Abstract

In this study, polarized Raman mapping technique was applied to determine the orientations of c-axis of each grain in translucent polycrystalline alumina (PCA) samples which were well-sintered in H2 atmosphere. The averaged refractive index difference Δnavg between neighboring alumina grain particles was then experimentally estimated from the mapping data. It was shown that the translucent alumina had Δnavg of 0.002 and 0.0015 for horizontal and side planes, respectively, smaller than the value for random orientation in the Apetz et al model (ΔnApetz = 0.0053). With the experimental value, then light transmission spectra was simulated in the scope of the well-known Rayleigh-Gans-Debye (RGD) theory.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Krell, P. Blank, H. W. Ma, T. Hutzler, M. P. B. Bruggen, and R. Apetz, “Transparent sintered corundum with high hardness and strength,” J. Am. Ceram. Soc.86(1), 12–18 (2003).
    [CrossRef]
  2. D. T. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, and A. K. Mukherjee, “Optically transparent polycrystalline Al2O3 produced by spark plasma sintering,” J. Am. Ceram. Soc.91(1), 151–154 (2008).
    [CrossRef]
  3. A. Krell, J. Klimke, and T. Hutzler, “Advanced spinel and sub-um Al2O3 for transparent armour applications,” J. Eur. Ceram. Soc.29(2), 275–281 (2009).
    [CrossRef]
  4. M. E. Thomas, S. K. Andersson, R. M. Sova, and R. I. Joseph, “Frequency and temperature dependence of the refractive index of sapphire,” Infrared Phys. Technol.39(4), 235–249 (1998).
    [CrossRef]
  5. http://www.ngk.co.jp/english/products/
  6. M. C. Munisso, W. Zhu, and G. Pezzotti, “Raman tensor analysis of sapphire single crystal and its application to define crystallographic orientation in polycrystalline alumina,” Phys. Status Solidi, B Basic Res.246(8), 1893–1900 (2009).
    [CrossRef]
  7. Y. Takeda, N. Shibata, and A. Okada, “Crystallographic orientation measurement in alumina using Raman-microprobe polarization,” J. Ceram. Soc. Jpn.108(1262), 888–891 (2000).
    [CrossRef]
  8. Y. Takeda, N. Shibata, and A. Okada, “Three-dimensional crystallographic orientation measurement of poly crystalline alumina by Raman-microprobe polarization,” J. Ceram. Soc. Jpn.109(1265), 12–15 (2001).
    [CrossRef]
  9. A. Yariv and P. T. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiations (Wiley-Interscience, Hoboken, New Jersey, 2002).
  10. H. C. van de Hulst, Light Scattering by Small Particles (Dover Publications, Inc., New York, 1981).
  11. R. Apetz and M. P. B. van Bruggen, “Transparent alumina: A light-scattering model,” J. Am. Ceram. Soc.86(3), 480–486 (2003).
    [CrossRef]
  12. B.-N. Kim, K. Hiraga, K. Morita, H. Yoshida, and Y. Kagawa, “Light scattering in MgO-doped alumina fabricated by spark plasma sintering,” Acta Mater.58(13), 4527–4535 (2010).
    [CrossRef]
  13. C. Pecharromán, G. Mata-Osoro, L. A. Díaz, R. Torrecillas, and J. S. Moya, “On the transparency of nanostructured alumina: Rayleigh-Gans model for anisotropic spheres,” Opt. Express17(8), 6899–6912 (2009).
    [CrossRef] [PubMed]

2010 (1)

B.-N. Kim, K. Hiraga, K. Morita, H. Yoshida, and Y. Kagawa, “Light scattering in MgO-doped alumina fabricated by spark plasma sintering,” Acta Mater.58(13), 4527–4535 (2010).
[CrossRef]

2009 (3)

C. Pecharromán, G. Mata-Osoro, L. A. Díaz, R. Torrecillas, and J. S. Moya, “On the transparency of nanostructured alumina: Rayleigh-Gans model for anisotropic spheres,” Opt. Express17(8), 6899–6912 (2009).
[CrossRef] [PubMed]

A. Krell, J. Klimke, and T. Hutzler, “Advanced spinel and sub-um Al2O3 for transparent armour applications,” J. Eur. Ceram. Soc.29(2), 275–281 (2009).
[CrossRef]

M. C. Munisso, W. Zhu, and G. Pezzotti, “Raman tensor analysis of sapphire single crystal and its application to define crystallographic orientation in polycrystalline alumina,” Phys. Status Solidi, B Basic Res.246(8), 1893–1900 (2009).
[CrossRef]

2008 (1)

D. T. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, and A. K. Mukherjee, “Optically transparent polycrystalline Al2O3 produced by spark plasma sintering,” J. Am. Ceram. Soc.91(1), 151–154 (2008).
[CrossRef]

2003 (2)

A. Krell, P. Blank, H. W. Ma, T. Hutzler, M. P. B. Bruggen, and R. Apetz, “Transparent sintered corundum with high hardness and strength,” J. Am. Ceram. Soc.86(1), 12–18 (2003).
[CrossRef]

R. Apetz and M. P. B. van Bruggen, “Transparent alumina: A light-scattering model,” J. Am. Ceram. Soc.86(3), 480–486 (2003).
[CrossRef]

2001 (1)

Y. Takeda, N. Shibata, and A. Okada, “Three-dimensional crystallographic orientation measurement of poly crystalline alumina by Raman-microprobe polarization,” J. Ceram. Soc. Jpn.109(1265), 12–15 (2001).
[CrossRef]

2000 (1)

Y. Takeda, N. Shibata, and A. Okada, “Crystallographic orientation measurement in alumina using Raman-microprobe polarization,” J. Ceram. Soc. Jpn.108(1262), 888–891 (2000).
[CrossRef]

1998 (1)

M. E. Thomas, S. K. Andersson, R. M. Sova, and R. I. Joseph, “Frequency and temperature dependence of the refractive index of sapphire,” Infrared Phys. Technol.39(4), 235–249 (1998).
[CrossRef]

Andersson, S. K.

M. E. Thomas, S. K. Andersson, R. M. Sova, and R. I. Joseph, “Frequency and temperature dependence of the refractive index of sapphire,” Infrared Phys. Technol.39(4), 235–249 (1998).
[CrossRef]

Anselmi-Tamburini, U.

D. T. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, and A. K. Mukherjee, “Optically transparent polycrystalline Al2O3 produced by spark plasma sintering,” J. Am. Ceram. Soc.91(1), 151–154 (2008).
[CrossRef]

Apetz, R.

A. Krell, P. Blank, H. W. Ma, T. Hutzler, M. P. B. Bruggen, and R. Apetz, “Transparent sintered corundum with high hardness and strength,” J. Am. Ceram. Soc.86(1), 12–18 (2003).
[CrossRef]

R. Apetz and M. P. B. van Bruggen, “Transparent alumina: A light-scattering model,” J. Am. Ceram. Soc.86(3), 480–486 (2003).
[CrossRef]

Blank, P.

A. Krell, P. Blank, H. W. Ma, T. Hutzler, M. P. B. Bruggen, and R. Apetz, “Transparent sintered corundum with high hardness and strength,” J. Am. Ceram. Soc.86(1), 12–18 (2003).
[CrossRef]

Bruggen, M. P. B.

A. Krell, P. Blank, H. W. Ma, T. Hutzler, M. P. B. Bruggen, and R. Apetz, “Transparent sintered corundum with high hardness and strength,” J. Am. Ceram. Soc.86(1), 12–18 (2003).
[CrossRef]

Díaz, L. A.

Hiraga, K.

B.-N. Kim, K. Hiraga, K. Morita, H. Yoshida, and Y. Kagawa, “Light scattering in MgO-doped alumina fabricated by spark plasma sintering,” Acta Mater.58(13), 4527–4535 (2010).
[CrossRef]

Hulbert, D. M.

D. T. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, and A. K. Mukherjee, “Optically transparent polycrystalline Al2O3 produced by spark plasma sintering,” J. Am. Ceram. Soc.91(1), 151–154 (2008).
[CrossRef]

Hutzler, T.

A. Krell, J. Klimke, and T. Hutzler, “Advanced spinel and sub-um Al2O3 for transparent armour applications,” J. Eur. Ceram. Soc.29(2), 275–281 (2009).
[CrossRef]

A. Krell, P. Blank, H. W. Ma, T. Hutzler, M. P. B. Bruggen, and R. Apetz, “Transparent sintered corundum with high hardness and strength,” J. Am. Ceram. Soc.86(1), 12–18 (2003).
[CrossRef]

Jiang, D. T.

D. T. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, and A. K. Mukherjee, “Optically transparent polycrystalline Al2O3 produced by spark plasma sintering,” J. Am. Ceram. Soc.91(1), 151–154 (2008).
[CrossRef]

Joseph, R. I.

M. E. Thomas, S. K. Andersson, R. M. Sova, and R. I. Joseph, “Frequency and temperature dependence of the refractive index of sapphire,” Infrared Phys. Technol.39(4), 235–249 (1998).
[CrossRef]

Kagawa, Y.

B.-N. Kim, K. Hiraga, K. Morita, H. Yoshida, and Y. Kagawa, “Light scattering in MgO-doped alumina fabricated by spark plasma sintering,” Acta Mater.58(13), 4527–4535 (2010).
[CrossRef]

Kim, B.-N.

B.-N. Kim, K. Hiraga, K. Morita, H. Yoshida, and Y. Kagawa, “Light scattering in MgO-doped alumina fabricated by spark plasma sintering,” Acta Mater.58(13), 4527–4535 (2010).
[CrossRef]

Klimke, J.

A. Krell, J. Klimke, and T. Hutzler, “Advanced spinel and sub-um Al2O3 for transparent armour applications,” J. Eur. Ceram. Soc.29(2), 275–281 (2009).
[CrossRef]

Krell, A.

A. Krell, J. Klimke, and T. Hutzler, “Advanced spinel and sub-um Al2O3 for transparent armour applications,” J. Eur. Ceram. Soc.29(2), 275–281 (2009).
[CrossRef]

A. Krell, P. Blank, H. W. Ma, T. Hutzler, M. P. B. Bruggen, and R. Apetz, “Transparent sintered corundum with high hardness and strength,” J. Am. Ceram. Soc.86(1), 12–18 (2003).
[CrossRef]

Land, D.

D. T. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, and A. K. Mukherjee, “Optically transparent polycrystalline Al2O3 produced by spark plasma sintering,” J. Am. Ceram. Soc.91(1), 151–154 (2008).
[CrossRef]

Ma, H. W.

A. Krell, P. Blank, H. W. Ma, T. Hutzler, M. P. B. Bruggen, and R. Apetz, “Transparent sintered corundum with high hardness and strength,” J. Am. Ceram. Soc.86(1), 12–18 (2003).
[CrossRef]

Mata-Osoro, G.

Morita, K.

B.-N. Kim, K. Hiraga, K. Morita, H. Yoshida, and Y. Kagawa, “Light scattering in MgO-doped alumina fabricated by spark plasma sintering,” Acta Mater.58(13), 4527–4535 (2010).
[CrossRef]

Moya, J. S.

Mukherjee, A. K.

D. T. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, and A. K. Mukherjee, “Optically transparent polycrystalline Al2O3 produced by spark plasma sintering,” J. Am. Ceram. Soc.91(1), 151–154 (2008).
[CrossRef]

Munisso, M. C.

M. C. Munisso, W. Zhu, and G. Pezzotti, “Raman tensor analysis of sapphire single crystal and its application to define crystallographic orientation in polycrystalline alumina,” Phys. Status Solidi, B Basic Res.246(8), 1893–1900 (2009).
[CrossRef]

Ng, T.

D. T. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, and A. K. Mukherjee, “Optically transparent polycrystalline Al2O3 produced by spark plasma sintering,” J. Am. Ceram. Soc.91(1), 151–154 (2008).
[CrossRef]

Okada, A.

Y. Takeda, N. Shibata, and A. Okada, “Three-dimensional crystallographic orientation measurement of poly crystalline alumina by Raman-microprobe polarization,” J. Ceram. Soc. Jpn.109(1265), 12–15 (2001).
[CrossRef]

Y. Takeda, N. Shibata, and A. Okada, “Crystallographic orientation measurement in alumina using Raman-microprobe polarization,” J. Ceram. Soc. Jpn.108(1262), 888–891 (2000).
[CrossRef]

Pecharromán, C.

Pezzotti, G.

M. C. Munisso, W. Zhu, and G. Pezzotti, “Raman tensor analysis of sapphire single crystal and its application to define crystallographic orientation in polycrystalline alumina,” Phys. Status Solidi, B Basic Res.246(8), 1893–1900 (2009).
[CrossRef]

Shibata, N.

Y. Takeda, N. Shibata, and A. Okada, “Three-dimensional crystallographic orientation measurement of poly crystalline alumina by Raman-microprobe polarization,” J. Ceram. Soc. Jpn.109(1265), 12–15 (2001).
[CrossRef]

Y. Takeda, N. Shibata, and A. Okada, “Crystallographic orientation measurement in alumina using Raman-microprobe polarization,” J. Ceram. Soc. Jpn.108(1262), 888–891 (2000).
[CrossRef]

Sova, R. M.

M. E. Thomas, S. K. Andersson, R. M. Sova, and R. I. Joseph, “Frequency and temperature dependence of the refractive index of sapphire,” Infrared Phys. Technol.39(4), 235–249 (1998).
[CrossRef]

Takeda, Y.

Y. Takeda, N. Shibata, and A. Okada, “Three-dimensional crystallographic orientation measurement of poly crystalline alumina by Raman-microprobe polarization,” J. Ceram. Soc. Jpn.109(1265), 12–15 (2001).
[CrossRef]

Y. Takeda, N. Shibata, and A. Okada, “Crystallographic orientation measurement in alumina using Raman-microprobe polarization,” J. Ceram. Soc. Jpn.108(1262), 888–891 (2000).
[CrossRef]

Thomas, M. E.

M. E. Thomas, S. K. Andersson, R. M. Sova, and R. I. Joseph, “Frequency and temperature dependence of the refractive index of sapphire,” Infrared Phys. Technol.39(4), 235–249 (1998).
[CrossRef]

Torrecillas, R.

van Bruggen, M. P. B.

R. Apetz and M. P. B. van Bruggen, “Transparent alumina: A light-scattering model,” J. Am. Ceram. Soc.86(3), 480–486 (2003).
[CrossRef]

Yoshida, H.

B.-N. Kim, K. Hiraga, K. Morita, H. Yoshida, and Y. Kagawa, “Light scattering in MgO-doped alumina fabricated by spark plasma sintering,” Acta Mater.58(13), 4527–4535 (2010).
[CrossRef]

Zhu, W.

M. C. Munisso, W. Zhu, and G. Pezzotti, “Raman tensor analysis of sapphire single crystal and its application to define crystallographic orientation in polycrystalline alumina,” Phys. Status Solidi, B Basic Res.246(8), 1893–1900 (2009).
[CrossRef]

Acta Mater. (1)

B.-N. Kim, K. Hiraga, K. Morita, H. Yoshida, and Y. Kagawa, “Light scattering in MgO-doped alumina fabricated by spark plasma sintering,” Acta Mater.58(13), 4527–4535 (2010).
[CrossRef]

Infrared Phys. Technol. (1)

M. E. Thomas, S. K. Andersson, R. M. Sova, and R. I. Joseph, “Frequency and temperature dependence of the refractive index of sapphire,” Infrared Phys. Technol.39(4), 235–249 (1998).
[CrossRef]

J. Am. Ceram. Soc. (3)

A. Krell, P. Blank, H. W. Ma, T. Hutzler, M. P. B. Bruggen, and R. Apetz, “Transparent sintered corundum with high hardness and strength,” J. Am. Ceram. Soc.86(1), 12–18 (2003).
[CrossRef]

D. T. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, and A. K. Mukherjee, “Optically transparent polycrystalline Al2O3 produced by spark plasma sintering,” J. Am. Ceram. Soc.91(1), 151–154 (2008).
[CrossRef]

R. Apetz and M. P. B. van Bruggen, “Transparent alumina: A light-scattering model,” J. Am. Ceram. Soc.86(3), 480–486 (2003).
[CrossRef]

J. Ceram. Soc. Jpn. (2)

Y. Takeda, N. Shibata, and A. Okada, “Crystallographic orientation measurement in alumina using Raman-microprobe polarization,” J. Ceram. Soc. Jpn.108(1262), 888–891 (2000).
[CrossRef]

Y. Takeda, N. Shibata, and A. Okada, “Three-dimensional crystallographic orientation measurement of poly crystalline alumina by Raman-microprobe polarization,” J. Ceram. Soc. Jpn.109(1265), 12–15 (2001).
[CrossRef]

J. Eur. Ceram. Soc. (1)

A. Krell, J. Klimke, and T. Hutzler, “Advanced spinel and sub-um Al2O3 for transparent armour applications,” J. Eur. Ceram. Soc.29(2), 275–281 (2009).
[CrossRef]

Opt. Express (1)

Phys. Status Solidi, B Basic Res. (1)

M. C. Munisso, W. Zhu, and G. Pezzotti, “Raman tensor analysis of sapphire single crystal and its application to define crystallographic orientation in polycrystalline alumina,” Phys. Status Solidi, B Basic Res.246(8), 1893–1900 (2009).
[CrossRef]

Other (3)

http://www.ngk.co.jp/english/products/

A. Yariv and P. T. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiations (Wiley-Interscience, Hoboken, New Jersey, 2002).

H. C. van de Hulst, Light Scattering by Small Particles (Dover Publications, Inc., New York, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A1g (645cm−1) Raman mappings of translucent alumina, (a) Sample 1, (b) Sample 4. White curves show grain boundaries.

Fig. 2
Fig. 2

Simulated in-line transmission curves for various Δn values by using Eq. (4).

Fig. 3
Fig. 3

Simulated in-line transmission curves for various VfG values by using Eq. (4).

Fig. 4
Fig. 4

In-line transmission data (red + ) and fitted curve (blue line) for Sample 1.

Fig. 5
Fig. 5

In-line transmission data (red triangles) and fitted curve (blue line) for Sample 4.

Fig. 6
Fig. 6

Cubic model for translucent polycrystalline alumina (PCA) (minimization of volume fraction Vf of scatter for an ideal PCA structure).

Tables (1)

Tables Icon

Table 1 Averaged Grain Size D (= 2G) and Δnavg

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S{ sin 4 ( θ ) }{ cos 4 ( ϕ 0 ϕ exp ) },
γ gb =N C sca,gb ,
C sca,gb = 8 π 3 G 4 λ 2 ( Δn n ) 2 .
γ gb = V f 6 π 2 G λ 2 ( Δn n ) 2 .

Metrics