Abstract

In this work, we investigate the guiding properties of a hybrid polymer (poly-dimethylsiloxane)/silica photonic crystal fiber (PCF). In particular, we demonstrate how the basic guiding properties of a conventional PCF are changed due to the infusion of poly-dimethylsiloxane (PDMS) in its air-holes. We show that PDMS infiltration allows tuning of single mode operation, confinement loss, effective modal area (EMA) and numerical aperture (NA) with wavelength and/or temperature. This is primarily due to the enhancement of evanescent field interaction, lending some important characteristics for designing tunable fiber devices. Numerical calculations were performed for different relative hole sizes, d/Λ (0.35-0.75), of PCF for a 500-1700nm wavelength and 0-100°C temperature range, whereas direct comparison with a conventional air-filled PCF is also shown.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  2. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21(19), 1547–1549 (1996).
    [CrossRef] [PubMed]
  3. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibers,” Opt. Express11(20), 2589–2596 (2003).
    [CrossRef] [PubMed]
  4. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express12(24), 5857–5871 (2004).
    [CrossRef] [PubMed]
  5. W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express17(22), 19356–19364 (2009).
    [CrossRef] [PubMed]
  6. D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, “Tunable highly birefringent bandgap-guiding liquid-crystal microstructured fibers,” J. Lightwave Technol.24(9), 3427–3432 (2006).
    [CrossRef]
  7. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in Proc. Opt. Fiber Commun. Conf. (OFC), Anaheim, CA, 2002, pp. 466–468.
  8. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express14(18), 8224–8231 (2006).
    [CrossRef] [PubMed]
  9. C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express19(8), 7790–7798 (2011).
    [CrossRef] [PubMed]
  10. A. Candiani, M. Konstantaki, W. Margulis, and S. Pissadakis, “A spectrally tunable microstructured optical fiber Bragg grating utilizing an infiltrated ferrofluid,” Opt. Express18(24), 24654–24660 (2010).
    [CrossRef] [PubMed]
  11. M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express16(12), 8427–8432 (2008).
    [CrossRef] [PubMed]
  12. C. G. Poulton, M. A. Schmidt, G. J. Pearce, G. Kakarantzas, and P. St. J. Russell, “Numerical study of guided modes in arrays of metallic nanowires,” Opt. Lett.32(12), 1647–1649 (2007).
    [CrossRef] [PubMed]
  13. H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
    [CrossRef]
  14. P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett.12(5), 495–497 (2000).
    [CrossRef]
  15. C. Markos, K. Vlachos, and G. Kakarantzas, “Bending loss and thermo-optic effect of a hybrid PDMS/silica photonic crystal fiber,” Opt. Express18(23), 24344–24351 (2010).
    [CrossRef] [PubMed]
  16. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol.27(11), 1617–1630 (2009).
    [CrossRef]
  17. C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, “Highly tunable birefringent microstructured optical fiber,” Opt. Lett.27(10), 842–844 (2002).
    [CrossRef] [PubMed]
  18. P. Steinvurzel, B. J. Eggleton, C. M. de Sterke, and M. J. Steel, “Continuously tunable bandpass filtering using high-index inclusion microstructured optical fiber,” Electron. Lett.41(8), 463–464 (2005).
    [CrossRef]
  19. C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, “Integrated all-fiber variable attenuator based on hybrid microstructure fiber,” Appl. Phys. Lett.79(19), 3191–3193 (2001).
    [CrossRef]
  20. A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express14(24), 11616–11621 (2006).
    [CrossRef] [PubMed]
  21. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett.34(3), 322–324 (2009).
    [CrossRef] [PubMed]
  22. W. Qian, C. L. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, S. Jin, J. Guo, and H. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett.36(9), 1548–1550 (2011).
    [CrossRef] [PubMed]
  23. Y. Fainman, L. P. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications (McGraw-Hill, 2010).
  24. F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys.151(2), 95–99 (2009).
    [CrossRef]
  25. http://www.nktphotonics.com/lmafibers-specifications
  26. K. Nielsen, D. Noordegraaf, T. Sorensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibers,” J. Opt. A, Pure Appl. Opt.7(8), L13–L20 (2005).
    [CrossRef]
  27. C. P. Yu and H. C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express12(25), 6165–6177 (2004).
    [CrossRef] [PubMed]
  28. Z. Zhu and T. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express10(17), 853–864 (2002).
    [PubMed]
  29. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys.114(2), 185–200 (1994).
    [CrossRef]
  30. E. Palik, Handbook of Optical Constants of Solids I–III (Academic, 1998).
  31. M. Nielsen and N. Mortensen, “Photonic crystal fiber design based on the V-parameter,” Opt. Express11(21), 2762–2768 (2003).
    [CrossRef] [PubMed]
  32. N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, “Modal cutoff and the V parameter in photonic crystal fibers,” Opt. Lett.28(20), 1879–1881 (2003).
    [CrossRef] [PubMed]
  33. J. R. Folkenberg, N. A. Mortensen, K. P. Hansen, T. P. Hansen, H. R. Simonsen, and C. Jakobsen, “Experimental investigation of cutoff phenomena in nonlinear photonic crystal fibers,” Opt. Lett.28(20), 1882–1884 (2003).
    [CrossRef] [PubMed]
  34. T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett.26(21), 1660–1662 (2001).
    [CrossRef] [PubMed]
  35. K. Petermann, “Fundamental mode micro bending loss in graded index and w fibers,” Opt. Quantum Electron.9(2), 167–175 (1977).
    [CrossRef]
  36. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J.56, 703 (1977).
  37. N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, and J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett.14(8), 1094–1096 (2002).
    [CrossRef]
  38. N. A. Mortensen, “Effective area of photonic crystal fibers,” Opt. Express10(7), 341–348 (2002).
    [PubMed]
  39. C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, “Microstructured-core optical fiber for evanescent sensing applications,” Opt. Express14(26), 13056–13066 (2006).
    [CrossRef] [PubMed]
  40. H. R. Sørensen, J. Canning, J. Lægsgaard, and K. Hansen, “Control of the wavelength dependent thermo-optic coefficients in structured fibers,” Opt. Express14(14), 6428–6433 (2006).
    [CrossRef] [PubMed]

2011 (2)

2010 (2)

2009 (4)

2008 (2)

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express16(12), 8427–8432 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (5)

2005 (2)

P. Steinvurzel, B. J. Eggleton, C. M. de Sterke, and M. J. Steel, “Continuously tunable bandpass filtering using high-index inclusion microstructured optical fiber,” Electron. Lett.41(8), 463–464 (2005).
[CrossRef]

K. Nielsen, D. Noordegraaf, T. Sorensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibers,” J. Opt. A, Pure Appl. Opt.7(8), L13–L20 (2005).
[CrossRef]

2004 (2)

2003 (5)

2002 (4)

2001 (2)

T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett.26(21), 1660–1662 (2001).
[CrossRef] [PubMed]

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, “Integrated all-fiber variable attenuator based on hybrid microstructure fiber,” Appl. Phys. Lett.79(19), 3191–3193 (2001).
[CrossRef]

2000 (1)

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett.12(5), 495–497 (2000).
[CrossRef]

1996 (1)

1994 (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys.114(2), 185–200 (1994).
[CrossRef]

1977 (2)

K. Petermann, “Fundamental mode micro bending loss in graded index and w fibers,” Opt. Quantum Electron.9(2), 167–175 (1977).
[CrossRef]

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J.56, 703 (1977).

Alkeskjold, T. T.

Anawati, A.

Atkin, D. M.

Bang, O.

Barretto, E. C. S.

Berenger, J. P.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys.114(2), 185–200 (1994).
[CrossRef]

Birks, T. A.

Bjarklev, A.

Botten, L. C.

Brito Cruz, C. H.

Broeng, J.

Brown, T.

Burdge, G. L.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett.12(5), 495–497 (2000).
[CrossRef]

Candiani, A.

Canning, J.

Chang, H. C.

Chesini, G.

Cordeiro, C. M. B.

de Sterke, C. M.

P. Steinvurzel, B. J. Eggleton, C. M. de Sterke, and M. J. Steel, “Continuously tunable bandpass filtering using high-index inclusion microstructured optical fiber,” Electron. Lett.41(8), 463–464 (2005).
[CrossRef]

T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett.26(21), 1660–1662 (2001).
[CrossRef] [PubMed]

Dong, X.

Draheim, J.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys.151(2), 95–99 (2009).
[CrossRef]

Dufva, M.

Eggleton, B. J.

D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett.34(3), 322–324 (2009).
[CrossRef] [PubMed]

B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol.27(11), 1617–1630 (2009).
[CrossRef]

P. Steinvurzel, B. J. Eggleton, C. M. de Sterke, and M. J. Steel, “Continuously tunable bandpass filtering using high-index inclusion microstructured optical fiber,” Electron. Lett.41(8), 463–464 (2005).
[CrossRef]

C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, “Highly tunable birefringent microstructured optical fiber,” Opt. Lett.27(10), 842–844 (2002).
[CrossRef] [PubMed]

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, “Integrated all-fiber variable attenuator based on hybrid microstructure fiber,” Appl. Phys. Lett.79(19), 3191–3193 (2001).
[CrossRef]

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett.12(5), 495–497 (2000).
[CrossRef]

Folken, J. R.

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, and J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett.14(8), 1094–1096 (2002).
[CrossRef]

Folkenberg, J. R.

Franco, M. A. R.

Guo, J.

Hale, A.

C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, “Highly tunable birefringent microstructured optical fiber,” Opt. Lett.27(10), 842–844 (2002).
[CrossRef] [PubMed]

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, “Integrated all-fiber variable attenuator based on hybrid microstructure fiber,” Appl. Phys. Lett.79(19), 3191–3193 (2001).
[CrossRef]

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett.12(5), 495–497 (2000).
[CrossRef]

Hansen, K.

Hansen, K. P.

Hansen, T. P.

K. Nielsen, D. Noordegraaf, T. Sorensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibers,” J. Opt. A, Pure Appl. Opt.7(8), L13–L20 (2005).
[CrossRef]

J. R. Folkenberg, N. A. Mortensen, K. P. Hansen, T. P. Hansen, H. R. Simonsen, and C. Jakobsen, “Experimental investigation of cutoff phenomena in nonlinear photonic crystal fibers,” Opt. Lett.28(20), 1882–1884 (2003).
[CrossRef] [PubMed]

Hassani, A.

Hautakorpi, M.

He, S.

Hermann, D.

Hermann, D. S.

Høiby, P. E.

Jakobsen, C.

Jensen, J. B.

Jin, S.

Kakarantzas, G.

Kamberger, R.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys.151(2), 95–99 (2009).
[CrossRef]

Kerbage, C.

C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, “Highly tunable birefringent microstructured optical fiber,” Opt. Lett.27(10), 842–844 (2002).
[CrossRef] [PubMed]

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, “Integrated all-fiber variable attenuator based on hybrid microstructure fiber,” Appl. Phys. Lett.79(19), 3191–3193 (2001).
[CrossRef]

Knight, J. C.

Konstantaki, M.

Kriezis, E. E.

Kuhlmey, B. T.

Lægsgaard, J.

Large, M. C. J.

Larsen, T. T.

Lee, H. W.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

Li, J.

Ludvigsen, H.

Lwin, R.

Marcuse, D.

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J.56, 703 (1977).

Margulis, W.

Markos, C.

Mattinen, M.

McPhedran, R. C.

Mortensen, N.

Mortensen, N. A.

Nielsen, K.

K. Nielsen, D. Noordegraaf, T. Sorensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibers,” J. Opt. A, Pure Appl. Opt.7(8), L13–L20 (2005).
[CrossRef]

Nielsen, M.

Nielsen, M. D.

Noordegraaf, D.

K. Nielsen, D. Noordegraaf, T. Sorensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibers,” J. Opt. A, Pure Appl. Opt.7(8), L13–L20 (2005).
[CrossRef]

Pearce, G. J.

Pedersen, L. H.

Petermann, K.

K. Petermann, “Fundamental mode micro bending loss in graded index and w fibers,” Opt. Quantum Electron.9(2), 167–175 (1977).
[CrossRef]

Pissadakis, S.

Poulton, C. G.

Qian, W.

Reyes, P.

Rindorf, L.

Russell, P. St. J.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

C. G. Poulton, M. A. Schmidt, G. J. Pearce, G. Kakarantzas, and P. St. J. Russell, “Numerical study of guided modes in arrays of metallic nanowires,” Opt. Lett.32(12), 1647–1649 (2007).
[CrossRef] [PubMed]

P. St. J. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21(19), 1547–1549 (1996).
[CrossRef] [PubMed]

Schmidt, M. A.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

C. G. Poulton, M. A. Schmidt, G. J. Pearce, G. Kakarantzas, and P. St. J. Russell, “Numerical study of guided modes in arrays of metallic nanowires,” Opt. Lett.32(12), 1647–1649 (2007).
[CrossRef] [PubMed]

Schneider, F.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys.151(2), 95–99 (2009).
[CrossRef]

Sempere, L. P.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

Simonsen, H. R.

Skorobogatiy, M.

Skovgaard, P. M. W.

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, and J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett.14(8), 1094–1096 (2002).
[CrossRef]

Sorensen, T.

K. Nielsen, D. Noordegraaf, T. Sorensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibers,” J. Opt. A, Pure Appl. Opt.7(8), L13–L20 (2005).
[CrossRef]

Sørensen, H. R.

Steel, M. J.

P. Steinvurzel, B. J. Eggleton, C. M. de Sterke, and M. J. Steel, “Continuously tunable bandpass filtering using high-index inclusion microstructured optical fiber,” Electron. Lett.41(8), 463–464 (2005).
[CrossRef]

T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett.26(21), 1660–1662 (2001).
[CrossRef] [PubMed]

Steinvurzel, P.

P. Steinvurzel, B. J. Eggleton, C. M. de Sterke, and M. J. Steel, “Continuously tunable bandpass filtering using high-index inclusion microstructured optical fiber,” Electron. Lett.41(8), 463–464 (2005).
[CrossRef]

C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, “Highly tunable birefringent microstructured optical fiber,” Opt. Lett.27(10), 842–844 (2002).
[CrossRef] [PubMed]

Strasser, T. A.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett.12(5), 495–497 (2000).
[CrossRef]

Town, G. E.

Tsiboukis, T. D.

Tyagi, H. K.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

Vlachos, K.

Wallrabe, U.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys.151(2), 95–99 (2009).
[CrossRef]

Wei, H.

Wei, L.

Westbrook, P. S.

C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, “Highly tunable birefringent microstructured optical fiber,” Opt. Lett.27(10), 842–844 (2002).
[CrossRef] [PubMed]

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett.12(5), 495–497 (2000).
[CrossRef]

White, T. P.

Windeler, R. S.

C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, “Highly tunable birefringent microstructured optical fiber,” Opt. Lett.27(10), 842–844 (2002).
[CrossRef] [PubMed]

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, “Integrated all-fiber variable attenuator based on hybrid microstructure fiber,” Appl. Phys. Lett.79(19), 3191–3193 (2001).
[CrossRef]

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett.12(5), 495–497 (2000).
[CrossRef]

Wu, D. K. C.

Wu, S. T.

Yablon, A.

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, “Integrated all-fiber variable attenuator based on hybrid microstructure fiber,” Appl. Phys. Lett.79(19), 3191–3193 (2001).
[CrossRef]

Yu, C. P.

Yuan, W.

Zhang, S.

Zhang, Z.

Zhao, C. L.

Zhu, Z.

Zografopoulos, D. C.

Appl. Phys. Lett. (2)

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, “Integrated all-fiber variable attenuator based on hybrid microstructure fiber,” Appl. Phys. Lett.79(19), 3191–3193 (2001).
[CrossRef]

Bell Syst. Tech. J. (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J.56, 703 (1977).

Electron. Lett. (1)

P. Steinvurzel, B. J. Eggleton, C. M. de Sterke, and M. J. Steel, “Continuously tunable bandpass filtering using high-index inclusion microstructured optical fiber,” Electron. Lett.41(8), 463–464 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, and J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett.14(8), 1094–1096 (2002).
[CrossRef]

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett.12(5), 495–497 (2000).
[CrossRef]

J. Comput. Phys. (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys.114(2), 185–200 (1994).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. A, Pure Appl. Opt. (1)

K. Nielsen, D. Noordegraaf, T. Sorensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibers,” J. Opt. A, Pure Appl. Opt.7(8), L13–L20 (2005).
[CrossRef]

Opt. Express (15)

W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express17(22), 19356–19364 (2009).
[CrossRef] [PubMed]

C. Markos, K. Vlachos, and G. Kakarantzas, “Bending loss and thermo-optic effect of a hybrid PDMS/silica photonic crystal fiber,” Opt. Express18(23), 24344–24351 (2010).
[CrossRef] [PubMed]

A. Candiani, M. Konstantaki, W. Margulis, and S. Pissadakis, “A spectrally tunable microstructured optical fiber Bragg grating utilizing an infiltrated ferrofluid,” Opt. Express18(24), 24654–24660 (2010).
[CrossRef] [PubMed]

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express19(8), 7790–7798 (2011).
[CrossRef] [PubMed]

A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express14(24), 11616–11621 (2006).
[CrossRef] [PubMed]

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, “Microstructured-core optical fiber for evanescent sensing applications,” Opt. Express14(26), 13056–13066 (2006).
[CrossRef] [PubMed]

N. A. Mortensen, “Effective area of photonic crystal fibers,” Opt. Express10(7), 341–348 (2002).
[PubMed]

Z. Zhu and T. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express10(17), 853–864 (2002).
[PubMed]

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibers,” Opt. Express11(20), 2589–2596 (2003).
[CrossRef] [PubMed]

M. Nielsen and N. Mortensen, “Photonic crystal fiber design based on the V-parameter,” Opt. Express11(21), 2762–2768 (2003).
[CrossRef] [PubMed]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express12(24), 5857–5871 (2004).
[CrossRef] [PubMed]

C. P. Yu and H. C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express12(25), 6165–6177 (2004).
[CrossRef] [PubMed]

H. R. Sørensen, J. Canning, J. Lægsgaard, and K. Hansen, “Control of the wavelength dependent thermo-optic coefficients in structured fibers,” Opt. Express14(14), 6428–6433 (2006).
[CrossRef] [PubMed]

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express14(18), 8224–8231 (2006).
[CrossRef] [PubMed]

M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express16(12), 8427–8432 (2008).
[CrossRef] [PubMed]

Opt. Lett. (8)

D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett.34(3), 322–324 (2009).
[CrossRef] [PubMed]

N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, “Modal cutoff and the V parameter in photonic crystal fibers,” Opt. Lett.28(20), 1879–1881 (2003).
[CrossRef] [PubMed]

J. R. Folkenberg, N. A. Mortensen, K. P. Hansen, T. P. Hansen, H. R. Simonsen, and C. Jakobsen, “Experimental investigation of cutoff phenomena in nonlinear photonic crystal fibers,” Opt. Lett.28(20), 1882–1884 (2003).
[CrossRef] [PubMed]

C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, “Highly tunable birefringent microstructured optical fiber,” Opt. Lett.27(10), 842–844 (2002).
[CrossRef] [PubMed]

C. G. Poulton, M. A. Schmidt, G. J. Pearce, G. Kakarantzas, and P. St. J. Russell, “Numerical study of guided modes in arrays of metallic nanowires,” Opt. Lett.32(12), 1647–1649 (2007).
[CrossRef] [PubMed]

W. Qian, C. L. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, S. Jin, J. Guo, and H. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett.36(9), 1548–1550 (2011).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21(19), 1547–1549 (1996).
[CrossRef] [PubMed]

T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett.26(21), 1660–1662 (2001).
[CrossRef] [PubMed]

Opt. Quantum Electron. (1)

K. Petermann, “Fundamental mode micro bending loss in graded index and w fibers,” Opt. Quantum Electron.9(2), 167–175 (1977).
[CrossRef]

Science (1)

P. St. J. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Sens. Actuators A Phys. (1)

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys.151(2), 95–99 (2009).
[CrossRef]

Other (4)

http://www.nktphotonics.com/lmafibers-specifications

Y. Fainman, L. P. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications (McGraw-Hill, 2010).

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in Proc. Opt. Fiber Commun. Conf. (OFC), Anaheim, CA, 2002, pp. 466–468.

E. Palik, Handbook of Optical Constants of Solids I–III (Academic, 1998).

Supplementary Material (1)

» Media 1: MOV (876 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Absorption coefficient of Poly-dimethylsiloxane (PDMS) material (logarithmic scale).

Fig. 2
Fig. 2

(a) Optical microscope image of the PDMS-filled PCF (LMA-13). (b) SEM image of a conventional (empty) PCF fiber.

Fig. 3
Fig. 3

Experimental set-up.

Fig. 4
Fig. 4

Loss measurements (dB/cm) of LMA-13, 12-01, 10, and 5 from 500 to 1700 nm.

Fig. 5
Fig. 5

(a) Hybrid polymer/silica simulated PCF. (b) Refractive index profile of the hybrid structure. Example of the calculated fundamental guiding mode profile of the PCF with d/Λ = 0.35 at 1550 nm (c) with air and (d) infused with PDMS polymer

Fig. 6
Fig. 6

Numerical calculations of the V-parameter of the PDMS filled PCF for different relative hole sizes. The dashed lines correspond to the conventional unfilled PCF. The black dashed line indicates the single-mode operation threshold.

Fig. 7
Fig. 7

(a) Effective index of the PDMS-filled PCF versus wavelength for different relative hole sizes Dashed lines correspond to the conventional (unfilled) PCF. (b) Confinement loss versus wavelength of the PDMS-filled PCF.

Fig. 8
Fig. 8

(a) Effective modal area of the hybrid PCF (solid line) and (b) numerical aperture of the hybrid polymer/Silica PCF with varying relative hole size. The dashed lines correspond to the conventional air-filled PCF.

Fig. 9
Fig. 9

Fraction of power in the PDMS-filled holes of the PCF versus wavelength for different relative hole sizes. Right inset represents a graphical representation of the evanescent field for the case of d/Λ = 0.75 at 1700 nm wavelength.

Fig. 10
Fig. 10

Effective index difference variation, Δn of the polymer-filled PCF for different relative hole sizes versus temperature at (a) 633nm and (b) 1550 nm. Single-mode operation cut-off (V-parameter) for different temperatures at (c) 633 and (d) 1550nm wavelength.

Fig. 11
Fig. 11

Confinement loss of the hybrid PDMS infused PCF for different relative hole sizes at 1550 nm.

Fig. 12
Fig. 12

Effective modal area (EMA) and numerical aperture (NA) variation versus temperature at (a),(c) 633 nm and (b),(d) 1550nm.

Fig. 13
Fig. 13

(a) Single-frame(one per 20°C) excerpts from the simulation video illustrating the tuning of the modal area of the fundament mode of the hybrid polymer/silica PCF with d/Λ = 0.35 at 1550 nm starting from 0°C to 100°C. Subplot (a) corresponds to 0°C and (f) to 100°C (logarithmic scale) (Media 1).

Fig. 14
Fig. 14

Fraction of power in the cladding of the hybrid polymer/silica PCF at (a) 633 nm and (B) 1550 nm from 0°C to 100°C.

Tables (1)

Tables Icon

Table 1 Structural Parameters of the Fibers

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Vparameter=2π Λ λ n FM 2 (λ) n FSM 2 (λ)
A eff = ( S | E t | 2 dxdy ) 2 S | E t | 4 dxdy
ΝΑ=sinΘ (1+π A eff / λ 2 ) 1/2
fractionofpower= holes Re( E x H y * E y H x * )dxdy Total Re( E x H y * E y H x * )dxdy ×100

Metrics