Abstract

Organic holographic materials such as photorefractive polymers are one of the promising candidates for the next generation three dimensional (3D) real-time display. Recently, we found that polymer composite of monolithic organic compound of 3-[(4-nitrophenyl)azo]-9H-carbazole-9-ethanol (NACzE) (30 wt%) doped transparent polymethylmethacrylate (PMMA) had capability of recording and displaying new images within a few seconds and fixed at ten seconds and viewing for a longer time without applying electric field. Here, we present 3D holographic display using monolithic organic compound NACzE dispersed transparent PMMA film sandwiched between two glass plates with size of 7.5 × 5 cm2. The thickness of film is ca. 50 μm. Images are easily and completely erased by over recording and it is accelerated by slight heating.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature161(4098), 777–778 (1948).
    [CrossRef] [PubMed]
  2. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt.33(2), 179–181 (1994).
    [CrossRef] [PubMed]
  3. U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).
  4. T. Poon, Digital Holography and Three-Dimensional Display: Principles and Applications (Springer, 2006).
  5. S. Fukushima, T. Kurokawa, and M. Ohno, “Real-time hologram construction and reconstruction using a high-resolution spatial light modulator,” Appl. Phys. Lett.58(8), 787–789 (1991).
    [CrossRef]
  6. Y.-Z. Liu, J.-W. Dong, Y.-Y. Pu, B.-C. Chen, H.-X. He, and H.-Z. Wang, “High-speed full analytical holographic computations for true-life scenes,” Opt. Express18(4), 3345–3351 (2010).
    [CrossRef] [PubMed]
  7. M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express18(9), 8806–8815 (2010).
    [CrossRef] [PubMed]
  8. X. Sang, F. C. Fan, C. C. Jiang, S. Choi, W. Dou, C. Yu, and D. Xu, “Demonstration of a large-size real-time full-color three-dimensional display,” Opt. Lett.34(24), 3803–3805 (2009).
    [CrossRef] [PubMed]
  9. S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett.66(14), 1846–1849 (1991).
    [CrossRef] [PubMed]
  10. O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev.104(7), 3267–3314 (2004).
    [CrossRef] [PubMed]
  11. K. Meerholz, B. L. Volodin, B. Sandalphon, B. Kippelen, and N. Peyghambarian, “Photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature371(6497), 497–500 (1994).
    [CrossRef]
  12. B. Kippelen, Z. Meerholz, and N. Peyghambarian, in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa and S. Miyata, eds. (CRC, 1996), Chap. 8.
  13. S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
    [CrossRef] [PubMed]
  14. P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
    [CrossRef] [PubMed]
  15. N. Peyghambarian, P.-A. Blanche, A. Bablumyan, and M. Yamamoto, “Large area photorefractive polymers for updatable holographic 3D display,” in Polymer Photonics, and Novel Optical Technologies, Y. Kawabe and M. Kawase, eds. (Photonics World Consorsium Publishing, 2011).
  16. N. Tsutsumi, K. Kinashi, and W. Sakai, “Strategy for high performance photorefractive polymer composites,” in Polymer Photonics, and Novel Optical Technologies, Y. Kawabe, and M. Kawase, eds. (Photonics World Consorsium Publishing, 2011).
  17. P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, “A photorefractive organically modified silica glass with high optical gain,” Nature408(6808), 64–67 (2000).
    [CrossRef] [PubMed]
  18. J.-W. Lee, J. Mun, C. S. Yoon, K.-S. Lee, and J.-K. Park, “Novel polymer composites with high optical gain based on pseudo-photorefraction,” Adv. Mater. (Deerfield Beach Fla.)14(2), 144–147 (2002).
    [CrossRef]
  19. N. Tsutsumi and Y. Shimizu, “Asymmetric two-beam coupling with high optical gain and high beam diffraction in external-electric-field-free polymer composites,” Jpn. J. Appl. Phys.43(6A), 3466–3472 (2004).
    [CrossRef]
  20. J. Nishide, A. Tanaka, Y. Hirama, and H. Sasabe, “Non-electric field photorefractive effect using polymer composites,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)491(1), 217–222 (2008).
    [CrossRef]
  21. L. Zhang, J. Shi, Z. Yang, M. Huang, Z. Chen, Q. Gong, and S. Cao, “Photorefractive properties of polyphosphazenes containing carbazole-based mulitifunctional chromphores,” Polymer (Guildf.)49(8), 2107–2114 (2008).
    [CrossRef]
  22. A. Tanaka, J. Nishide, and H. Sasabe, “Asymmetric energy transfer in photorefractive polymer composites under non-electric field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)504(1), 44–51 (2009).
    [CrossRef]
  23. J. Nishde, H. Kimura-Suda, T. Imai, H. Sasabe, and Y. Kawabe, “Non-electric field driving organic photorefractive devices,” in Polymer Photonics, and Novel Optical Technologies, Y. Kawabe and M. Kawase, eds. (Photonics World Consorsium Publishing, 2011).
  24. F. Gallego-Gómez, F. del Monte, and K. Meerholz, “Optical gain by a simple photoisomerization process,” Nat. Mater.7(6), 490–497 (2008).
    [CrossRef] [PubMed]

2010

Y.-Z. Liu, J.-W. Dong, Y.-Y. Pu, B.-C. Chen, H.-X. He, and H.-Z. Wang, “High-speed full analytical holographic computations for true-life scenes,” Opt. Express18(4), 3345–3351 (2010).
[CrossRef] [PubMed]

M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express18(9), 8806–8815 (2010).
[CrossRef] [PubMed]

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

2009

X. Sang, F. C. Fan, C. C. Jiang, S. Choi, W. Dou, C. Yu, and D. Xu, “Demonstration of a large-size real-time full-color three-dimensional display,” Opt. Lett.34(24), 3803–3805 (2009).
[CrossRef] [PubMed]

A. Tanaka, J. Nishide, and H. Sasabe, “Asymmetric energy transfer in photorefractive polymer composites under non-electric field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)504(1), 44–51 (2009).
[CrossRef]

2008

F. Gallego-Gómez, F. del Monte, and K. Meerholz, “Optical gain by a simple photoisomerization process,” Nat. Mater.7(6), 490–497 (2008).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

J. Nishide, A. Tanaka, Y. Hirama, and H. Sasabe, “Non-electric field photorefractive effect using polymer composites,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)491(1), 217–222 (2008).
[CrossRef]

L. Zhang, J. Shi, Z. Yang, M. Huang, Z. Chen, Q. Gong, and S. Cao, “Photorefractive properties of polyphosphazenes containing carbazole-based mulitifunctional chromphores,” Polymer (Guildf.)49(8), 2107–2114 (2008).
[CrossRef]

2004

N. Tsutsumi and Y. Shimizu, “Asymmetric two-beam coupling with high optical gain and high beam diffraction in external-electric-field-free polymer composites,” Jpn. J. Appl. Phys.43(6A), 3466–3472 (2004).
[CrossRef]

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev.104(7), 3267–3314 (2004).
[CrossRef] [PubMed]

2002

J.-W. Lee, J. Mun, C. S. Yoon, K.-S. Lee, and J.-K. Park, “Novel polymer composites with high optical gain based on pseudo-photorefraction,” Adv. Mater. (Deerfield Beach Fla.)14(2), 144–147 (2002).
[CrossRef]

2000

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, “A photorefractive organically modified silica glass with high optical gain,” Nature408(6808), 64–67 (2000).
[CrossRef] [PubMed]

1994

K. Meerholz, B. L. Volodin, B. Sandalphon, B. Kippelen, and N. Peyghambarian, “Photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature371(6497), 497–500 (1994).
[CrossRef]

U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt.33(2), 179–181 (1994).
[CrossRef] [PubMed]

1991

S. Fukushima, T. Kurokawa, and M. Ohno, “Real-time hologram construction and reconstruction using a high-resolution spatial light modulator,” Appl. Phys. Lett.58(8), 787–789 (1991).
[CrossRef]

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett.66(14), 1846–1849 (1991).
[CrossRef] [PubMed]

1948

D. Gabor, “A new microscopic principle,” Nature161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Bablumian, A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Blanche, P.-A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Cao, S.

L. Zhang, J. Shi, Z. Yang, M. Huang, Z. Chen, Q. Gong, and S. Cao, “Photorefractive properties of polyphosphazenes containing carbazole-based mulitifunctional chromphores,” Polymer (Guildf.)49(8), 2107–2114 (2008).
[CrossRef]

Carlsson, D. J.

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, “A photorefractive organically modified silica glass with high optical gain,” Nature408(6808), 64–67 (2000).
[CrossRef] [PubMed]

Cheben, P.

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, “A photorefractive organically modified silica glass with high optical gain,” Nature408(6808), 64–67 (2000).
[CrossRef] [PubMed]

Chen, B.-C.

Chen, Z.

L. Zhang, J. Shi, Z. Yang, M. Huang, Z. Chen, Q. Gong, and S. Cao, “Photorefractive properties of polyphosphazenes containing carbazole-based mulitifunctional chromphores,” Polymer (Guildf.)49(8), 2107–2114 (2008).
[CrossRef]

Choi, S.

Christenson, C.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

del Monte, F.

F. Gallego-Gómez, F. del Monte, and K. Meerholz, “Optical gain by a simple photoisomerization process,” Nat. Mater.7(6), 490–497 (2008).
[CrossRef] [PubMed]

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, “A photorefractive organically modified silica glass with high optical gain,” Nature408(6808), 64–67 (2000).
[CrossRef] [PubMed]

Dong, J.-W.

Dou, W.

Ducharme, S.

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett.66(14), 1846–1849 (1991).
[CrossRef] [PubMed]

Fan, F. C.

Ferraro, P.

Finizio, A.

Flores, D.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Fukushima, S.

S. Fukushima, T. Kurokawa, and M. Ohno, “Real-time hologram construction and reconstruction using a high-resolution spatial light modulator,” Appl. Phys. Lett.58(8), 787–789 (1991).
[CrossRef]

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Gallego-Gómez, F.

F. Gallego-Gómez, F. del Monte, and K. Meerholz, “Optical gain by a simple photoisomerization process,” Nat. Mater.7(6), 490–497 (2008).
[CrossRef] [PubMed]

Gong, Q.

L. Zhang, J. Shi, Z. Yang, M. Huang, Z. Chen, Q. Gong, and S. Cao, “Photorefractive properties of polyphosphazenes containing carbazole-based mulitifunctional chromphores,” Polymer (Guildf.)49(8), 2107–2114 (2008).
[CrossRef]

Grover, C. P.

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, “A photorefractive organically modified silica glass with high optical gain,” Nature408(6808), 64–67 (2000).
[CrossRef] [PubMed]

Gu, T.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

He, H.-X.

Hirama, Y.

J. Nishide, A. Tanaka, Y. Hirama, and H. Sasabe, “Non-electric field photorefractive effect using polymer composites,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)491(1), 217–222 (2008).
[CrossRef]

Hsieh, W.-Y.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Huang, M.

L. Zhang, J. Shi, Z. Yang, M. Huang, Z. Chen, Q. Gong, and S. Cao, “Photorefractive properties of polyphosphazenes containing carbazole-based mulitifunctional chromphores,” Polymer (Guildf.)49(8), 2107–2114 (2008).
[CrossRef]

Jiang, C. C.

Jüptner, W.

Kathaperumal, M.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Kippelen, B.

K. Meerholz, B. L. Volodin, B. Sandalphon, B. Kippelen, and N. Peyghambarian, “Photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature371(6497), 497–500 (1994).
[CrossRef]

Kurokawa, T.

S. Fukushima, T. Kurokawa, and M. Ohno, “Real-time hologram construction and reconstruction using a high-resolution spatial light modulator,” Appl. Phys. Lett.58(8), 787–789 (1991).
[CrossRef]

Lee, J.-W.

J.-W. Lee, J. Mun, C. S. Yoon, K.-S. Lee, and J.-K. Park, “Novel polymer composites with high optical gain based on pseudo-photorefraction,” Adv. Mater. (Deerfield Beach Fla.)14(2), 144–147 (2002).
[CrossRef]

Lee, K.-S.

J.-W. Lee, J. Mun, C. S. Yoon, K.-S. Lee, and J.-K. Park, “Novel polymer composites with high optical gain based on pseudo-photorefraction,” Adv. Mater. (Deerfield Beach Fla.)14(2), 144–147 (2002).
[CrossRef]

Li, G.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Lin, W.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Liu, Y.-Z.

Mackenzie, J. D.

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, “A photorefractive organically modified silica glass with high optical gain,” Nature408(6808), 64–67 (2000).
[CrossRef] [PubMed]

Meerholz, K.

F. Gallego-Gómez, F. del Monte, and K. Meerholz, “Optical gain by a simple photoisomerization process,” Nat. Mater.7(6), 490–497 (2008).
[CrossRef] [PubMed]

K. Meerholz, B. L. Volodin, B. Sandalphon, B. Kippelen, and N. Peyghambarian, “Photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature371(6497), 497–500 (1994).
[CrossRef]

Memmolo, P.

Moerner, W. E.

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev.104(7), 3267–3314 (2004).
[CrossRef] [PubMed]

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett.66(14), 1846–1849 (1991).
[CrossRef] [PubMed]

Mun, J.

J.-W. Lee, J. Mun, C. S. Yoon, K.-S. Lee, and J.-K. Park, “Novel polymer composites with high optical gain based on pseudo-photorefraction,” Adv. Mater. (Deerfield Beach Fla.)14(2), 144–147 (2002).
[CrossRef]

Näsänen, R.

Naughton, T. J.

Nishide, J.

A. Tanaka, J. Nishide, and H. Sasabe, “Asymmetric energy transfer in photorefractive polymer composites under non-electric field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)504(1), 44–51 (2009).
[CrossRef]

J. Nishide, A. Tanaka, Y. Hirama, and H. Sasabe, “Non-electric field photorefractive effect using polymer composites,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)491(1), 217–222 (2008).
[CrossRef]

Norwood, R. A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Ohno, M.

S. Fukushima, T. Kurokawa, and M. Ohno, “Real-time hologram construction and reconstruction using a high-resolution spatial light modulator,” Appl. Phys. Lett.58(8), 787–789 (1991).
[CrossRef]

Ostroverkhova, O.

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev.104(7), 3267–3314 (2004).
[CrossRef] [PubMed]

Park, J.-K.

J.-W. Lee, J. Mun, C. S. Yoon, K.-S. Lee, and J.-K. Park, “Novel polymer composites with high optical gain based on pseudo-photorefraction,” Adv. Mater. (Deerfield Beach Fla.)14(2), 144–147 (2002).
[CrossRef]

Paturzo, M.

Peyghambarian, N.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

K. Meerholz, B. L. Volodin, B. Sandalphon, B. Kippelen, and N. Peyghambarian, “Photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature371(6497), 497–500 (1994).
[CrossRef]

Pu, Y.-Y.

Rachwal, B.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Rokutanda, S.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Sandalphon, B.

K. Meerholz, B. L. Volodin, B. Sandalphon, B. Kippelen, and N. Peyghambarian, “Photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature371(6497), 497–500 (1994).
[CrossRef]

Sang, X.

Sasabe, H.

A. Tanaka, J. Nishide, and H. Sasabe, “Asymmetric energy transfer in photorefractive polymer composites under non-electric field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)504(1), 44–51 (2009).
[CrossRef]

J. Nishide, A. Tanaka, Y. Hirama, and H. Sasabe, “Non-electric field photorefractive effect using polymer composites,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)491(1), 217–222 (2008).
[CrossRef]

Schnars, U.

Scott, J. C.

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett.66(14), 1846–1849 (1991).
[CrossRef] [PubMed]

Shi, J.

L. Zhang, J. Shi, Z. Yang, M. Huang, Z. Chen, Q. Gong, and S. Cao, “Photorefractive properties of polyphosphazenes containing carbazole-based mulitifunctional chromphores,” Polymer (Guildf.)49(8), 2107–2114 (2008).
[CrossRef]

Shimizu, Y.

N. Tsutsumi and Y. Shimizu, “Asymmetric two-beam coupling with high optical gain and high beam diffraction in external-electric-field-free polymer composites,” Jpn. J. Appl. Phys.43(6A), 3466–3472 (2004).
[CrossRef]

Siddiqui, O.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

St Hilaire, P.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Tanaka, A.

A. Tanaka, J. Nishide, and H. Sasabe, “Asymmetric energy transfer in photorefractive polymer composites under non-electric field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)504(1), 44–51 (2009).
[CrossRef]

J. Nishide, A. Tanaka, Y. Hirama, and H. Sasabe, “Non-electric field photorefractive effect using polymer composites,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)491(1), 217–222 (2008).
[CrossRef]

Tay, S.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Thomas, J.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Tsutsumi, N.

N. Tsutsumi and Y. Shimizu, “Asymmetric two-beam coupling with high optical gain and high beam diffraction in external-electric-field-free polymer composites,” Jpn. J. Appl. Phys.43(6A), 3466–3472 (2004).
[CrossRef]

Tunç, A. V.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Twieg, R. J.

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett.66(14), 1846–1849 (1991).
[CrossRef] [PubMed]

Volodin, B. L.

K. Meerholz, B. L. Volodin, B. Sandalphon, B. Kippelen, and N. Peyghambarian, “Photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature371(6497), 497–500 (1994).
[CrossRef]

Voorakaranam, R.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Wang, H.-Z.

Wang, P.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Worsfold, D. J.

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, “A photorefractive organically modified silica glass with high optical gain,” Nature408(6808), 64–67 (2000).
[CrossRef] [PubMed]

Xu, D.

Yamamoto, M.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Yang, Z.

L. Zhang, J. Shi, Z. Yang, M. Huang, Z. Chen, Q. Gong, and S. Cao, “Photorefractive properties of polyphosphazenes containing carbazole-based mulitifunctional chromphores,” Polymer (Guildf.)49(8), 2107–2114 (2008).
[CrossRef]

Yoon, C. S.

J.-W. Lee, J. Mun, C. S. Yoon, K.-S. Lee, and J.-K. Park, “Novel polymer composites with high optical gain based on pseudo-photorefraction,” Adv. Mater. (Deerfield Beach Fla.)14(2), 144–147 (2002).
[CrossRef]

Yu, C.

Zhang, L.

L. Zhang, J. Shi, Z. Yang, M. Huang, Z. Chen, Q. Gong, and S. Cao, “Photorefractive properties of polyphosphazenes containing carbazole-based mulitifunctional chromphores,” Polymer (Guildf.)49(8), 2107–2114 (2008).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

J.-W. Lee, J. Mun, C. S. Yoon, K.-S. Lee, and J.-K. Park, “Novel polymer composites with high optical gain based on pseudo-photorefraction,” Adv. Mater. (Deerfield Beach Fla.)14(2), 144–147 (2002).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

S. Fukushima, T. Kurokawa, and M. Ohno, “Real-time hologram construction and reconstruction using a high-resolution spatial light modulator,” Appl. Phys. Lett.58(8), 787–789 (1991).
[CrossRef]

Chem. Rev.

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev.104(7), 3267–3314 (2004).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys.

N. Tsutsumi and Y. Shimizu, “Asymmetric two-beam coupling with high optical gain and high beam diffraction in external-electric-field-free polymer composites,” Jpn. J. Appl. Phys.43(6A), 3466–3472 (2004).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.)

J. Nishide, A. Tanaka, Y. Hirama, and H. Sasabe, “Non-electric field photorefractive effect using polymer composites,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)491(1), 217–222 (2008).
[CrossRef]

A. Tanaka, J. Nishide, and H. Sasabe, “Asymmetric energy transfer in photorefractive polymer composites under non-electric field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)504(1), 44–51 (2009).
[CrossRef]

Nat. Mater.

F. Gallego-Gómez, F. del Monte, and K. Meerholz, “Optical gain by a simple photoisomerization process,” Nat. Mater.7(6), 490–497 (2008).
[CrossRef] [PubMed]

Nature

D. Gabor, “A new microscopic principle,” Nature161(4098), 777–778 (1948).
[CrossRef] [PubMed]

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, “A photorefractive organically modified silica glass with high optical gain,” Nature408(6808), 64–67 (2000).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

K. Meerholz, B. L. Volodin, B. Sandalphon, B. Kippelen, and N. Peyghambarian, “Photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature371(6497), 497–500 (1994).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett.66(14), 1846–1849 (1991).
[CrossRef] [PubMed]

Polymer (Guildf.)

L. Zhang, J. Shi, Z. Yang, M. Huang, Z. Chen, Q. Gong, and S. Cao, “Photorefractive properties of polyphosphazenes containing carbazole-based mulitifunctional chromphores,” Polymer (Guildf.)49(8), 2107–2114 (2008).
[CrossRef]

Other

N. Peyghambarian, P.-A. Blanche, A. Bablumyan, and M. Yamamoto, “Large area photorefractive polymers for updatable holographic 3D display,” in Polymer Photonics, and Novel Optical Technologies, Y. Kawabe and M. Kawase, eds. (Photonics World Consorsium Publishing, 2011).

N. Tsutsumi, K. Kinashi, and W. Sakai, “Strategy for high performance photorefractive polymer composites,” in Polymer Photonics, and Novel Optical Technologies, Y. Kawabe, and M. Kawase, eds. (Photonics World Consorsium Publishing, 2011).

B. Kippelen, Z. Meerholz, and N. Peyghambarian, in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa and S. Miyata, eds. (CRC, 1996), Chap. 8.

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).

T. Poon, Digital Holography and Three-Dimensional Display: Principles and Applications (Springer, 2006).

J. Nishde, H. Kimura-Suda, T. Imai, H. Sasabe, and Y. Kawabe, “Non-electric field driving organic photorefractive devices,” in Polymer Photonics, and Novel Optical Technologies, Y. Kawabe and M. Kawase, eds. (Photonics World Consorsium Publishing, 2011).

Supplementary Material (2)

» Media 1: MOV (5567 KB)     
» Media 2: MOV (8545 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical setup schematics to record the hologram of the object.

Fig. 2
Fig. 2

(a) Optical gain when the content of NACzE is varied. (b) Absorption spectra of NACzE/PMMA film and NACzE in DMF solution. (c) Photograph of a 7.5 × 5 cm2 monolithic compound dispersed polymer composite device next to the typical test sample.

Fig. 3
Fig. 3

Photographs of hologram image of object and object coin seen through a device. (a) Photograph just before the object and reference beams are illuminated. No hologram image. (b) Hologram image of object recorded at the time of 2 s after both beams are illuminated. (c) Hologram image at 5 s after illumination. (d) Hologram image became bright at 10 s after illumination. (e) Hologram image became brighter at 30 s after illumination. Hologram image could be preserved for a few hours without both beams (Media 1).

Fig. 4
Fig. 4

Photographs of updated hologram images reconstructed. (a) Before recording. (b) Photograph of hologram image of heads of coin after recording. (c) Photograph of updated hologram image of tails of coin after over-recording. (d) Photograph of further updated hologram image of heads of coin after over-recording again (Media 2).

Fig. 5
Fig. 5

Hologram image reconstructed. (a) Hologram image of cat in the sample device and object cat when recording under fluorescent room light. (b) The same hologram image reconstructed by red probe beam in the dark. (c) The same hologram image in the device held by K. K.. Image of K. K. (c) is used with permission.

Metrics