Abstract

Wavelength conversion efficiency to the UV region is limited by a host of factors. To overcome several of these constraints, we use a fluxless-grown BBO crystal for fourth harmonic conversion of a linearly polarized Nd:YAG microchip laser, passively Q-switched with [110] cut Cr4+:YAG. The high quality BBO crystal used in the picosecond pulse width regime enables 60% conversion efficiency to give 3.4 MW peak power, 250 ps, 100 Hz pulses at 266 nm.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Zayhowski, C. Dill III, C. Cook, and J. L. Daneu, “Mid-and high-power passively Q-switched microchip lasers,” in Proceeding of Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D.C., 1999), pp. 178–186.
  2. N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys.40(Part 1, No. 3A), 1253–1259 (2001).
    [CrossRef]
  3. H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express16(24), 19891–19899 (2008).
    [CrossRef] [PubMed]
  4. S. Hayashi, K. Nawata, H. Sakai, T. Taira, H. Minamide, and K. Kawase, “High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser [Invited],” Opt. Express20(3), 2881–2886 (2012).
    [CrossRef] [PubMed]
  5. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron.46(2), 277–284 (2010).
    [CrossRef]
  6. N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express19(10), 9378–9384 (2011).
    [CrossRef] [PubMed]
  7. H. Kan, A. Sone, H. Sakai, T. Taira, N. Pavel, and V. Lupei, “Laser light source,” U. S. Patent No. 6,931,047 B2 (dated Aug. 16, 2005).
  8. R. Bhandari and T. Taira, “> 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser,” Opt. Express19(20), 19135–19141 (2011).
    [CrossRef] [PubMed]
  9. R. Bhandari and T. Taira, “Megawatt level UV output from [110] Cr4+:YAG passively Q-switched microchip laser,” Opt. Express19(23), 22510–22514 (2011).
    [CrossRef] [PubMed]
  10. T. Taira, “Domain-controlled laser ceramics toward giant micro-photonics [Invited],” Opt. Mater. Express1(5), 1040–1050 (2011).
    [CrossRef]
  11. M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys.49(8), 080211 (2010).
    [CrossRef]
  12. A. Dubietis, G. Tamošauskas, A. Varanavičius, and G. Valiulis, “Two-photon absorbing properties of ultraviolet phase-matchable crystals at 264 and 211 nm,” Appl. Opt.39(15), 2437–2440 (2000).
    [CrossRef] [PubMed]
  13. N. Kondratyuk and A. Shagov, “Nonlinear absorption at 266 nm in BBO crystal and its influence on frequency conversion,” Proc. SPIE4751, 110–115 (2002).
    [CrossRef]
  14. G. Kurdi, K. Osway, J. Klebniczki, M. Divall, E. J. Divall, A. Peter, K. Polgar, and J. Bohus, “Two-photon-absorption of BBO, CLBO, KDP and LTB crystals,” in Proceedings of Advanced Solid State Photonics, Technical Digest (Optical Society of America, Washington, D.C., 2005), paper MF18.
  15. D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys.62(5), 1968–1983 (1987).
    [CrossRef]
  16. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron.32(8), 1324–1333 (1996).
    [CrossRef]
  17. H. Sakai, H. Kan, and T. Taira, “Passive Q-switch laser device,” U. S. Patent No. 7,664,148 B2 (dated Feb. 16, 2010).
  18. M. Nishioka, A. Kanoh, M. Yoshimura, Y. Mori, and T. Sasaki, “Growth of CsLiB6O10 crystals with high laser-damage tolerance,” J. Cryst. Growth279(1-2), 76–81 (2005).
    [CrossRef]

2012 (1)

2011 (4)

2010 (2)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron.46(2), 277–284 (2010).
[CrossRef]

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys.49(8), 080211 (2010).
[CrossRef]

2008 (1)

2005 (1)

M. Nishioka, A. Kanoh, M. Yoshimura, Y. Mori, and T. Sasaki, “Growth of CsLiB6O10 crystals with high laser-damage tolerance,” J. Cryst. Growth279(1-2), 76–81 (2005).
[CrossRef]

2002 (1)

N. Kondratyuk and A. Shagov, “Nonlinear absorption at 266 nm in BBO crystal and its influence on frequency conversion,” Proc. SPIE4751, 110–115 (2002).
[CrossRef]

2001 (1)

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys.40(Part 1, No. 3A), 1253–1259 (2001).
[CrossRef]

2000 (1)

1996 (1)

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron.32(8), 1324–1333 (1996).
[CrossRef]

1987 (1)

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys.62(5), 1968–1983 (1987).
[CrossRef]

Ando, A.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron.46(2), 277–284 (2010).
[CrossRef]

Bhandari, R.

Cadatal-Raduban, M.

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys.49(8), 080211 (2010).
[CrossRef]

Davis, L.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys.62(5), 1968–1983 (1987).
[CrossRef]

Dergachev, A.

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys.49(8), 080211 (2010).
[CrossRef]

DeSalvo, R.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron.32(8), 1324–1333 (1996).
[CrossRef]

Dubietis, A.

Eimerl, D.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys.62(5), 1968–1983 (1987).
[CrossRef]

Graham, E. K.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys.62(5), 1968–1983 (1987).
[CrossRef]

Hagan, D. J.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron.32(8), 1324–1333 (1996).
[CrossRef]

Hayashi, S.

Inohara, T.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron.46(2), 277–284 (2010).
[CrossRef]

Kan, H.

Kanehara, K.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron.46(2), 277–284 (2010).
[CrossRef]

Kanoh, A.

M. Nishioka, A. Kanoh, M. Yoshimura, Y. Mori, and T. Sasaki, “Growth of CsLiB6O10 crystals with high laser-damage tolerance,” J. Cryst. Growth279(1-2), 76–81 (2005).
[CrossRef]

Kawase, K.

Kido, N.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron.46(2), 277–284 (2010).
[CrossRef]

Kondratyuk, N.

N. Kondratyuk and A. Shagov, “Nonlinear absorption at 266 nm in BBO crystal and its influence on frequency conversion,” Proc. SPIE4751, 110–115 (2002).
[CrossRef]

Kurimura, S.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys.40(Part 1, No. 3A), 1253–1259 (2001).
[CrossRef]

Minamide, H.

Mori, Y.

M. Nishioka, A. Kanoh, M. Yoshimura, Y. Mori, and T. Sasaki, “Growth of CsLiB6O10 crystals with high laser-damage tolerance,” J. Cryst. Growth279(1-2), 76–81 (2005).
[CrossRef]

Moulton, P. F.

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys.49(8), 080211 (2010).
[CrossRef]

Nawata, K.

Nishioka, M.

M. Nishioka, A. Kanoh, M. Yoshimura, Y. Mori, and T. Sasaki, “Growth of CsLiB6O10 crystals with high laser-damage tolerance,” J. Cryst. Growth279(1-2), 76–81 (2005).
[CrossRef]

Osada, A.

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys.49(8), 080211 (2010).
[CrossRef]

Pavel, N.

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express19(10), 9378–9384 (2011).
[CrossRef] [PubMed]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys.40(Part 1, No. 3A), 1253–1259 (2001).
[CrossRef]

Said, A. A.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron.32(8), 1324–1333 (1996).
[CrossRef]

Saikawa, J.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys.40(Part 1, No. 3A), 1253–1259 (2001).
[CrossRef]

Sakai, H.

Sarukura, N.

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys.49(8), 080211 (2010).
[CrossRef]

Sasaki, T.

M. Nishioka, A. Kanoh, M. Yoshimura, Y. Mori, and T. Sasaki, “Growth of CsLiB6O10 crystals with high laser-damage tolerance,” J. Cryst. Growth279(1-2), 76–81 (2005).
[CrossRef]

Shagov, A.

N. Kondratyuk and A. Shagov, “Nonlinear absorption at 266 nm in BBO crystal and its influence on frequency conversion,” Proc. SPIE4751, 110–115 (2002).
[CrossRef]

Sheik-Bahae, M.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron.32(8), 1324–1333 (1996).
[CrossRef]

Shimizu, T.

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys.49(8), 080211 (2010).
[CrossRef]

Taira, T.

S. Hayashi, K. Nawata, H. Sakai, T. Taira, H. Minamide, and K. Kawase, “High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser [Invited],” Opt. Express20(3), 2881–2886 (2012).
[CrossRef] [PubMed]

R. Bhandari and T. Taira, “> 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser,” Opt. Express19(20), 19135–19141 (2011).
[CrossRef] [PubMed]

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express19(10), 9378–9384 (2011).
[CrossRef] [PubMed]

R. Bhandari and T. Taira, “Megawatt level UV output from [110] Cr4+:YAG passively Q-switched microchip laser,” Opt. Express19(23), 22510–22514 (2011).
[CrossRef] [PubMed]

T. Taira, “Domain-controlled laser ceramics toward giant micro-photonics [Invited],” Opt. Mater. Express1(5), 1040–1050 (2011).
[CrossRef]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron.46(2), 277–284 (2010).
[CrossRef]

H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express16(24), 19891–19899 (2008).
[CrossRef] [PubMed]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys.40(Part 1, No. 3A), 1253–1259 (2001).
[CrossRef]

Takahashi, M.

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys.49(8), 080211 (2010).
[CrossRef]

Tamošauskas, G.

Tsunekane, M.

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express19(10), 9378–9384 (2011).
[CrossRef] [PubMed]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron.46(2), 277–284 (2010).
[CrossRef]

Valiulis, G.

Van Stryland, E. W.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron.32(8), 1324–1333 (1996).
[CrossRef]

Varanavicius, A.

Velsko, S.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys.62(5), 1968–1983 (1987).
[CrossRef]

Yoshimura, M.

M. Nishioka, A. Kanoh, M. Yoshimura, Y. Mori, and T. Sasaki, “Growth of CsLiB6O10 crystals with high laser-damage tolerance,” J. Cryst. Growth279(1-2), 76–81 (2005).
[CrossRef]

Zalkin, A.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys.62(5), 1968–1983 (1987).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (2)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron.46(2), 277–284 (2010).
[CrossRef]

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron.32(8), 1324–1333 (1996).
[CrossRef]

J. Appl. Phys. (1)

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys.62(5), 1968–1983 (1987).
[CrossRef]

J. Cryst. Growth (1)

M. Nishioka, A. Kanoh, M. Yoshimura, Y. Mori, and T. Sasaki, “Growth of CsLiB6O10 crystals with high laser-damage tolerance,” J. Cryst. Growth279(1-2), 76–81 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (2)

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys.49(8), 080211 (2010).
[CrossRef]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys.40(Part 1, No. 3A), 1253–1259 (2001).
[CrossRef]

Opt. Express (5)

Opt. Mater. Express (1)

Proc. SPIE (1)

N. Kondratyuk and A. Shagov, “Nonlinear absorption at 266 nm in BBO crystal and its influence on frequency conversion,” Proc. SPIE4751, 110–115 (2002).
[CrossRef]

Other (4)

G. Kurdi, K. Osway, J. Klebniczki, M. Divall, E. J. Divall, A. Peter, K. Polgar, and J. Bohus, “Two-photon-absorption of BBO, CLBO, KDP and LTB crystals,” in Proceedings of Advanced Solid State Photonics, Technical Digest (Optical Society of America, Washington, D.C., 2005), paper MF18.

H. Sakai, H. Kan, and T. Taira, “Passive Q-switch laser device,” U. S. Patent No. 7,664,148 B2 (dated Feb. 16, 2010).

J. J. Zayhowski, C. Dill III, C. Cook, and J. L. Daneu, “Mid-and high-power passively Q-switched microchip lasers,” in Proceeding of Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D.C., 1999), pp. 178–186.

H. Kan, A. Sone, H. Sakai, T. Taira, N. Pavel, and V. Lupei, “Laser light source,” U. S. Patent No. 6,931,047 B2 (dated Aug. 16, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experiment schematic with laser structure.

Fig. 2
Fig. 2

Schematic for FHG experiment.

Fig. 3
Fig. 3

FHG conversion efficiency and output power characteristics for flux-grown and fluxless-grown BBO crystals.

Fig. 4
Fig. 4

Techniques used for improved quality BBO crystal growth.

Fig. 5
Fig. 5

X-ray topographic image of the fluxless-grown BBO crystal.

Fig. 6
Fig. 6

Linear transmission characteristics of flux-grown and fluxless-grown BBO crystals (length: 6mm).

Metrics