Abstract

Nanofabrication of structures with a feature size of sub-50 nm with ultrashort-laser based two-photon polymerization (2PP) technique is presented. The spatial resolution of the 2PP structures depends on the characteristics of the polymer material and the laser system used for fabrication. Here we compare the successful creation of sub-100 nm structures with two different few-cycle laser systems and chemically modified zirconium-based sol-gel composite material using cross-linker for resolution enhancement.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Wu, Q.-D. Chen, L.-G. Niu, J.-N. Wang, J. Wang, R. Wang, H. Xia, and H.-B. Sun, “Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices,” Lab Chip9(16), 2391–2394 (2009).
    [CrossRef] [PubMed]
  2. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.22(2), 132–134 (1997).
    [CrossRef] [PubMed]
  3. A. Ostendorf and B. N. Chichkov, “Two-photon polymerization: a new approach to micromachining,” Photon. Spectra40, 72–80 (2006).
  4. M. Malinauskas, V. Purlys, M. Rutkauskas, and R. Gadonas, “Two-photon polymerization for fabrication of three-dimensional micro-and nanostructures over a large area,” Proc. SPIE7204, 72040C-1–72040C-11 (2009).
    [CrossRef]
  5. M. Farsari and B. N. Chichkov, “Materials processing: Two-photon fabrication,” Nat. Photonics3(8), 450–452 (2009).
    [CrossRef]
  6. M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19(6), 5602–5610 (2011).
    [CrossRef] [PubMed]
  7. M. Rumi and J. Perry, “Two-photon absorption: an overview of measurements and principles,” Adv. Opt. Photon.2(4), 451–518 (2010).
    [CrossRef]
  8. H.-B. Sun and S. Kawata, “Two-photon photopolymerization and 3D lithographic microfabrication,” Adv. Polym. Sci.170, 169–274 (2004).
  9. T. Tanaka, H.-B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett.80(2), 312–314 (2002).
    [CrossRef]
  10. V. P. Korolkov, R. K. Nasyrov, and R. V. Shimansky, “Zone-boundary optimization for direct laser writing of continuous-relief diffractive optical elements,” Appl. Opt.45(1), 53–62 (2006).
    [CrossRef] [PubMed]
  11. M. Häfner, C. Pruss, and W. Osten, “Laser direct writing,” Optik Photonik6(4), 40–43 (2011).
    [CrossRef]
  12. W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express15(6), 3426–3436 (2007).
    [CrossRef] [PubMed]
  13. S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005).
    [CrossRef]
  14. D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
    [CrossRef]
  15. V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” to appear in J. Laser Appl.24(3) (2012).
  16. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
    [CrossRef] [PubMed]
  17. M. Emons, A. Steinmann, T. Binhammer, G. Palmer, M. Schultze, and U. Morgner, “Sub-10-fs pulses from a MHz-NOPA with pulse energies of 0.4 µJ,” Opt. Express18(2), 1191–1196 (2010).
    [CrossRef] [PubMed]
  18. G. Palmer, M. Emons, M. Siegel, A. Steinmann, M. Schultze, M. Lederer, and U. Morgner, “Passively mode-locked and cavity-dumped Yb:KY(WO4)2 oscillator with positive dispersion,” Opt. Express15(24), 16017–16021 (2007).
    [CrossRef] [PubMed]
  19. A. Steinmann, G. Palmer, M. Emons, M. Siegel, and U. Morgner, “Generation of 9-μJ 420-fs pulses by fiber-based amplification of a cavity-dumped Yb:KYW laser oscillator,” Laser Phys.18(5), 527–529 (2008).
    [CrossRef]
  20. VENTEON | PULSE:ONE, http://venteon.com .
  21. A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express17(4), 2143–2148 (2009).
    [CrossRef] [PubMed]
  22. P. Wei, N. Li, and L. Feng, “Two-photon polymerization system with diffractive superresolution element,” IEEE Sens. J.11(1), 194–198 (2011).
    [CrossRef]
  23. L. Kelemen, P. Ormos, and G. Vizsnyiczai, “Two-photon polymerization with optimized spatial light modulator,” J. Eur. Opt. Soc. Rapid Publ.6, 11029 (2011).
    [CrossRef]
  24. F. Burmeister, U. D. Zeitner, S. Nolte, and A. Tünnermann, “High numerical aperture hybrid optics for two-photon polymerization,” Opt. Express20(7), 7994–8005 (2012).
    [CrossRef] [PubMed]
  25. Schwerpunktprogramm 1327 der Deutschen Forschungsgemeinschaft, http://www.spp1327.de/ .

2012 (2)

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” to appear in J. Laser Appl.24(3) (2012).

F. Burmeister, U. D. Zeitner, S. Nolte, and A. Tünnermann, “High numerical aperture hybrid optics for two-photon polymerization,” Opt. Express20(7), 7994–8005 (2012).
[CrossRef] [PubMed]

2011 (4)

M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19(6), 5602–5610 (2011).
[CrossRef] [PubMed]

M. Häfner, C. Pruss, and W. Osten, “Laser direct writing,” Optik Photonik6(4), 40–43 (2011).
[CrossRef]

P. Wei, N. Li, and L. Feng, “Two-photon polymerization system with diffractive superresolution element,” IEEE Sens. J.11(1), 194–198 (2011).
[CrossRef]

L. Kelemen, P. Ormos, and G. Vizsnyiczai, “Two-photon polymerization with optimized spatial light modulator,” J. Eur. Opt. Soc. Rapid Publ.6, 11029 (2011).
[CrossRef]

2010 (2)

2009 (4)

A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express17(4), 2143–2148 (2009).
[CrossRef] [PubMed]

M. Malinauskas, V. Purlys, M. Rutkauskas, and R. Gadonas, “Two-photon polymerization for fabrication of three-dimensional micro-and nanostructures over a large area,” Proc. SPIE7204, 72040C-1–72040C-11 (2009).
[CrossRef]

M. Farsari and B. N. Chichkov, “Materials processing: Two-photon fabrication,” Nat. Photonics3(8), 450–452 (2009).
[CrossRef]

D. Wu, Q.-D. Chen, L.-G. Niu, J.-N. Wang, J. Wang, R. Wang, H. Xia, and H.-B. Sun, “Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices,” Lab Chip9(16), 2391–2394 (2009).
[CrossRef] [PubMed]

2008 (2)

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

A. Steinmann, G. Palmer, M. Emons, M. Siegel, and U. Morgner, “Generation of 9-μJ 420-fs pulses by fiber-based amplification of a cavity-dumped Yb:KYW laser oscillator,” Laser Phys.18(5), 527–529 (2008).
[CrossRef]

2007 (3)

2006 (2)

2005 (1)

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005).
[CrossRef]

2004 (1)

H.-B. Sun and S. Kawata, “Two-photon photopolymerization and 3D lithographic microfabrication,” Adv. Polym. Sci.170, 169–274 (2004).

2002 (1)

T. Tanaka, H.-B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett.80(2), 312–314 (2002).
[CrossRef]

1997 (1)

Barlow, S.

Binhammer, T.

Burmeister, F.

Chen, Q.-D.

D. Wu, Q.-D. Chen, L.-G. Niu, J.-N. Wang, J. Wang, R. Wang, H. Xia, and H.-B. Sun, “Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices,” Lab Chip9(16), 2391–2394 (2009).
[CrossRef] [PubMed]

Chen, V. W.

Chichkov, B.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” to appear in J. Laser Appl.24(3) (2012).

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Chichkov, B. N.

M. Farsari and B. N. Chichkov, “Materials processing: Two-photon fabrication,” Nat. Photonics3(8), 450–452 (2009).
[CrossRef]

A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express17(4), 2143–2148 (2009).
[CrossRef] [PubMed]

A. Ostendorf and B. N. Chichkov, “Two-photon polymerization: a new approach to micromachining,” Photon. Spectra40, 72–80 (2006).

Danilevicius, P.

Dong, W.

Dong, X.

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

Duan, X.

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

Emons, M.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” to appear in J. Laser Appl.24(3) (2012).

M. Emons, A. Steinmann, T. Binhammer, G. Palmer, M. Schultze, and U. Morgner, “Sub-10-fs pulses from a MHz-NOPA with pulse energies of 0.4 µJ,” Opt. Express18(2), 1191–1196 (2010).
[CrossRef] [PubMed]

A. Steinmann, G. Palmer, M. Emons, M. Siegel, and U. Morgner, “Generation of 9-μJ 420-fs pulses by fiber-based amplification of a cavity-dumped Yb:KYW laser oscillator,” Laser Phys.18(5), 527–529 (2008).
[CrossRef]

G. Palmer, M. Emons, M. Siegel, A. Steinmann, M. Schultze, M. Lederer, and U. Morgner, “Passively mode-locked and cavity-dumped Yb:KY(WO4)2 oscillator with positive dispersion,” Opt. Express15(24), 16017–16021 (2007).
[CrossRef] [PubMed]

Farsari, M.

M. Farsari and B. N. Chichkov, “Materials processing: Two-photon fabrication,” Nat. Photonics3(8), 450–452 (2009).
[CrossRef]

A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express17(4), 2143–2148 (2009).
[CrossRef] [PubMed]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Feng, L.

P. Wei, N. Li, and L. Feng, “Two-photon polymerization system with diffractive superresolution element,” IEEE Sens. J.11(1), 194–198 (2011).
[CrossRef]

Fotakis, C.

A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express17(4), 2143–2148 (2009).
[CrossRef] [PubMed]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Frenner, K.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” to appear in J. Laser Appl.24(3) (2012).

Gadonas, R.

M. Malinauskas, V. Purlys, M. Rutkauskas, and R. Gadonas, “Two-photon polymerization for fabrication of three-dimensional micro-and nanostructures over a large area,” Proc. SPIE7204, 72040C-1–72040C-11 (2009).
[CrossRef]

Giakoumaki, A.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Gong, Q.

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

Gray, D.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Häfner, M.

M. Häfner, C. Pruss, and W. Osten, “Laser direct writing,” Optik Photonik6(4), 40–43 (2011).
[CrossRef]

Hales, J. M.

Haske, W.

Juodkazis, S.

M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19(6), 5602–5610 (2011).
[CrossRef] [PubMed]

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005).
[CrossRef]

Kawata, S.

H.-B. Sun and S. Kawata, “Two-photon photopolymerization and 3D lithographic microfabrication,” Adv. Polym. Sci.170, 169–274 (2004).

T. Tanaka, H.-B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett.80(2), 312–314 (2002).
[CrossRef]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.22(2), 132–134 (1997).
[CrossRef] [PubMed]

Kelemen, L.

L. Kelemen, P. Ormos, and G. Vizsnyiczai, “Two-photon polymerization with optimized spatial light modulator,” J. Eur. Opt. Soc. Rapid Publ.6, 11029 (2011).
[CrossRef]

Korolkov, V. P.

Lederer, M.

Li, N.

P. Wei, N. Li, and L. Feng, “Two-photon polymerization system with diffractive superresolution element,” IEEE Sens. J.11(1), 194–198 (2011).
[CrossRef]

Li, Y.

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

MacCraith, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Malinauskas, M.

M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19(6), 5602–5610 (2011).
[CrossRef] [PubMed]

M. Malinauskas, V. Purlys, M. Rutkauskas, and R. Gadonas, “Two-photon polymerization for fabrication of three-dimensional micro-and nanostructures over a large area,” Proc. SPIE7204, 72040C-1–72040C-11 (2009).
[CrossRef]

Marder, S. R.

Maruo, S.

Misawa, H.

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005).
[CrossRef]

Miwa, M.

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005).
[CrossRef]

Mizeikis, V.

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005).
[CrossRef]

Morgner, U.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” to appear in J. Laser Appl.24(3) (2012).

M. Emons, A. Steinmann, T. Binhammer, G. Palmer, M. Schultze, and U. Morgner, “Sub-10-fs pulses from a MHz-NOPA with pulse energies of 0.4 µJ,” Opt. Express18(2), 1191–1196 (2010).
[CrossRef] [PubMed]

A. Steinmann, G. Palmer, M. Emons, M. Siegel, and U. Morgner, “Generation of 9-μJ 420-fs pulses by fiber-based amplification of a cavity-dumped Yb:KYW laser oscillator,” Laser Phys.18(5), 527–529 (2008).
[CrossRef]

G. Palmer, M. Emons, M. Siegel, A. Steinmann, M. Schultze, M. Lederer, and U. Morgner, “Passively mode-locked and cavity-dumped Yb:KY(WO4)2 oscillator with positive dispersion,” Opt. Express15(24), 16017–16021 (2007).
[CrossRef] [PubMed]

Nakamura, O.

Nasyrov, R. K.

Niu, L.-G.

D. Wu, Q.-D. Chen, L.-G. Niu, J.-N. Wang, J. Wang, R. Wang, H. Xia, and H.-B. Sun, “Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices,” Lab Chip9(16), 2391–2394 (2009).
[CrossRef] [PubMed]

Nolte, S.

Obata, K.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” to appear in J. Laser Appl.24(3) (2012).

Ormos, P.

L. Kelemen, P. Ormos, and G. Vizsnyiczai, “Two-photon polymerization with optimized spatial light modulator,” J. Eur. Opt. Soc. Rapid Publ.6, 11029 (2011).
[CrossRef]

Osten, W.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” to appear in J. Laser Appl.24(3) (2012).

M. Häfner, C. Pruss, and W. Osten, “Laser direct writing,” Optik Photonik6(4), 40–43 (2011).
[CrossRef]

Ostendorf, A.

A. Ostendorf and B. N. Chichkov, “Two-photon polymerization: a new approach to micromachining,” Photon. Spectra40, 72–80 (2006).

Oubaha, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Ovsianikov, A.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” to appear in J. Laser Appl.24(3) (2012).

A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express17(4), 2143–2148 (2009).
[CrossRef] [PubMed]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Palmer, G.

Paz, V. F.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” to appear in J. Laser Appl.24(3) (2012).

Perry, J.

Perry, J. W.

Peterhänsel, S.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” to appear in J. Laser Appl.24(3) (2012).

Pruss, C.

M. Häfner, C. Pruss, and W. Osten, “Laser direct writing,” Optik Photonik6(4), 40–43 (2011).
[CrossRef]

Purlys, V.

M. Malinauskas, V. Purlys, M. Rutkauskas, and R. Gadonas, “Two-photon polymerization for fabrication of three-dimensional micro-and nanostructures over a large area,” Proc. SPIE7204, 72040C-1–72040C-11 (2009).
[CrossRef]

Qi, F.

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

Reinhardt, C.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” to appear in J. Laser Appl.24(3) (2012).

Rumi, M.

Rutkauskas, M.

M. Malinauskas, V. Purlys, M. Rutkauskas, and R. Gadonas, “Two-photon polymerization for fabrication of three-dimensional micro-and nanostructures over a large area,” Proc. SPIE7204, 72040C-1–72040C-11 (2009).
[CrossRef]

Sakellari, I.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Schultze, M.

Seet, K. K.

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005).
[CrossRef]

Shimansky, R. V.

Shizhou, X.

Siegel, M.

A. Steinmann, G. Palmer, M. Emons, M. Siegel, and U. Morgner, “Generation of 9-μJ 420-fs pulses by fiber-based amplification of a cavity-dumped Yb:KYW laser oscillator,” Laser Phys.18(5), 527–529 (2008).
[CrossRef]

G. Palmer, M. Emons, M. Siegel, A. Steinmann, M. Schultze, M. Lederer, and U. Morgner, “Passively mode-locked and cavity-dumped Yb:KY(WO4)2 oscillator with positive dispersion,” Opt. Express15(24), 16017–16021 (2007).
[CrossRef] [PubMed]

Steinmann, A.

Sun, H.-B.

D. Wu, Q.-D. Chen, L.-G. Niu, J.-N. Wang, J. Wang, R. Wang, H. Xia, and H.-B. Sun, “Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices,” Lab Chip9(16), 2391–2394 (2009).
[CrossRef] [PubMed]

H.-B. Sun and S. Kawata, “Two-photon photopolymerization and 3D lithographic microfabrication,” Adv. Polym. Sci.170, 169–274 (2004).

T. Tanaka, H.-B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett.80(2), 312–314 (2002).
[CrossRef]

Tan, D.

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

Tanaka, T.

T. Tanaka, H.-B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett.80(2), 312–314 (2002).
[CrossRef]

Tünnermann, A.

Vamvakaki, M.

A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express17(4), 2143–2148 (2009).
[CrossRef] [PubMed]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Viertl, J.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Vizsnyiczai, G.

L. Kelemen, P. Ormos, and G. Vizsnyiczai, “Two-photon polymerization with optimized spatial light modulator,” J. Eur. Opt. Soc. Rapid Publ.6, 11029 (2011).
[CrossRef]

Wang, J.

D. Wu, Q.-D. Chen, L.-G. Niu, J.-N. Wang, J. Wang, R. Wang, H. Xia, and H.-B. Sun, “Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices,” Lab Chip9(16), 2391–2394 (2009).
[CrossRef] [PubMed]

Wang, J.-N.

D. Wu, Q.-D. Chen, L.-G. Niu, J.-N. Wang, J. Wang, R. Wang, H. Xia, and H.-B. Sun, “Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices,” Lab Chip9(16), 2391–2394 (2009).
[CrossRef] [PubMed]

Wang, R.

D. Wu, Q.-D. Chen, L.-G. Niu, J.-N. Wang, J. Wang, R. Wang, H. Xia, and H.-B. Sun, “Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices,” Lab Chip9(16), 2391–2394 (2009).
[CrossRef] [PubMed]

Wei, P.

P. Wei, N. Li, and L. Feng, “Two-photon polymerization system with diffractive superresolution element,” IEEE Sens. J.11(1), 194–198 (2011).
[CrossRef]

Wu, D.

D. Wu, Q.-D. Chen, L.-G. Niu, J.-N. Wang, J. Wang, R. Wang, H. Xia, and H.-B. Sun, “Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices,” Lab Chip9(16), 2391–2394 (2009).
[CrossRef] [PubMed]

Xia, H.

D. Wu, Q.-D. Chen, L.-G. Niu, J.-N. Wang, J. Wang, R. Wang, H. Xia, and H.-B. Sun, “Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices,” Lab Chip9(16), 2391–2394 (2009).
[CrossRef] [PubMed]

Yang, H.

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

Zeitner, U. D.

ACS Nano (1)

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Adv. Opt. Photon. (1)

Adv. Polym. Sci. (1)

H.-B. Sun and S. Kawata, “Two-photon photopolymerization and 3D lithographic microfabrication,” Adv. Polym. Sci.170, 169–274 (2004).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

T. Tanaka, H.-B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett.80(2), 312–314 (2002).
[CrossRef]

IEEE Sens. J. (1)

P. Wei, N. Li, and L. Feng, “Two-photon polymerization system with diffractive superresolution element,” IEEE Sens. J.11(1), 194–198 (2011).
[CrossRef]

J. Eur. Opt. Soc. Rapid Publ. (1)

L. Kelemen, P. Ormos, and G. Vizsnyiczai, “Two-photon polymerization with optimized spatial light modulator,” J. Eur. Opt. Soc. Rapid Publ.6, 11029 (2011).
[CrossRef]

J. Laser Appl. (1)

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” to appear in J. Laser Appl.24(3) (2012).

Lab Chip (1)

D. Wu, Q.-D. Chen, L.-G. Niu, J.-N. Wang, J. Wang, R. Wang, H. Xia, and H.-B. Sun, “Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices,” Lab Chip9(16), 2391–2394 (2009).
[CrossRef] [PubMed]

Laser Phys. (1)

A. Steinmann, G. Palmer, M. Emons, M. Siegel, and U. Morgner, “Generation of 9-μJ 420-fs pulses by fiber-based amplification of a cavity-dumped Yb:KYW laser oscillator,” Laser Phys.18(5), 527–529 (2008).
[CrossRef]

Nanotechnology (1)

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005).
[CrossRef]

Nat. Photonics (1)

M. Farsari and B. N. Chichkov, “Materials processing: Two-photon fabrication,” Nat. Photonics3(8), 450–452 (2009).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Optik Photonik (1)

M. Häfner, C. Pruss, and W. Osten, “Laser direct writing,” Optik Photonik6(4), 40–43 (2011).
[CrossRef]

Photon. Spectra (1)

A. Ostendorf and B. N. Chichkov, “Two-photon polymerization: a new approach to micromachining,” Photon. Spectra40, 72–80 (2006).

Proc. SPIE (1)

M. Malinauskas, V. Purlys, M. Rutkauskas, and R. Gadonas, “Two-photon polymerization for fabrication of three-dimensional micro-and nanostructures over a large area,” Proc. SPIE7204, 72040C-1–72040C-11 (2009).
[CrossRef]

Other (2)

Schwerpunktprogramm 1327 der Deutschen Forschungsgemeinschaft, http://www.spp1327.de/ .

VENTEON | PULSE:ONE, http://venteon.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic illustration of the experimental setup for 2PP. Pulse compression and pre-compensation of the dispersion due to the microscopic lens was realized with multiple bounces on DCMs in combination with CaF2 wedges in front of the translation stages with the high NA microscopic lens (right) and the polymer droplet on a glass substrate (left bottom).

Fig. 2
Fig. 2

(a) Structure width (circles) and height (diamond) dependency on writing power at a constant velocity of 100 μm/s. (b) Structure width depending on writing speed at constant power of 0.8 mW.

Fig. 3
Fig. 3

SEM images of the free hanging line structure with minimum feature size (see Fig. 2(a)). (a) The minimum width of the structure is 90 nm (λ/10). Magnification: 100 000 x, (b) same structure observed under an angle of 20°. The minimum height of the structure is 240 nm (≈λ/4). Magnification: 60 000 x.

Fig. 4
Fig. 4

SEM images of the smallest structure produced with the VENTEON oscillator using the cross-linker material. Magnification: 100 000 x. (a) The minimum width of the structure is 45 nm (> λ/17), (b) same structure observed under an angle of ≈40°. The minimum height of this structure is 80 nm (λ/10).

Tables (1)

Tables Icon

Table 1 Specifications of the used laser systems

Metrics