soc. (1)

J. Sagiv, “Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces,” J. Am. Chem. Soc.102(1), 92–98 (1980).
[CrossRef]

J. Appl. Phys. (1)

M. M. R. Howlader, T. Watanabe, and T. Suga, “Characterization of the bonding strength and interface current of p-Si/n-InP wafers bonded by surface activated bonding method at room temperature,” J. Appl. Phys.91(5), 3062–3066 (2002).
[CrossRef]

J. Cryst. Growth (1)

H. Kroemer, T.-Y. Liu, and P. M. Petroff, “GaAs on Si and related systems: problems and prospects,” J. Cryst. Growth95(1–4), 96–102 (1989).
[CrossRef]

J. Electrochem. Soc. (1)

D. Pasquariello, C. Hedlund, and K. Hjort, “Oxidation and induced damages in oxygen plasma in situ wafer bonding,” J. Electrochem. Soc.147(7), 2699–2703 (2000).
[CrossRef]

Langmuir (4)

R. J. Collins and C. N. Sukenik, “Sulfonate-functionalized, siloxane-anchored, self-assembled monolayers,” Langmuir11(6), 2322–2324 (1995).
[CrossRef]

N. Balachander and C. N. Sukenik, “Monolayer transformation by nucleophilic substitution: applications to the Creation of new monolayer assemblies,” Langmuir6(11), 1621–1627 (1990).
[CrossRef]

Y. Gu, Z. Lin, R. A. Butera, V. S. Smentkowski, and D. H. Waldeck, “Preparation of self-assembled monolayers on InP,” Langmuir11(6), 1849–1851 (1995).
[CrossRef]

H. Lim, C. Carraro, R. Maboudian, M. W. Pruessner, and R. Ghodssi, “Chemical and thermal stability of alkanethiol and sulfur passivated InP(100),” Langmuir20(3), 743–747 (2004).
[CrossRef] [PubMed]

Materials (1)

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials3(3), 1782–1802 (2010).
[CrossRef]

Methods Enzymol. (1)

H. F. Gilbert, “Thiol/disulfide exchange equilibria and disulfide bond stability,” Methods Enzymol.251, 8–28 (1995).
[CrossRef] [PubMed]

Nature (2)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. J. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. B (1)

W. Wang, T. Lee, and M. A. Reed, “Mechanism of electron conduction in self-assembled alkanethiol monolayer devices,” Phys. Rev. B68(3), 035416 (2003).
[CrossRef]

Sens. Actuators A Phys. (1)

W. Y. Zhang, J. P. Labukas, S. Tatic-Lucic, L. Larson, T. Bannuru, R. P. Vinci, and G. S. Ferguson, “Novel room-temperature first-level packaging process for microscale devices,” Sens. Actuators A Phys.123–124, 646–654 (2005).
[CrossRef]

Thin Solid Films (1)

S. Meth and C. N. Sukenik, “Siloxane-anchored thin films on silicon dioxide-modified stainless steel,” Thin Solid Films425(1-2), 49–58 (2003).
[CrossRef]

Other (7)

V. Artel, I. Bakish, T. Kraus, M. Shubely, Y. Ben-Ezra, E. Shekel, S. Zach, A. Zadok, and C. N. Sukenik, “Low temperature wafer bonding of silicon to InP and silicon to LiNbO3 using self-assembled monolayers,” paper OM3E.4 in technical digest of Optical Fiber Communication 2012 (OFC2012) Conference, Los Angeles, CA (Optical Society of America, 2012).

V. Artel, I. Aped, R. Cohen, and C. N. Sukenik, “Controlled formation of thiol and disulfide interfaces” (submitted for publication).

Y. Tang, J. Peters, and J. E. Bowers, “1.3μm hybrid silicon electroabsorption modulator with bandwidth beyond 67 GHz,” paper PDP5A.5 in technical digest of Optical Fiber Communication 2012 (OFC2012) Conference, Los Angeles, CA (Optical Society of America, 2012).

G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley, 2002).

L. Pavesi and D. J. Lockwood, eds., Silicon Photonics (Springer-Verlag, 2004).

G. T. Reed, Silicon-Photonics: The State of the Art (John Wiley, 2008)

D. J. Thomson, F. Y. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “High data rate silicon optical modulator with self-aligned fabrication process,” paper OM2E.3 in technical digest of Optical Fiber Communication 2012 (OFC2012) Conference, Los Angeles, CA (Optical Society of America, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) The monolayer-forming molecule is a polymethylene chain, terminated by a trichlorosilane group on one end and a thioacetate group on the other end. (b) Illustration of monolayer self-assembly on an oxidized silicon surface (see also appendix).

Fig. 2
Fig. 2

Illustration of the hydrolysis reaction for cleaving the free-standing thioacetate end-group of self-assembled monolayers, leaving a thiol-decorated surface (see also appendix).

Fig. 3
Fig. 3

(a) Bonding a thiol-bearing silicon sample to an InP sample. (b) Bonded InP and silicon samples. (c) Scanning electron microscope cross-section of bonded samples of InP and silicon, following cleaving and focused ion beam processing.

Fig. 4
Fig. 4

Top-view, infra-red microscopy image of an InP sample and a silicon sample bonded together. Rings appear in a corner region that was taken from the edge of the InP wafer and could not be bonded. An illustration of the partially bonded samples is shown to the right of the microscopy image.

Fig. 5
Fig. 5

(a) In situ disulfide-SAM formation (see also appendix). (b) Disulfide exchange bonding a thiol-bearing sample to a disulfide bearing sample. (c) Two silicon samples bonded using the above procedure.

Fig. 6
Fig. 6

A schematic illustration of the pull-test setup. The bonded wafers are glued to a metallic holder from one side and to a transparent window from the other side using slow cure epoxy.

Metrics