Abstract

In this work self-cleaning and transparent surfaces were produced on glass surface with simultaneous wide-angle and good optical transmittance on the visible region. These properties are pursued by combination of multi-scale surface topology based on silica nanoparticles (SNPs), index grading and interference coating, as well as polytetrafluoroethylene (PTFE) self-assembly, using two approaches. In the first, two-layer approach (glass/SNPs/PTFE), the resulting samples presented a water contact angle (WCA) of 169° ± 2° with very low hysteresis, as well as significant antireflection. The second, three-layer approach (glass/SNPs/silica aerogel/PTFE), produced surfaces with WCA of 158° ± 2° with also very low hysteresis (<5°), in addition to normal transmittance of 99% or higher, which decreased less than 2% at 20° incidence. These results show that proper structure-coated glass, with a combination of interference and graded-index effects, may provide simultaneous wide-angle antireflection and self-cleaning properties.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Abe, Y. Sanada, and T. Morimoto, “Anti-reflective coatings for CRTs by sol-gel process,” J. Sol-Gel Sci. Technol.26(1–3), 709–713 (2003).
    [CrossRef]
  2. S. Y. Lien, D. S. Wuu, W. C. Yeh, and J. C. Liu, “Tri-layer antireflection coatings (SiO2/SiO2-TiO2/TiO2) for silicon solar cells using a sol-gel technique,” Sol. Energy Mater. Sol. Cells90(16), 2710–2719 (2006).
    [CrossRef]
  3. H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci.4(10), 3779–3804 (2011).
    [CrossRef]
  4. W. Glaubitt and P. Löbmann, “Antireflective coatings prepared by sol-gel processing: Principles and applications,” J. Eur. Ceram. Soc.32(11), 2995–2999 (2012).
    [CrossRef]
  5. N. Ford and P. W. McMillan, “Integral antireflection films for glasses - A Review,” Glass Technol.26(2), 104–107 (1985).
  6. H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (MacMillan Publishing Company, 1986).
  7. R. R. Willey, “Predicting achievable design performance of broadband antireflection coatings,” Appl. Opt.32(28), 5447–5451 (1993).
    [CrossRef] [PubMed]
  8. U. Schulz, C. Präfke, C. Gödeker, N. Kaiser, and A. Tünnermann, “Plasma-etched organic layers for antireflection purposes,” Appl. Opt.50(9), C31–C35 (2011).
    [CrossRef] [PubMed]
  9. W. Groh and A. Zimmermann, “What is the lowest refractive-index of an organic polymer,” Macromolecules24(25), 6660–6663 (1991).
    [CrossRef]
  10. X. T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, and A. Fujishima, “Self-cleaning particle coating with antireflection properties,” Chem. Mater.17(3), 696–700 (2005).
    [CrossRef]
  11. T. Y. Wei, T. F. Chang, S. Y. Lu, and Y. C. Chang, “Preparation of monolithic silica aerogel of low thermal conductivity by ambient pressure drying,” J. Am. Ceram. Soc.90(7), 2003–2007 (2007).
    [CrossRef]
  12. S. S. Kistler, “Coherent expanded aerogels and jellies,” Nature127(3211), 741–744 (1931).
    [CrossRef]
  13. M. Faustini, L. Nicole, C. Boissière, P. Innocenzi, C. Sanchez, and D. Grosso, “Hydrophobic, antireflective, self-cleaning, and antifogging sol-gel coatings: An example of multifunctional nanostructured materials for photovoltaic cells,” Chem. Mater.22(15), 4406–4413 (2010).
    [CrossRef]
  14. X. C. Zhou, L. P. Zhong, and Y. P. Xu, “Surface modification of silica aerogels with trimethylchlorosilane in the ambient pressure drying,” Inorg. Mater.44(9), 976–979 (2008).
    [CrossRef]
  15. A. A. P. Mansur, O. L. Nascimento, W. L. Vasconcelos, and H. S. Mansur, “Chemical functionalization of ceramic tile surfaces by silane coupling agents: Polymer modified mortar adhesion mechanism implications,” Mater. Res.11(3), 293–302 (2008).
    [CrossRef]
  16. S. S. Prakash, C. J. Brinker, A. J. Hurd, and S. M. Rao, “Silica aerogel films prepared at ambient-pressure by using surface derivatization to induce reversible drying shrinkage,” Nature374(6521), 439–443 (1995).
    [CrossRef]
  17. A. Marmur, “Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be?” Langmuir19(20), 8343–8348 (2003).
    [CrossRef]
  18. J. L. Plawsky, M. Ojha, A. Chatterjee, and P. C. Wayner., “Review of the effects of surface topography, surface chemistry, and fluid physics on evaporation at the contact line,” Chem. Eng. Commun.196(5), 658–696 (2008).
    [CrossRef]
  19. X. Liu, Z. Jiang, J. Li, Z. Zhang, and L. Ren, “Super-hydrophobic property of nano-sized cupric oxide films,” Surf. Coat. Tech.204(20), 3200–3204 (2010).
    [CrossRef]
  20. M. Manca, A. Cannavale, L. De Marco, A. S. Aricò, R. Cingolani, and G. Gigli, “Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing,” Langmuir25(11), 6357–6362 (2009).
    [CrossRef] [PubMed]
  21. J. Bravo, L. Zhai, Z. Wu, R. E. Cohen, and M. F. Rubner, “Transparent superhydrophobic films based on silica nanoparticles,” Langmuir23(13), 7293–7298 (2007).
    [CrossRef] [PubMed]
  22. D. E. Weibel, A. F. Michels, A. F. Feil, L. Amaral, S. R. Teixeira, and F. Horowitz, “Adjustable hydrophobicity of Al substrates by chemical surface functionalization of nano/microstructures,” J. Phys. Chem. C114(31), 13219–13225 (2010).
    [CrossRef]
  23. M. J. Minot, “Angular reflectance of single-layer gradient refractive-index films,” J. Opt. Soc. Am.67(8), 1046–1050 (1977).
    [CrossRef]
  24. A. M. Munshi, V. N. Singh, M. Kumar, and J. P. Singh, “Effect of nanoparticle size on sessile droplet contact angle,” J. Appl. Phys.103(8), 084315 (2008).
    [CrossRef]
  25. Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir26(12), 9842–9847 (2010).
    [CrossRef] [PubMed]
  26. K. C. Camargo, A. F. Michels, F. S. Rodembusch, and F. Horowitz, “Multi-scale structured, superhydrophobic and wide-angle, antireflective coating in the near-infrared region,” Chem. Commun. (Camb.)48(41), 4992–4994 (2012).
    [CrossRef] [PubMed]
  27. H. K. Kim and F. G. Shi, “Refractive index of polycrystalline submicrometer polymer thin films: Thickness dependence,” J. Mater. Sci. Mater. Electron.12(7), 361–364 (2001).
    [CrossRef]

2012

W. Glaubitt and P. Löbmann, “Antireflective coatings prepared by sol-gel processing: Principles and applications,” J. Eur. Ceram. Soc.32(11), 2995–2999 (2012).
[CrossRef]

K. C. Camargo, A. F. Michels, F. S. Rodembusch, and F. Horowitz, “Multi-scale structured, superhydrophobic and wide-angle, antireflective coating in the near-infrared region,” Chem. Commun. (Camb.)48(41), 4992–4994 (2012).
[CrossRef] [PubMed]

2011

U. Schulz, C. Präfke, C. Gödeker, N. Kaiser, and A. Tünnermann, “Plasma-etched organic layers for antireflection purposes,” Appl. Opt.50(9), C31–C35 (2011).
[CrossRef] [PubMed]

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci.4(10), 3779–3804 (2011).
[CrossRef]

2010

D. E. Weibel, A. F. Michels, A. F. Feil, L. Amaral, S. R. Teixeira, and F. Horowitz, “Adjustable hydrophobicity of Al substrates by chemical surface functionalization of nano/microstructures,” J. Phys. Chem. C114(31), 13219–13225 (2010).
[CrossRef]

X. Liu, Z. Jiang, J. Li, Z. Zhang, and L. Ren, “Super-hydrophobic property of nano-sized cupric oxide films,” Surf. Coat. Tech.204(20), 3200–3204 (2010).
[CrossRef]

M. Faustini, L. Nicole, C. Boissière, P. Innocenzi, C. Sanchez, and D. Grosso, “Hydrophobic, antireflective, self-cleaning, and antifogging sol-gel coatings: An example of multifunctional nanostructured materials for photovoltaic cells,” Chem. Mater.22(15), 4406–4413 (2010).
[CrossRef]

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir26(12), 9842–9847 (2010).
[CrossRef] [PubMed]

2009

M. Manca, A. Cannavale, L. De Marco, A. S. Aricò, R. Cingolani, and G. Gigli, “Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing,” Langmuir25(11), 6357–6362 (2009).
[CrossRef] [PubMed]

2008

J. L. Plawsky, M. Ojha, A. Chatterjee, and P. C. Wayner., “Review of the effects of surface topography, surface chemistry, and fluid physics on evaporation at the contact line,” Chem. Eng. Commun.196(5), 658–696 (2008).
[CrossRef]

X. C. Zhou, L. P. Zhong, and Y. P. Xu, “Surface modification of silica aerogels with trimethylchlorosilane in the ambient pressure drying,” Inorg. Mater.44(9), 976–979 (2008).
[CrossRef]

A. A. P. Mansur, O. L. Nascimento, W. L. Vasconcelos, and H. S. Mansur, “Chemical functionalization of ceramic tile surfaces by silane coupling agents: Polymer modified mortar adhesion mechanism implications,” Mater. Res.11(3), 293–302 (2008).
[CrossRef]

A. M. Munshi, V. N. Singh, M. Kumar, and J. P. Singh, “Effect of nanoparticle size on sessile droplet contact angle,” J. Appl. Phys.103(8), 084315 (2008).
[CrossRef]

2007

T. Y. Wei, T. F. Chang, S. Y. Lu, and Y. C. Chang, “Preparation of monolithic silica aerogel of low thermal conductivity by ambient pressure drying,” J. Am. Ceram. Soc.90(7), 2003–2007 (2007).
[CrossRef]

J. Bravo, L. Zhai, Z. Wu, R. E. Cohen, and M. F. Rubner, “Transparent superhydrophobic films based on silica nanoparticles,” Langmuir23(13), 7293–7298 (2007).
[CrossRef] [PubMed]

2006

S. Y. Lien, D. S. Wuu, W. C. Yeh, and J. C. Liu, “Tri-layer antireflection coatings (SiO2/SiO2-TiO2/TiO2) for silicon solar cells using a sol-gel technique,” Sol. Energy Mater. Sol. Cells90(16), 2710–2719 (2006).
[CrossRef]

2005

X. T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, and A. Fujishima, “Self-cleaning particle coating with antireflection properties,” Chem. Mater.17(3), 696–700 (2005).
[CrossRef]

2003

K. Abe, Y. Sanada, and T. Morimoto, “Anti-reflective coatings for CRTs by sol-gel process,” J. Sol-Gel Sci. Technol.26(1–3), 709–713 (2003).
[CrossRef]

A. Marmur, “Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be?” Langmuir19(20), 8343–8348 (2003).
[CrossRef]

2001

H. K. Kim and F. G. Shi, “Refractive index of polycrystalline submicrometer polymer thin films: Thickness dependence,” J. Mater. Sci. Mater. Electron.12(7), 361–364 (2001).
[CrossRef]

1995

S. S. Prakash, C. J. Brinker, A. J. Hurd, and S. M. Rao, “Silica aerogel films prepared at ambient-pressure by using surface derivatization to induce reversible drying shrinkage,” Nature374(6521), 439–443 (1995).
[CrossRef]

1993

1991

W. Groh and A. Zimmermann, “What is the lowest refractive-index of an organic polymer,” Macromolecules24(25), 6660–6663 (1991).
[CrossRef]

1985

N. Ford and P. W. McMillan, “Integral antireflection films for glasses - A Review,” Glass Technol.26(2), 104–107 (1985).

1977

1931

S. S. Kistler, “Coherent expanded aerogels and jellies,” Nature127(3211), 741–744 (1931).
[CrossRef]

Abe, K.

K. Abe, Y. Sanada, and T. Morimoto, “Anti-reflective coatings for CRTs by sol-gel process,” J. Sol-Gel Sci. Technol.26(1–3), 709–713 (2003).
[CrossRef]

Amaral, L.

D. E. Weibel, A. F. Michels, A. F. Feil, L. Amaral, S. R. Teixeira, and F. Horowitz, “Adjustable hydrophobicity of Al substrates by chemical surface functionalization of nano/microstructures,” J. Phys. Chem. C114(31), 13219–13225 (2010).
[CrossRef]

Aricò, A. S.

M. Manca, A. Cannavale, L. De Marco, A. S. Aricò, R. Cingolani, and G. Gigli, “Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing,” Langmuir25(11), 6357–6362 (2009).
[CrossRef] [PubMed]

Boissière, C.

M. Faustini, L. Nicole, C. Boissière, P. Innocenzi, C. Sanchez, and D. Grosso, “Hydrophobic, antireflective, self-cleaning, and antifogging sol-gel coatings: An example of multifunctional nanostructured materials for photovoltaic cells,” Chem. Mater.22(15), 4406–4413 (2010).
[CrossRef]

Bravo, J.

J. Bravo, L. Zhai, Z. Wu, R. E. Cohen, and M. F. Rubner, “Transparent superhydrophobic films based on silica nanoparticles,” Langmuir23(13), 7293–7298 (2007).
[CrossRef] [PubMed]

Brinker, C. J.

S. S. Prakash, C. J. Brinker, A. J. Hurd, and S. M. Rao, “Silica aerogel films prepared at ambient-pressure by using surface derivatization to induce reversible drying shrinkage,” Nature374(6521), 439–443 (1995).
[CrossRef]

Camargo, K. C.

K. C. Camargo, A. F. Michels, F. S. Rodembusch, and F. Horowitz, “Multi-scale structured, superhydrophobic and wide-angle, antireflective coating in the near-infrared region,” Chem. Commun. (Camb.)48(41), 4992–4994 (2012).
[CrossRef] [PubMed]

Cannavale, A.

M. Manca, A. Cannavale, L. De Marco, A. S. Aricò, R. Cingolani, and G. Gigli, “Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing,” Langmuir25(11), 6357–6362 (2009).
[CrossRef] [PubMed]

Chang, T. F.

T. Y. Wei, T. F. Chang, S. Y. Lu, and Y. C. Chang, “Preparation of monolithic silica aerogel of low thermal conductivity by ambient pressure drying,” J. Am. Ceram. Soc.90(7), 2003–2007 (2007).
[CrossRef]

Chang, Y. C.

T. Y. Wei, T. F. Chang, S. Y. Lu, and Y. C. Chang, “Preparation of monolithic silica aerogel of low thermal conductivity by ambient pressure drying,” J. Am. Ceram. Soc.90(7), 2003–2007 (2007).
[CrossRef]

Chatterjee, A.

J. L. Plawsky, M. Ojha, A. Chatterjee, and P. C. Wayner., “Review of the effects of surface topography, surface chemistry, and fluid physics on evaporation at the contact line,” Chem. Eng. Commun.196(5), 658–696 (2008).
[CrossRef]

Cingolani, R.

M. Manca, A. Cannavale, L. De Marco, A. S. Aricò, R. Cingolani, and G. Gigli, “Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing,” Langmuir25(11), 6357–6362 (2009).
[CrossRef] [PubMed]

Cohen, R. E.

J. Bravo, L. Zhai, Z. Wu, R. E. Cohen, and M. F. Rubner, “Transparent superhydrophobic films based on silica nanoparticles,” Langmuir23(13), 7293–7298 (2007).
[CrossRef] [PubMed]

De Marco, L.

M. Manca, A. Cannavale, L. De Marco, A. S. Aricò, R. Cingolani, and G. Gigli, “Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing,” Langmuir25(11), 6357–6362 (2009).
[CrossRef] [PubMed]

Dong, H.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir26(12), 9842–9847 (2010).
[CrossRef] [PubMed]

Einaga, Y.

X. T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, and A. Fujishima, “Self-cleaning particle coating with antireflection properties,” Chem. Mater.17(3), 696–700 (2005).
[CrossRef]

Faustini, M.

M. Faustini, L. Nicole, C. Boissière, P. Innocenzi, C. Sanchez, and D. Grosso, “Hydrophobic, antireflective, self-cleaning, and antifogging sol-gel coatings: An example of multifunctional nanostructured materials for photovoltaic cells,” Chem. Mater.22(15), 4406–4413 (2010).
[CrossRef]

Feil, A. F.

D. E. Weibel, A. F. Michels, A. F. Feil, L. Amaral, S. R. Teixeira, and F. Horowitz, “Adjustable hydrophobicity of Al substrates by chemical surface functionalization of nano/microstructures,” J. Phys. Chem. C114(31), 13219–13225 (2010).
[CrossRef]

Ford, N.

N. Ford and P. W. McMillan, “Integral antireflection films for glasses - A Review,” Glass Technol.26(2), 104–107 (1985).

Fujishima, A.

X. T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, and A. Fujishima, “Self-cleaning particle coating with antireflection properties,” Chem. Mater.17(3), 696–700 (2005).
[CrossRef]

Ganesh, V. A.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci.4(10), 3779–3804 (2011).
[CrossRef]

Gigli, G.

M. Manca, A. Cannavale, L. De Marco, A. S. Aricò, R. Cingolani, and G. Gigli, “Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing,” Langmuir25(11), 6357–6362 (2009).
[CrossRef] [PubMed]

Glaubitt, W.

W. Glaubitt and P. Löbmann, “Antireflective coatings prepared by sol-gel processing: Principles and applications,” J. Eur. Ceram. Soc.32(11), 2995–2999 (2012).
[CrossRef]

Gödeker, C.

Groh, W.

W. Groh and A. Zimmermann, “What is the lowest refractive-index of an organic polymer,” Macromolecules24(25), 6660–6663 (1991).
[CrossRef]

Grosso, D.

M. Faustini, L. Nicole, C. Boissière, P. Innocenzi, C. Sanchez, and D. Grosso, “Hydrophobic, antireflective, self-cleaning, and antifogging sol-gel coatings: An example of multifunctional nanostructured materials for photovoltaic cells,” Chem. Mater.22(15), 4406–4413 (2010).
[CrossRef]

Horowitz, F.

K. C. Camargo, A. F. Michels, F. S. Rodembusch, and F. Horowitz, “Multi-scale structured, superhydrophobic and wide-angle, antireflective coating in the near-infrared region,” Chem. Commun. (Camb.)48(41), 4992–4994 (2012).
[CrossRef] [PubMed]

D. E. Weibel, A. F. Michels, A. F. Feil, L. Amaral, S. R. Teixeira, and F. Horowitz, “Adjustable hydrophobicity of Al substrates by chemical surface functionalization of nano/microstructures,” J. Phys. Chem. C114(31), 13219–13225 (2010).
[CrossRef]

Hurd, A. J.

S. S. Prakash, C. J. Brinker, A. J. Hurd, and S. M. Rao, “Silica aerogel films prepared at ambient-pressure by using surface derivatization to induce reversible drying shrinkage,” Nature374(6521), 439–443 (1995).
[CrossRef]

Innocenzi, P.

M. Faustini, L. Nicole, C. Boissière, P. Innocenzi, C. Sanchez, and D. Grosso, “Hydrophobic, antireflective, self-cleaning, and antifogging sol-gel coatings: An example of multifunctional nanostructured materials for photovoltaic cells,” Chem. Mater.22(15), 4406–4413 (2010).
[CrossRef]

Jia, F.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir26(12), 9842–9847 (2010).
[CrossRef] [PubMed]

Jiang, Z.

X. Liu, Z. Jiang, J. Li, Z. Zhang, and L. Ren, “Super-hydrophobic property of nano-sized cupric oxide films,” Surf. Coat. Tech.204(20), 3200–3204 (2010).
[CrossRef]

Kaiser, N.

Kim, H. K.

H. K. Kim and F. G. Shi, “Refractive index of polycrystalline submicrometer polymer thin films: Thickness dependence,” J. Mater. Sci. Mater. Electron.12(7), 361–364 (2001).
[CrossRef]

Kistler, S. S.

S. S. Kistler, “Coherent expanded aerogels and jellies,” Nature127(3211), 741–744 (1931).
[CrossRef]

Kumar, M.

A. M. Munshi, V. N. Singh, M. Kumar, and J. P. Singh, “Effect of nanoparticle size on sessile droplet contact angle,” J. Appl. Phys.103(8), 084315 (2008).
[CrossRef]

Li, J.

X. Liu, Z. Jiang, J. Li, Z. Zhang, and L. Ren, “Super-hydrophobic property of nano-sized cupric oxide films,” Surf. Coat. Tech.204(20), 3200–3204 (2010).
[CrossRef]

Li, Y.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir26(12), 9842–9847 (2010).
[CrossRef] [PubMed]

Lien, S. Y.

S. Y. Lien, D. S. Wuu, W. C. Yeh, and J. C. Liu, “Tri-layer antireflection coatings (SiO2/SiO2-TiO2/TiO2) for silicon solar cells using a sol-gel technique,” Sol. Energy Mater. Sol. Cells90(16), 2710–2719 (2006).
[CrossRef]

Liu, J. C.

S. Y. Lien, D. S. Wuu, W. C. Yeh, and J. C. Liu, “Tri-layer antireflection coatings (SiO2/SiO2-TiO2/TiO2) for silicon solar cells using a sol-gel technique,” Sol. Energy Mater. Sol. Cells90(16), 2710–2719 (2006).
[CrossRef]

Liu, X.

X. Liu, Z. Jiang, J. Li, Z. Zhang, and L. Ren, “Super-hydrophobic property of nano-sized cupric oxide films,” Surf. Coat. Tech.204(20), 3200–3204 (2010).
[CrossRef]

Löbmann, P.

W. Glaubitt and P. Löbmann, “Antireflective coatings prepared by sol-gel processing: Principles and applications,” J. Eur. Ceram. Soc.32(11), 2995–2999 (2012).
[CrossRef]

Lu, S. Y.

T. Y. Wei, T. F. Chang, S. Y. Lu, and Y. C. Chang, “Preparation of monolithic silica aerogel of low thermal conductivity by ambient pressure drying,” J. Am. Ceram. Soc.90(7), 2003–2007 (2007).
[CrossRef]

Manca, M.

M. Manca, A. Cannavale, L. De Marco, A. S. Aricò, R. Cingolani, and G. Gigli, “Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing,” Langmuir25(11), 6357–6362 (2009).
[CrossRef] [PubMed]

Mansur, A. A. P.

A. A. P. Mansur, O. L. Nascimento, W. L. Vasconcelos, and H. S. Mansur, “Chemical functionalization of ceramic tile surfaces by silane coupling agents: Polymer modified mortar adhesion mechanism implications,” Mater. Res.11(3), 293–302 (2008).
[CrossRef]

Mansur, H. S.

A. A. P. Mansur, O. L. Nascimento, W. L. Vasconcelos, and H. S. Mansur, “Chemical functionalization of ceramic tile surfaces by silane coupling agents: Polymer modified mortar adhesion mechanism implications,” Mater. Res.11(3), 293–302 (2008).
[CrossRef]

Marmur, A.

A. Marmur, “Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be?” Langmuir19(20), 8343–8348 (2003).
[CrossRef]

McMillan, P. W.

N. Ford and P. W. McMillan, “Integral antireflection films for glasses - A Review,” Glass Technol.26(2), 104–107 (1985).

Michels, A. F.

K. C. Camargo, A. F. Michels, F. S. Rodembusch, and F. Horowitz, “Multi-scale structured, superhydrophobic and wide-angle, antireflective coating in the near-infrared region,” Chem. Commun. (Camb.)48(41), 4992–4994 (2012).
[CrossRef] [PubMed]

D. E. Weibel, A. F. Michels, A. F. Feil, L. Amaral, S. R. Teixeira, and F. Horowitz, “Adjustable hydrophobicity of Al substrates by chemical surface functionalization of nano/microstructures,” J. Phys. Chem. C114(31), 13219–13225 (2010).
[CrossRef]

Minot, M. J.

Morimoto, T.

K. Abe, Y. Sanada, and T. Morimoto, “Anti-reflective coatings for CRTs by sol-gel process,” J. Sol-Gel Sci. Technol.26(1–3), 709–713 (2003).
[CrossRef]

Munshi, A. M.

A. M. Munshi, V. N. Singh, M. Kumar, and J. P. Singh, “Effect of nanoparticle size on sessile droplet contact angle,” J. Appl. Phys.103(8), 084315 (2008).
[CrossRef]

Murakami, T.

X. T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, and A. Fujishima, “Self-cleaning particle coating with antireflection properties,” Chem. Mater.17(3), 696–700 (2005).
[CrossRef]

Nair, A. S.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci.4(10), 3779–3804 (2011).
[CrossRef]

Nascimento, O. L.

A. A. P. Mansur, O. L. Nascimento, W. L. Vasconcelos, and H. S. Mansur, “Chemical functionalization of ceramic tile surfaces by silane coupling agents: Polymer modified mortar adhesion mechanism implications,” Mater. Res.11(3), 293–302 (2008).
[CrossRef]

Nicole, L.

M. Faustini, L. Nicole, C. Boissière, P. Innocenzi, C. Sanchez, and D. Grosso, “Hydrophobic, antireflective, self-cleaning, and antifogging sol-gel coatings: An example of multifunctional nanostructured materials for photovoltaic cells,” Chem. Mater.22(15), 4406–4413 (2010).
[CrossRef]

Ojha, M.

J. L. Plawsky, M. Ojha, A. Chatterjee, and P. C. Wayner., “Review of the effects of surface topography, surface chemistry, and fluid physics on evaporation at the contact line,” Chem. Eng. Commun.196(5), 658–696 (2008).
[CrossRef]

Plawsky, J. L.

J. L. Plawsky, M. Ojha, A. Chatterjee, and P. C. Wayner., “Review of the effects of surface topography, surface chemistry, and fluid physics on evaporation at the contact line,” Chem. Eng. Commun.196(5), 658–696 (2008).
[CrossRef]

Präfke, C.

Prakash, S. S.

S. S. Prakash, C. J. Brinker, A. J. Hurd, and S. M. Rao, “Silica aerogel films prepared at ambient-pressure by using surface derivatization to induce reversible drying shrinkage,” Nature374(6521), 439–443 (1995).
[CrossRef]

Ramakrishna, S.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci.4(10), 3779–3804 (2011).
[CrossRef]

Rao, S. M.

S. S. Prakash, C. J. Brinker, A. J. Hurd, and S. M. Rao, “Silica aerogel films prepared at ambient-pressure by using surface derivatization to induce reversible drying shrinkage,” Nature374(6521), 439–443 (1995).
[CrossRef]

Raut, H. K.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci.4(10), 3779–3804 (2011).
[CrossRef]

Ren, L.

X. Liu, Z. Jiang, J. Li, Z. Zhang, and L. Ren, “Super-hydrophobic property of nano-sized cupric oxide films,” Surf. Coat. Tech.204(20), 3200–3204 (2010).
[CrossRef]

Rodembusch, F. S.

K. C. Camargo, A. F. Michels, F. S. Rodembusch, and F. Horowitz, “Multi-scale structured, superhydrophobic and wide-angle, antireflective coating in the near-infrared region,” Chem. Commun. (Camb.)48(41), 4992–4994 (2012).
[CrossRef] [PubMed]

Rubner, M. F.

J. Bravo, L. Zhai, Z. Wu, R. E. Cohen, and M. F. Rubner, “Transparent superhydrophobic films based on silica nanoparticles,” Langmuir23(13), 7293–7298 (2007).
[CrossRef] [PubMed]

Sanada, Y.

K. Abe, Y. Sanada, and T. Morimoto, “Anti-reflective coatings for CRTs by sol-gel process,” J. Sol-Gel Sci. Technol.26(1–3), 709–713 (2003).
[CrossRef]

Sanchez, C.

M. Faustini, L. Nicole, C. Boissière, P. Innocenzi, C. Sanchez, and D. Grosso, “Hydrophobic, antireflective, self-cleaning, and antifogging sol-gel coatings: An example of multifunctional nanostructured materials for photovoltaic cells,” Chem. Mater.22(15), 4406–4413 (2010).
[CrossRef]

Sato, O.

X. T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, and A. Fujishima, “Self-cleaning particle coating with antireflection properties,” Chem. Mater.17(3), 696–700 (2005).
[CrossRef]

Schulz, U.

Shi, F. G.

H. K. Kim and F. G. Shi, “Refractive index of polycrystalline submicrometer polymer thin films: Thickness dependence,” J. Mater. Sci. Mater. Electron.12(7), 361–364 (2001).
[CrossRef]

Singh, J. P.

A. M. Munshi, V. N. Singh, M. Kumar, and J. P. Singh, “Effect of nanoparticle size on sessile droplet contact angle,” J. Appl. Phys.103(8), 084315 (2008).
[CrossRef]

Singh, V. N.

A. M. Munshi, V. N. Singh, M. Kumar, and J. P. Singh, “Effect of nanoparticle size on sessile droplet contact angle,” J. Appl. Phys.103(8), 084315 (2008).
[CrossRef]

Taguchi, M.

X. T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, and A. Fujishima, “Self-cleaning particle coating with antireflection properties,” Chem. Mater.17(3), 696–700 (2005).
[CrossRef]

Tang, Y.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir26(12), 9842–9847 (2010).
[CrossRef] [PubMed]

Teixeira, S. R.

D. E. Weibel, A. F. Michels, A. F. Feil, L. Amaral, S. R. Teixeira, and F. Horowitz, “Adjustable hydrophobicity of Al substrates by chemical surface functionalization of nano/microstructures,” J. Phys. Chem. C114(31), 13219–13225 (2010).
[CrossRef]

Tünnermann, A.

Vasconcelos, W. L.

A. A. P. Mansur, O. L. Nascimento, W. L. Vasconcelos, and H. S. Mansur, “Chemical functionalization of ceramic tile surfaces by silane coupling agents: Polymer modified mortar adhesion mechanism implications,” Mater. Res.11(3), 293–302 (2008).
[CrossRef]

Wang, Z.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir26(12), 9842–9847 (2010).
[CrossRef] [PubMed]

Wayner, P. C.

J. L. Plawsky, M. Ojha, A. Chatterjee, and P. C. Wayner., “Review of the effects of surface topography, surface chemistry, and fluid physics on evaporation at the contact line,” Chem. Eng. Commun.196(5), 658–696 (2008).
[CrossRef]

Wei, T. Y.

T. Y. Wei, T. F. Chang, S. Y. Lu, and Y. C. Chang, “Preparation of monolithic silica aerogel of low thermal conductivity by ambient pressure drying,” J. Am. Ceram. Soc.90(7), 2003–2007 (2007).
[CrossRef]

Weibel, D. E.

D. E. Weibel, A. F. Michels, A. F. Feil, L. Amaral, S. R. Teixeira, and F. Horowitz, “Adjustable hydrophobicity of Al substrates by chemical surface functionalization of nano/microstructures,” J. Phys. Chem. C114(31), 13219–13225 (2010).
[CrossRef]

Willey, R. R.

Wu, Z.

J. Bravo, L. Zhai, Z. Wu, R. E. Cohen, and M. F. Rubner, “Transparent superhydrophobic films based on silica nanoparticles,” Langmuir23(13), 7293–7298 (2007).
[CrossRef] [PubMed]

Wuu, D. S.

S. Y. Lien, D. S. Wuu, W. C. Yeh, and J. C. Liu, “Tri-layer antireflection coatings (SiO2/SiO2-TiO2/TiO2) for silicon solar cells using a sol-gel technique,” Sol. Energy Mater. Sol. Cells90(16), 2710–2719 (2006).
[CrossRef]

Xu, Y. P.

X. C. Zhou, L. P. Zhong, and Y. P. Xu, “Surface modification of silica aerogels with trimethylchlorosilane in the ambient pressure drying,” Inorg. Mater.44(9), 976–979 (2008).
[CrossRef]

Yang, B.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir26(12), 9842–9847 (2010).
[CrossRef] [PubMed]

Yeh, W. C.

S. Y. Lien, D. S. Wuu, W. C. Yeh, and J. C. Liu, “Tri-layer antireflection coatings (SiO2/SiO2-TiO2/TiO2) for silicon solar cells using a sol-gel technique,” Sol. Energy Mater. Sol. Cells90(16), 2710–2719 (2006).
[CrossRef]

Zhai, L.

J. Bravo, L. Zhai, Z. Wu, R. E. Cohen, and M. F. Rubner, “Transparent superhydrophobic films based on silica nanoparticles,” Langmuir23(13), 7293–7298 (2007).
[CrossRef] [PubMed]

Zhang, J.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir26(12), 9842–9847 (2010).
[CrossRef] [PubMed]

Zhang, L.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir26(12), 9842–9847 (2010).
[CrossRef] [PubMed]

Zhang, S.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir26(12), 9842–9847 (2010).
[CrossRef] [PubMed]

Zhang, X. T.

X. T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, and A. Fujishima, “Self-cleaning particle coating with antireflection properties,” Chem. Mater.17(3), 696–700 (2005).
[CrossRef]

Zhang, Z.

X. Liu, Z. Jiang, J. Li, Z. Zhang, and L. Ren, “Super-hydrophobic property of nano-sized cupric oxide films,” Surf. Coat. Tech.204(20), 3200–3204 (2010).
[CrossRef]

Zhong, L. P.

X. C. Zhou, L. P. Zhong, and Y. P. Xu, “Surface modification of silica aerogels with trimethylchlorosilane in the ambient pressure drying,” Inorg. Mater.44(9), 976–979 (2008).
[CrossRef]

Zhou, X. C.

X. C. Zhou, L. P. Zhong, and Y. P. Xu, “Surface modification of silica aerogels with trimethylchlorosilane in the ambient pressure drying,” Inorg. Mater.44(9), 976–979 (2008).
[CrossRef]

Zhu, S.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir26(12), 9842–9847 (2010).
[CrossRef] [PubMed]

Zimmermann, A.

W. Groh and A. Zimmermann, “What is the lowest refractive-index of an organic polymer,” Macromolecules24(25), 6660–6663 (1991).
[CrossRef]

Appl. Opt.

Chem. Commun. (Camb.)

K. C. Camargo, A. F. Michels, F. S. Rodembusch, and F. Horowitz, “Multi-scale structured, superhydrophobic and wide-angle, antireflective coating in the near-infrared region,” Chem. Commun. (Camb.)48(41), 4992–4994 (2012).
[CrossRef] [PubMed]

Chem. Eng. Commun.

J. L. Plawsky, M. Ojha, A. Chatterjee, and P. C. Wayner., “Review of the effects of surface topography, surface chemistry, and fluid physics on evaporation at the contact line,” Chem. Eng. Commun.196(5), 658–696 (2008).
[CrossRef]

Chem. Mater.

M. Faustini, L. Nicole, C. Boissière, P. Innocenzi, C. Sanchez, and D. Grosso, “Hydrophobic, antireflective, self-cleaning, and antifogging sol-gel coatings: An example of multifunctional nanostructured materials for photovoltaic cells,” Chem. Mater.22(15), 4406–4413 (2010).
[CrossRef]

X. T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, and A. Fujishima, “Self-cleaning particle coating with antireflection properties,” Chem. Mater.17(3), 696–700 (2005).
[CrossRef]

Energy Environ. Sci.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci.4(10), 3779–3804 (2011).
[CrossRef]

Glass Technol.

N. Ford and P. W. McMillan, “Integral antireflection films for glasses - A Review,” Glass Technol.26(2), 104–107 (1985).

Inorg. Mater.

X. C. Zhou, L. P. Zhong, and Y. P. Xu, “Surface modification of silica aerogels with trimethylchlorosilane in the ambient pressure drying,” Inorg. Mater.44(9), 976–979 (2008).
[CrossRef]

J. Am. Ceram. Soc.

T. Y. Wei, T. F. Chang, S. Y. Lu, and Y. C. Chang, “Preparation of monolithic silica aerogel of low thermal conductivity by ambient pressure drying,” J. Am. Ceram. Soc.90(7), 2003–2007 (2007).
[CrossRef]

J. Appl. Phys.

A. M. Munshi, V. N. Singh, M. Kumar, and J. P. Singh, “Effect of nanoparticle size on sessile droplet contact angle,” J. Appl. Phys.103(8), 084315 (2008).
[CrossRef]

J. Eur. Ceram. Soc.

W. Glaubitt and P. Löbmann, “Antireflective coatings prepared by sol-gel processing: Principles and applications,” J. Eur. Ceram. Soc.32(11), 2995–2999 (2012).
[CrossRef]

J. Mater. Sci. Mater. Electron.

H. K. Kim and F. G. Shi, “Refractive index of polycrystalline submicrometer polymer thin films: Thickness dependence,” J. Mater. Sci. Mater. Electron.12(7), 361–364 (2001).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. Chem. C

D. E. Weibel, A. F. Michels, A. F. Feil, L. Amaral, S. R. Teixeira, and F. Horowitz, “Adjustable hydrophobicity of Al substrates by chemical surface functionalization of nano/microstructures,” J. Phys. Chem. C114(31), 13219–13225 (2010).
[CrossRef]

J. Sol-Gel Sci. Technol.

K. Abe, Y. Sanada, and T. Morimoto, “Anti-reflective coatings for CRTs by sol-gel process,” J. Sol-Gel Sci. Technol.26(1–3), 709–713 (2003).
[CrossRef]

Langmuir

A. Marmur, “Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be?” Langmuir19(20), 8343–8348 (2003).
[CrossRef]

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir26(12), 9842–9847 (2010).
[CrossRef] [PubMed]

M. Manca, A. Cannavale, L. De Marco, A. S. Aricò, R. Cingolani, and G. Gigli, “Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing,” Langmuir25(11), 6357–6362 (2009).
[CrossRef] [PubMed]

J. Bravo, L. Zhai, Z. Wu, R. E. Cohen, and M. F. Rubner, “Transparent superhydrophobic films based on silica nanoparticles,” Langmuir23(13), 7293–7298 (2007).
[CrossRef] [PubMed]

Macromolecules

W. Groh and A. Zimmermann, “What is the lowest refractive-index of an organic polymer,” Macromolecules24(25), 6660–6663 (1991).
[CrossRef]

Mater. Res.

A. A. P. Mansur, O. L. Nascimento, W. L. Vasconcelos, and H. S. Mansur, “Chemical functionalization of ceramic tile surfaces by silane coupling agents: Polymer modified mortar adhesion mechanism implications,” Mater. Res.11(3), 293–302 (2008).
[CrossRef]

Nature

S. S. Prakash, C. J. Brinker, A. J. Hurd, and S. M. Rao, “Silica aerogel films prepared at ambient-pressure by using surface derivatization to induce reversible drying shrinkage,” Nature374(6521), 439–443 (1995).
[CrossRef]

S. S. Kistler, “Coherent expanded aerogels and jellies,” Nature127(3211), 741–744 (1931).
[CrossRef]

Sol. Energy Mater. Sol. Cells

S. Y. Lien, D. S. Wuu, W. C. Yeh, and J. C. Liu, “Tri-layer antireflection coatings (SiO2/SiO2-TiO2/TiO2) for silicon solar cells using a sol-gel technique,” Sol. Energy Mater. Sol. Cells90(16), 2710–2719 (2006).
[CrossRef]

Surf. Coat. Tech.

X. Liu, Z. Jiang, J. Li, Z. Zhang, and L. Ren, “Super-hydrophobic property of nano-sized cupric oxide films,” Surf. Coat. Tech.204(20), 3200–3204 (2010).
[CrossRef]

Other

H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (MacMillan Publishing Company, 1986).

Supplementary Material (1)

» Media 1: MOV (3680 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

SEM and AFM pictures, where are presented the texture, in the scale shown of 10 μm, of the nanoparticle aggregates on the glass surface and the (left) and the topology produced by clustering of nanoparticles in the nanoscale level (right).

Fig. 2
Fig. 2

Droplet image with water contact angle of 169° ± 2°.

Fig. 3
Fig. 3

Spectral transmittance of coated (up to two layers) and uncoated glass sample (lower curve) at: (a) normal incidence, (b) 20° incidence for p-polarized light and (c) 20° incidence for s-polarized light in the visible spectrum. For these samples, PTFE was deposited on front surface only. Insets - Spectral transmittance of coated (up to two layers) and uncoated front glass surface (lower curve) in the near infrared spectrum at: (a) normal incidence, (b) ± 20° incidence for p-polarized light and (c) ± 20° incidence for s-polarized light.

Fig. 4
Fig. 4

Droplet image with WCA of 158° ± 2° (left) and self-cleaning property due to the low angular hysteresis (less than 5°) is made possible by silica nanoparticle clusters covered by silica aerogel and PTFE coating (second approach) (right) (Media 1).

Fig. 5
Fig. 5

(a) PTFE nanotexture produced by PVD deposition and controlled by time and rate deposition. (b) 3D AFM image of silica nanoparticles, aerogel and PTFE layers (second approach). This combination produces a multi-scale level configuration. (c) Corresponding roughness measurement results.

Fig. 6
Fig. 6

Spectral transmittance (a) at normal incidence, (b) 20° incidence for p-polarized light and (c) 20° incidence for s-polarized light. Insets – Similarly, spectral transmittance of uncoated and up to three layer coated glass surface in the near infrared spectrum at: (a) normal incidence, (b) ± 20° incidence for p-polarized light and (c) ± 20° incidence for s-polarized light.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

cos θ c =rcosθ,r= ( Area ) real ( Area ) projected ,
cos θ c = f 1 cosθ f 2 ,

Metrics