Abstract

We present a novel technique that can rapidly and accurately measure surface tension and viscosity by direct thermal processing of an optical fiber. We demonstrate the applicability of this technique for a variety of glass compositions from silica to soft glass fibers, and these results have been validated against results obtained with other techniques. In addition, this characterisation technique has been used to measure the surface tension and viscosity for previously unmeasured glass compositions. The techniques are ideal for acquiring critical parameters of relevance to the conditions for the controlled fabrication of new glass compositions into microstructured fibers.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Fujino, C. Hwang, and K. Morinaga, “Surface tension of PbO-B2O3 and Bi2O3-B2O3 glass melts,” J. Mater. Sci.40(9-10), 2207–2212 (2005).
    [CrossRef]
  2. W. D. Kingery, “Surface tension of some liquid oxides and their temperature coefficients,” J. Am. Ceram. Soc.42(1), 6–10 (1959).
    [CrossRef]
  3. C. J. Voyce, A. D. Fitt, and T. M. Monro, “Mathematical model of the spinning of microstructured fibres,” Opt. Express12(23), 5810–5820 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-23-5810 .
    [CrossRef] [PubMed]
  4. C. J. Voyce, A. D. Fitt, J. R. Hayes, and T. M. Monro, “Mathematical modeling of the self-pressurizing mechanism for microstructured fiber drawing,” J. Lightwave Technol.27(7), 871–878 (2009).
    [CrossRef]
  5. W. Wadsworth, A. Witkowska, S. G. Leon-Saval, and T. A. Birks, “Hole inflation and tapering of stock photonic crystal fibres,” Opt. Express13(17), 6541–6549 (2005).
    [CrossRef] [PubMed]
  6. C. Hwang, B. K. Ryu, and S. Fujino, “Surface tension of bismuth borosilicate melts,” Thermochim. Acta531, 70–74 (2012).
    [CrossRef]
  7. S. Fujino, C. Hwang, and K. Morinaga, “Density, surface tension and viscosity of PbO/B2O3-SiO2 glass melts,” J. Am. Ceram. Soc.87(1), 10–16 (2004).
    [CrossRef]
  8. M. Yamashita, M. Suzuki, and H. Yamanaka, “Surface tension measurement of glass melts by maximum bubble pressure method,” Glastech. Ber.73, 337–343 (2000).
  9. A. E. Badger, C. W. Parmelee, and A. E. Williams, “Surface tension of various molten glasses,” J. Am. Ceram. Soc.20(1-12), 325–329 (1937).
    [CrossRef]
  10. C. A. Bradley, “Measurement of surface tension of viscous liquids,” J. Am. Ceram. Soc.21(10), 339–344 (1938).
    [CrossRef]
  11. S. Akhtar and M. Cable, “Some effects of atmosphere and minor constituents on the surface tension of glass melts,” Glass. Technol.9, 145–151 (1968).
  12. N. M. Parikh, “Effect of atmosphere on surface tension of glass,” J. Am. Ceram. Soc.41(1), 18–22 (1958).
    [CrossRef]
  13. L. Shartsis, S. Spinner, and A. W. Smock, “Surface tension of compositions in the systems PbO-B2O3 and PbO-SiO2,” J. Am. Ceram. Soc.31(1), 23–27 (1948).
    [CrossRef]
  14. L. D. Pye, A. Montenero, and I. Joseph, Properties of Glass-Forming Melts (CRC Press, 2005), Chap. 5.
  15. A. D. McLachlan and F. P. Meyer, “Temperature dependence of the extinction coefficient of fused silica for CO2 laser wavelengths,” Appl. Opt.26(9), 1728–1731 (1987).
    [CrossRef] [PubMed]
  16. H. R. Lillie, “Viscosity of glass between the strain point and melting temperature,” J. Am. Ceram. Soc.14(7), 502–512 (1931).
    [CrossRef]
  17. E. L. Bourhis, Glass (Wiley-VCH, 2008), Chap. 6.
  18. C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Radiation dosimetry using optically stimulated luminescence in fluoride phosphate optical fibres,” Opt. Mater. Express2(1), 62–70 (2012).
    [CrossRef]
  19. J. Stoetzel, “Fabrication of optical glass fibres by extrusion,” internship report (Otto Schott Institute at the University of Jena (Germany) and Institute for Photonics & Advanced Sensing at the University of Adelaide, 2011).
  20. L. Shartsis and A. W. Smock, “Surface tension of some optical glasses,” J. Am. Ceram. Soc.30(4), 130–136 (1947).
    [CrossRef]
  21. S. Toyoda, S. Fujino, and K. Morinaga, “Density, viscosity and surface tension of 50RO–50P2O5 (R: Mg, Ca, Sr, Ba, and Zn) glass melts,” J. Non-Cryst. Solids321(3), 169–174 (2003).
    [CrossRef]
  22. N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Academic Press, 1986), Chap. 5.
  23. N. P. Bansal and R. H. Doremus, “Surface tension of ZrF4-BaF2-LaF3 glass,” J. Am. Ceram. Soc.67(10), C-197 (1984).
    [CrossRef]
  24. G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Acta46(6), 1061–1072 (1982).
    [CrossRef]
  25. H. L. Schick, “A thermodynamic analysis of the high-temperature vaporization properties of silica,” Chem. Rev.60(4), 331–362 (1960).
    [CrossRef]

2012

2009

2005

S. Fujino, C. Hwang, and K. Morinaga, “Surface tension of PbO-B2O3 and Bi2O3-B2O3 glass melts,” J. Mater. Sci.40(9-10), 2207–2212 (2005).
[CrossRef]

W. Wadsworth, A. Witkowska, S. G. Leon-Saval, and T. A. Birks, “Hole inflation and tapering of stock photonic crystal fibres,” Opt. Express13(17), 6541–6549 (2005).
[CrossRef] [PubMed]

2004

2003

S. Toyoda, S. Fujino, and K. Morinaga, “Density, viscosity and surface tension of 50RO–50P2O5 (R: Mg, Ca, Sr, Ba, and Zn) glass melts,” J. Non-Cryst. Solids321(3), 169–174 (2003).
[CrossRef]

2000

M. Yamashita, M. Suzuki, and H. Yamanaka, “Surface tension measurement of glass melts by maximum bubble pressure method,” Glastech. Ber.73, 337–343 (2000).

1987

1984

N. P. Bansal and R. H. Doremus, “Surface tension of ZrF4-BaF2-LaF3 glass,” J. Am. Ceram. Soc.67(10), C-197 (1984).
[CrossRef]

1982

G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Acta46(6), 1061–1072 (1982).
[CrossRef]

1968

S. Akhtar and M. Cable, “Some effects of atmosphere and minor constituents on the surface tension of glass melts,” Glass. Technol.9, 145–151 (1968).

1960

H. L. Schick, “A thermodynamic analysis of the high-temperature vaporization properties of silica,” Chem. Rev.60(4), 331–362 (1960).
[CrossRef]

1959

W. D. Kingery, “Surface tension of some liquid oxides and their temperature coefficients,” J. Am. Ceram. Soc.42(1), 6–10 (1959).
[CrossRef]

1958

N. M. Parikh, “Effect of atmosphere on surface tension of glass,” J. Am. Ceram. Soc.41(1), 18–22 (1958).
[CrossRef]

1948

L. Shartsis, S. Spinner, and A. W. Smock, “Surface tension of compositions in the systems PbO-B2O3 and PbO-SiO2,” J. Am. Ceram. Soc.31(1), 23–27 (1948).
[CrossRef]

1947

L. Shartsis and A. W. Smock, “Surface tension of some optical glasses,” J. Am. Ceram. Soc.30(4), 130–136 (1947).
[CrossRef]

1938

C. A. Bradley, “Measurement of surface tension of viscous liquids,” J. Am. Ceram. Soc.21(10), 339–344 (1938).
[CrossRef]

1937

A. E. Badger, C. W. Parmelee, and A. E. Williams, “Surface tension of various molten glasses,” J. Am. Ceram. Soc.20(1-12), 325–329 (1937).
[CrossRef]

1931

H. R. Lillie, “Viscosity of glass between the strain point and melting temperature,” J. Am. Ceram. Soc.14(7), 502–512 (1931).
[CrossRef]

Akhtar, S.

S. Akhtar and M. Cable, “Some effects of atmosphere and minor constituents on the surface tension of glass melts,” Glass. Technol.9, 145–151 (1968).

Badger, A. E.

A. E. Badger, C. W. Parmelee, and A. E. Williams, “Surface tension of various molten glasses,” J. Am. Ceram. Soc.20(1-12), 325–329 (1937).
[CrossRef]

Bansal, N. P.

N. P. Bansal and R. H. Doremus, “Surface tension of ZrF4-BaF2-LaF3 glass,” J. Am. Ceram. Soc.67(10), C-197 (1984).
[CrossRef]

Birks, T. A.

Bottinga, Y.

G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Acta46(6), 1061–1072 (1982).
[CrossRef]

Bradley, C. A.

C. A. Bradley, “Measurement of surface tension of viscous liquids,” J. Am. Ceram. Soc.21(10), 339–344 (1938).
[CrossRef]

Cable, M.

S. Akhtar and M. Cable, “Some effects of atmosphere and minor constituents on the surface tension of glass melts,” Glass. Technol.9, 145–151 (1968).

Doremus, R. H.

N. P. Bansal and R. H. Doremus, “Surface tension of ZrF4-BaF2-LaF3 glass,” J. Am. Ceram. Soc.67(10), C-197 (1984).
[CrossRef]

Ebendorff-Heidepriem, H.

Fitt, A. D.

Fujino, S.

C. Hwang, B. K. Ryu, and S. Fujino, “Surface tension of bismuth borosilicate melts,” Thermochim. Acta531, 70–74 (2012).
[CrossRef]

S. Fujino, C. Hwang, and K. Morinaga, “Surface tension of PbO-B2O3 and Bi2O3-B2O3 glass melts,” J. Mater. Sci.40(9-10), 2207–2212 (2005).
[CrossRef]

S. Fujino, C. Hwang, and K. Morinaga, “Density, surface tension and viscosity of PbO/B2O3-SiO2 glass melts,” J. Am. Ceram. Soc.87(1), 10–16 (2004).
[CrossRef]

S. Toyoda, S. Fujino, and K. Morinaga, “Density, viscosity and surface tension of 50RO–50P2O5 (R: Mg, Ca, Sr, Ba, and Zn) glass melts,” J. Non-Cryst. Solids321(3), 169–174 (2003).
[CrossRef]

Hayes, J. R.

Hwang, C.

C. Hwang, B. K. Ryu, and S. Fujino, “Surface tension of bismuth borosilicate melts,” Thermochim. Acta531, 70–74 (2012).
[CrossRef]

S. Fujino, C. Hwang, and K. Morinaga, “Surface tension of PbO-B2O3 and Bi2O3-B2O3 glass melts,” J. Mater. Sci.40(9-10), 2207–2212 (2005).
[CrossRef]

S. Fujino, C. Hwang, and K. Morinaga, “Density, surface tension and viscosity of PbO/B2O3-SiO2 glass melts,” J. Am. Ceram. Soc.87(1), 10–16 (2004).
[CrossRef]

Kalnins, C. A. G.

Kingery, W. D.

W. D. Kingery, “Surface tension of some liquid oxides and their temperature coefficients,” J. Am. Ceram. Soc.42(1), 6–10 (1959).
[CrossRef]

Leon-Saval, S. G.

Lillie, H. R.

H. R. Lillie, “Viscosity of glass between the strain point and melting temperature,” J. Am. Ceram. Soc.14(7), 502–512 (1931).
[CrossRef]

McLachlan, A. D.

Meyer, F. P.

Monro, T. M.

Morinaga, K.

S. Fujino, C. Hwang, and K. Morinaga, “Surface tension of PbO-B2O3 and Bi2O3-B2O3 glass melts,” J. Mater. Sci.40(9-10), 2207–2212 (2005).
[CrossRef]

S. Fujino, C. Hwang, and K. Morinaga, “Density, surface tension and viscosity of PbO/B2O3-SiO2 glass melts,” J. Am. Ceram. Soc.87(1), 10–16 (2004).
[CrossRef]

S. Toyoda, S. Fujino, and K. Morinaga, “Density, viscosity and surface tension of 50RO–50P2O5 (R: Mg, Ca, Sr, Ba, and Zn) glass melts,” J. Non-Cryst. Solids321(3), 169–174 (2003).
[CrossRef]

Parikh, N. M.

N. M. Parikh, “Effect of atmosphere on surface tension of glass,” J. Am. Ceram. Soc.41(1), 18–22 (1958).
[CrossRef]

Parmelee, C. W.

A. E. Badger, C. W. Parmelee, and A. E. Williams, “Surface tension of various molten glasses,” J. Am. Ceram. Soc.20(1-12), 325–329 (1937).
[CrossRef]

Richet, P.

G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Acta46(6), 1061–1072 (1982).
[CrossRef]

Ryu, B. K.

C. Hwang, B. K. Ryu, and S. Fujino, “Surface tension of bismuth borosilicate melts,” Thermochim. Acta531, 70–74 (2012).
[CrossRef]

Schick, H. L.

H. L. Schick, “A thermodynamic analysis of the high-temperature vaporization properties of silica,” Chem. Rev.60(4), 331–362 (1960).
[CrossRef]

Shartsis, L.

L. Shartsis, S. Spinner, and A. W. Smock, “Surface tension of compositions in the systems PbO-B2O3 and PbO-SiO2,” J. Am. Ceram. Soc.31(1), 23–27 (1948).
[CrossRef]

L. Shartsis and A. W. Smock, “Surface tension of some optical glasses,” J. Am. Ceram. Soc.30(4), 130–136 (1947).
[CrossRef]

Smock, A. W.

L. Shartsis, S. Spinner, and A. W. Smock, “Surface tension of compositions in the systems PbO-B2O3 and PbO-SiO2,” J. Am. Ceram. Soc.31(1), 23–27 (1948).
[CrossRef]

L. Shartsis and A. W. Smock, “Surface tension of some optical glasses,” J. Am. Ceram. Soc.30(4), 130–136 (1947).
[CrossRef]

Spinner, S.

L. Shartsis, S. Spinner, and A. W. Smock, “Surface tension of compositions in the systems PbO-B2O3 and PbO-SiO2,” J. Am. Ceram. Soc.31(1), 23–27 (1948).
[CrossRef]

Spooner, N. A.

Suzuki, M.

M. Yamashita, M. Suzuki, and H. Yamanaka, “Surface tension measurement of glass melts by maximum bubble pressure method,” Glastech. Ber.73, 337–343 (2000).

Toyoda, S.

S. Toyoda, S. Fujino, and K. Morinaga, “Density, viscosity and surface tension of 50RO–50P2O5 (R: Mg, Ca, Sr, Ba, and Zn) glass melts,” J. Non-Cryst. Solids321(3), 169–174 (2003).
[CrossRef]

Urbain, G.

G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Acta46(6), 1061–1072 (1982).
[CrossRef]

Voyce, C. J.

Wadsworth, W.

Williams, A. E.

A. E. Badger, C. W. Parmelee, and A. E. Williams, “Surface tension of various molten glasses,” J. Am. Ceram. Soc.20(1-12), 325–329 (1937).
[CrossRef]

Witkowska, A.

Yamanaka, H.

M. Yamashita, M. Suzuki, and H. Yamanaka, “Surface tension measurement of glass melts by maximum bubble pressure method,” Glastech. Ber.73, 337–343 (2000).

Yamashita, M.

M. Yamashita, M. Suzuki, and H. Yamanaka, “Surface tension measurement of glass melts by maximum bubble pressure method,” Glastech. Ber.73, 337–343 (2000).

Appl. Opt.

Chem. Rev.

H. L. Schick, “A thermodynamic analysis of the high-temperature vaporization properties of silica,” Chem. Rev.60(4), 331–362 (1960).
[CrossRef]

Geochim. Cosmochim. Acta

G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Acta46(6), 1061–1072 (1982).
[CrossRef]

Glass. Technol.

S. Akhtar and M. Cable, “Some effects of atmosphere and minor constituents on the surface tension of glass melts,” Glass. Technol.9, 145–151 (1968).

Glastech. Ber.

M. Yamashita, M. Suzuki, and H. Yamanaka, “Surface tension measurement of glass melts by maximum bubble pressure method,” Glastech. Ber.73, 337–343 (2000).

J. Am. Ceram. Soc.

A. E. Badger, C. W. Parmelee, and A. E. Williams, “Surface tension of various molten glasses,” J. Am. Ceram. Soc.20(1-12), 325–329 (1937).
[CrossRef]

C. A. Bradley, “Measurement of surface tension of viscous liquids,” J. Am. Ceram. Soc.21(10), 339–344 (1938).
[CrossRef]

S. Fujino, C. Hwang, and K. Morinaga, “Density, surface tension and viscosity of PbO/B2O3-SiO2 glass melts,” J. Am. Ceram. Soc.87(1), 10–16 (2004).
[CrossRef]

N. M. Parikh, “Effect of atmosphere on surface tension of glass,” J. Am. Ceram. Soc.41(1), 18–22 (1958).
[CrossRef]

L. Shartsis, S. Spinner, and A. W. Smock, “Surface tension of compositions in the systems PbO-B2O3 and PbO-SiO2,” J. Am. Ceram. Soc.31(1), 23–27 (1948).
[CrossRef]

H. R. Lillie, “Viscosity of glass between the strain point and melting temperature,” J. Am. Ceram. Soc.14(7), 502–512 (1931).
[CrossRef]

N. P. Bansal and R. H. Doremus, “Surface tension of ZrF4-BaF2-LaF3 glass,” J. Am. Ceram. Soc.67(10), C-197 (1984).
[CrossRef]

W. D. Kingery, “Surface tension of some liquid oxides and their temperature coefficients,” J. Am. Ceram. Soc.42(1), 6–10 (1959).
[CrossRef]

L. Shartsis and A. W. Smock, “Surface tension of some optical glasses,” J. Am. Ceram. Soc.30(4), 130–136 (1947).
[CrossRef]

J. Lightwave Technol.

J. Mater. Sci.

S. Fujino, C. Hwang, and K. Morinaga, “Surface tension of PbO-B2O3 and Bi2O3-B2O3 glass melts,” J. Mater. Sci.40(9-10), 2207–2212 (2005).
[CrossRef]

J. Non-Cryst. Solids

S. Toyoda, S. Fujino, and K. Morinaga, “Density, viscosity and surface tension of 50RO–50P2O5 (R: Mg, Ca, Sr, Ba, and Zn) glass melts,” J. Non-Cryst. Solids321(3), 169–174 (2003).
[CrossRef]

Opt. Express

Opt. Mater. Express

Thermochim. Acta

C. Hwang, B. K. Ryu, and S. Fujino, “Surface tension of bismuth borosilicate melts,” Thermochim. Acta531, 70–74 (2012).
[CrossRef]

Other

L. D. Pye, A. Montenero, and I. Joseph, Properties of Glass-Forming Melts (CRC Press, 2005), Chap. 5.

N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Academic Press, 1986), Chap. 5.

J. Stoetzel, “Fabrication of optical glass fibres by extrusion,” internship report (Otto Schott Institute at the University of Jena (Germany) and Institute for Photonics & Advanced Sensing at the University of Adelaide, 2011).

E. L. Bourhis, Glass (Wiley-VCH, 2008), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) An optical fiber of density ρ and length L below the length of heated fiber LH (approximated to CO2 laser beam diameter 2w), is subject to a force Fs upwards due to the surface tension, and a force Fw downwards due to the weight of the fiber below the heated zone. (b) If Fs is greater than Fw the fiber will rise upwards a length ΔL after Δt seconds, forming a spherical bulb as the heated fiber moves towards a shape that minimizes the surface tension (c) If Fs is less than Fw the fiber will taper, elongating it’s length by ΔL after Δt seconds.

Fig. 2
Fig. 2

10.6 µm CO2 laser beam is expanded and then focused to a 100 µm spot of diameter 2w, by a 90 cm gold plated spherical mirror. When the weight of the fiber below the heated volume is less than the surface tension, the fiber will pull up and form a ball due to surface tension. The mirror is scanned up from the bottom end of the fiber until the surface tension is less than the weight of the fiber below the hot zone, and the remaining ball is tapered off and weighed. The temperature is monitored with an optical pyrometer. The incident and reflected beams on the spherical mirror subtend a small angle in the horizontal plane perpendicular to the page.

Fig. 3
Fig. 3

Comparison between our measured surface tensions and values recorded in literature for similar glass compositions, with the exception of F2 and SF57 which were measured for exactly the same compositions, as in Table 2.

Fig. 4
Fig. 4

Our measured viscosity compared to that measured by Urbain et al [24]. At a laser power of around 2.5 watts for a beam diameter of 100 µm, fused silica reaches its boiling point (3000 K), and material is evaporated off. Horizontal error bars represent the uncertainty in 1000/Temperature.

Tables (2)

Tables Icon

Table 1 Glass compositions used in this article

Tables Icon

Table 2 Surface tension measurements

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

γ(N. m 1 )= mg πr
η(Pa.s)= F L I 3A d L I dt
η(Pa.s)= 2ωΔt(gLrρ2γ) 3rΔL

Metrics