Abstract

The nanograting inscription on the surface of a fused silica substrate is systematically investigated on a shot-to-shot basis. Three different evolutionary processes are observed with pulse fluence ranging from slightly below to well above the single shot ablation threshold. This dependence is explained by the interplay between local intensity distribution and incubation effect.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.87, 014104 (2005).
    [CrossRef]
  2. M. Henyk, N. Vogel, D. Wolfframm, A. Tempel, and J. Reif, “Femtosecond laser ablation from dielectric materials: comparison to arc discharge erosion,” Appl. Phys. A69, S355–S358 (1999).
    [CrossRef]
  3. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultra-short light pulses,” Phys. Rev. Lett.91, 247405 (2003).
    [CrossRef] [PubMed]
  4. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3, 4062–4070 (2009).
    [CrossRef] [PubMed]
  5. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96, 057404 (2006).
    [CrossRef] [PubMed]
  6. W. Yang, E. Bricchi, P. G. Kazansky, J. Bovatsek, and A. Y. Arai, “Self-assembled periodic sub-wavelength structures by femtosecond laser direct writing,” Opt. Express14, 10117–10124 (2006).
    [CrossRef] [PubMed]
  7. Q. Sun, F. Liang, R. Vallée, and S. L. Chin, “Nanograting formation on the surface of silica glass by scanning focused femtosecond laser pulses,” Opt. Lett.33, 2713–2715 (2008).
    [CrossRef] [PubMed]
  8. S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A104, 503–507 (2011).
    [CrossRef]
  9. Q. M. Zhang, H. Lin, B. H. Jia, L. X. Xu, and M. Gu, “Nanogratings and nanoholes fabricated by direct femtosecond laser writing in chalcogenide glasses,” Opt. Express18, 6885–6890 (2010).
    [CrossRef] [PubMed]
  10. F. Liang, R. Vallée, and S. L. Chin, “Mechanism of nanograting formation on the surface of fused silica,” Opt. Express20, 4389–4396 (2012).
    [CrossRef] [PubMed]
  11. D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150, 101–106 (1999).
    [CrossRef]
  12. A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A69, S373–S376 (1999).
    [CrossRef]
  13. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett.7, 196–198 (1982).
    [CrossRef] [PubMed]
  14. F. Liang, R. Vallée, D. Gingras, and S. L. Chin, “Role of ablation and incubation processes on surface nanograting formation,” Opt. Mater. Express1, 1244–1250 (2011).
    [CrossRef]
  15. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79, 125436 (2009).
    [CrossRef]

2012 (1)

2011 (2)

F. Liang, R. Vallée, D. Gingras, and S. L. Chin, “Role of ablation and incubation processes on surface nanograting formation,” Opt. Mater. Express1, 1244–1250 (2011).
[CrossRef]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A104, 503–507 (2011).
[CrossRef]

2010 (1)

2009 (2)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3, 4062–4070 (2009).
[CrossRef] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79, 125436 (2009).
[CrossRef]

2008 (1)

2006 (2)

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96, 057404 (2006).
[CrossRef] [PubMed]

W. Yang, E. Bricchi, P. G. Kazansky, J. Bovatsek, and A. Y. Arai, “Self-assembled periodic sub-wavelength structures by femtosecond laser direct writing,” Opt. Express14, 10117–10124 (2006).
[CrossRef] [PubMed]

2005 (1)

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.87, 014104 (2005).
[CrossRef]

2003 (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultra-short light pulses,” Phys. Rev. Lett.91, 247405 (2003).
[CrossRef] [PubMed]

1999 (3)

M. Henyk, N. Vogel, D. Wolfframm, A. Tempel, and J. Reif, “Femtosecond laser ablation from dielectric materials: comparison to arc discharge erosion,” Appl. Phys. A69, S355–S358 (1999).
[CrossRef]

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150, 101–106 (1999).
[CrossRef]

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A69, S373–S376 (1999).
[CrossRef]

1982 (1)

Arai, A. Y.

Ashkenasi, D.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150, 101–106 (1999).
[CrossRef]

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A69, S373–S376 (1999).
[CrossRef]

Bhardwaj, V. R.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96, 057404 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.87, 014104 (2005).
[CrossRef]

Bovatsek, J.

Bricchi, E.

Cheng, Y.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3, 4062–4070 (2009).
[CrossRef] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79, 125436 (2009).
[CrossRef]

Chin, S. L.

Corkum, P. B.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96, 057404 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.87, 014104 (2005).
[CrossRef]

Döring, S.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A104, 503–507 (2011).
[CrossRef]

Gingras, D.

Gu, M.

Heinrich, M.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A104, 503–507 (2011).
[CrossRef]

Henyk, M.

M. Henyk, N. Vogel, D. Wolfframm, A. Tempel, and J. Reif, “Femtosecond laser ablation from dielectric materials: comparison to arc discharge erosion,” Appl. Phys. A69, S355–S358 (1999).
[CrossRef]

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultra-short light pulses,” Phys. Rev. Lett.91, 247405 (2003).
[CrossRef] [PubMed]

Hnatovsky, C.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96, 057404 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.87, 014104 (2005).
[CrossRef]

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3, 4062–4070 (2009).
[CrossRef] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79, 125436 (2009).
[CrossRef]

Jia, B. H.

Kazansky, P. G.

W. Yang, E. Bricchi, P. G. Kazansky, J. Bovatsek, and A. Y. Arai, “Self-assembled periodic sub-wavelength structures by femtosecond laser direct writing,” Opt. Express14, 10117–10124 (2006).
[CrossRef] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultra-short light pulses,” Phys. Rev. Lett.91, 247405 (2003).
[CrossRef] [PubMed]

Liang, F.

Lin, H.

Liu, J. M.

Lorenz, M.

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A69, S373–S376 (1999).
[CrossRef]

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150, 101–106 (1999).
[CrossRef]

Nolte, S.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A104, 503–507 (2011).
[CrossRef]

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultra-short light pulses,” Phys. Rev. Lett.91, 247405 (2003).
[CrossRef] [PubMed]

Rajeev, P. P.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96, 057404 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.87, 014104 (2005).
[CrossRef]

Rayner, D. M.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96, 057404 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.87, 014104 (2005).
[CrossRef]

Reif, J.

M. Henyk, N. Vogel, D. Wolfframm, A. Tempel, and J. Reif, “Femtosecond laser ablation from dielectric materials: comparison to arc discharge erosion,” Appl. Phys. A69, S355–S358 (1999).
[CrossRef]

Richter, S.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A104, 503–507 (2011).
[CrossRef]

Rosenfeld, A.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150, 101–106 (1999).
[CrossRef]

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A69, S373–S376 (1999).
[CrossRef]

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultra-short light pulses,” Phys. Rev. Lett.91, 247405 (2003).
[CrossRef] [PubMed]

Simova, E.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96, 057404 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.87, 014104 (2005).
[CrossRef]

Stoian, R.

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A69, S373–S376 (1999).
[CrossRef]

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150, 101–106 (1999).
[CrossRef]

Sun, Q.

Taylor, R. S.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96, 057404 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.87, 014104 (2005).
[CrossRef]

Tempel, A.

M. Henyk, N. Vogel, D. Wolfframm, A. Tempel, and J. Reif, “Femtosecond laser ablation from dielectric materials: comparison to arc discharge erosion,” Appl. Phys. A69, S355–S358 (1999).
[CrossRef]

Tünnermann, A.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A104, 503–507 (2011).
[CrossRef]

Vallée, R.

Vogel, N.

M. Henyk, N. Vogel, D. Wolfframm, A. Tempel, and J. Reif, “Femtosecond laser ablation from dielectric materials: comparison to arc discharge erosion,” Appl. Phys. A69, S355–S358 (1999).
[CrossRef]

Wolfframm, D.

M. Henyk, N. Vogel, D. Wolfframm, A. Tempel, and J. Reif, “Femtosecond laser ablation from dielectric materials: comparison to arc discharge erosion,” Appl. Phys. A69, S355–S358 (1999).
[CrossRef]

Xu, L. X.

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79, 125436 (2009).
[CrossRef]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3, 4062–4070 (2009).
[CrossRef] [PubMed]

Xu, Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79, 125436 (2009).
[CrossRef]

Xu, Z. Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3, 4062–4070 (2009).
[CrossRef] [PubMed]

Yang, W.

Zhang, Q. M.

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79, 125436 (2009).
[CrossRef]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3, 4062–4070 (2009).
[CrossRef] [PubMed]

ACS Nano (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3, 4062–4070 (2009).
[CrossRef] [PubMed]

Appl. Phys. A (3)

M. Henyk, N. Vogel, D. Wolfframm, A. Tempel, and J. Reif, “Femtosecond laser ablation from dielectric materials: comparison to arc discharge erosion,” Appl. Phys. A69, S355–S358 (1999).
[CrossRef]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A104, 503–507 (2011).
[CrossRef]

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A69, S373–S376 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.87, 014104 (2005).
[CrossRef]

Appl. Surf. Sci. (1)

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150, 101–106 (1999).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. B (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79, 125436 (2009).
[CrossRef]

Phys. Rev. Lett. (2)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultra-short light pulses,” Phys. Rev. Lett.91, 247405 (2003).
[CrossRef] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96, 057404 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Evolution of the nanogrooves at 80 nJ. The nanocraters are randomly induced around the laser peak within the focal zone at the first few shots, then elongated in the direction perpendicular to the electric field with the increase in the number of shots. Eventually, they merge together forming nanogrooves. The enlargement of the interaction zone is the result of the incubation effect. K: laser propagation direction; E: electric field.

Fig. 2
Fig. 2

Evolution of the nanogrooves at 90 nJ. Apparently randomly distributed small craters are initiated at the first two shots. Craters elongated into nanogrooves in the direction perpendicular to the electric field after 3 shots are observed. With the increase in the number of shots, the new nanogrooves are formed either on the side or in between the ones created earlier. The enlargement of the interaction zone is the result of the incubation effect. K: laser propagation direction; E: electric field.

Fig. 3
Fig. 3

Evolution of the nanogrooves at 100 nJ. Apparent melting and resolidification occur in the first few shots. After 4 shots, similar evolutionary process as the case of 90 nJ gives rise to the formation of nanogrooves. K: laser propagation direction; E: electric field.

Fig. 4
Fig. 4

Evolution of the nanogrooves at 120 nJ. K: laser propagation direction; E: electric field.

Fig. 5
Fig. 5

(Color online) A unit crater showing the incubation area along the equatorial direction which is in accordance with the local intensity distribution. The color bar represents the ratio between the local intensity and the incident laser intensity (Calculated with the sets of equations derived by Liang et al. [10] with plasma density assumed to be 2.5×1021/cm3). The refractive index of the sample and the electron collision time used for simulation are 1.45 and 23.3 fs, respectively. E: electric field.

Metrics