Abstract

Uniform homeotropic alignment of nematic liquid crystals is achieved on a square array of metallic nanoholes through vapor-phase deposition of a fluorinated silane-coupling agent. We show through polarization optical microscopy and optical spectroscopy that the monolayer formed can induce homeotropic alignment on the nanohole array without disturbing its optical properties. The proposed technique is a step towards realizing electro-tunable metamaterials with controlled liquid crystal orientation.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev.40, 2494–2507 (2011).
    [CrossRef] [PubMed]
  2. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008).
    [CrossRef] [PubMed]
  3. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press; Oxford University Press, Oxford, New York, 1993).
  4. D. H. Werner, D. Kwon, I. Khoo, A. V. Kildishev, and V. M. Shalaev, “Liquid crystal clad near-infrared metama-terials with tunable negative-zero-positive refractive indices,” Opt. Express15, 3342–3347 (2007).
    [CrossRef] [PubMed]
  5. X. Wang, D. Kwon, D. H. Werner, I. Khoo, A. V. Kildishev, and V. M. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett.91, 143122 (2007).
    [CrossRef]
  6. F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, and D. Lippens, “Magnetic control of negative permeability metamaterials based on liquid crystals,” Appl. Phys. Lett.92, 193104 (2008).
    [CrossRef]
  7. A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett.96, 193103 (2010).
    [CrossRef]
  8. F. Zhang, W. Zhang, Q. Zhao, J. Sun, K. Qiu, J. Zhou, and D. Lippens, “Electrically controllable fishnet metamaterial based on nematic liquid crystal,” Opt. Express19, 1563–1568 (2011).
    [CrossRef] [PubMed]
  9. J. Zhong, Y. Huang, G. Wen, H. Sun, and W. Zhu, “The design and applications of tunable metamaterials,” Procedia Eng.29, 802–807 (2012).
    [CrossRef]
  10. A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. Hoe Tan, C. Jagadish, and Y. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett.100, 121113 (2012).
    [CrossRef]
  11. D. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett.28, 1683–1686 (1972).
    [CrossRef]
  12. J. Kim, M. Yoneya, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature420, 159–162 (2002).
    [CrossRef] [PubMed]
  13. J. S. Gwag, J.-i. Fukuda, M. Yoneya, and H. Yokoyama, “In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief” Appl. Phys. Lett.91, 073504 (2007).
    [CrossRef]
  14. J.-i. Niitsuma, M. Yoneya, and H. Yokoyama, “Contact photolithographic micropatterning for bistable nematic liquid crystal displays,” Appl. Phys. Lett.92, 241120 (2008).
    [CrossRef]
  15. T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett.24, 256–258 (1999).
    [CrossRef]
  16. S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett.95, 033115 (2009).
    [CrossRef]
  17. Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett.97, 091101 (2010).
    [CrossRef]
  18. Y. J. Liu, E. S. P. Leong, B. Wang, and J. H. Teng, “Optical transmission enhancement and tuning by overylaying liquid crystals on a gold film with patterned nanoholes,” Plasmonics6, 659–664 (2011).
    [CrossRef]
  19. C. Huang, H. E. Katz, and J. E. West, “Solution-processed organic field-effect transistors and unipolar inverters using self-assembled interface dipoles on gate dielectrics,” Langmuir23, 13223–13231 (2007).
    [CrossRef] [PubMed]
  20. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
    [CrossRef]
  21. G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys.101, 073105 (2007).
    [CrossRef]

2012 (2)

J. Zhong, Y. Huang, G. Wen, H. Sun, and W. Zhu, “The design and applications of tunable metamaterials,” Procedia Eng.29, 802–807 (2012).
[CrossRef]

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. Hoe Tan, C. Jagadish, and Y. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett.100, 121113 (2012).
[CrossRef]

2011 (3)

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev.40, 2494–2507 (2011).
[CrossRef] [PubMed]

F. Zhang, W. Zhang, Q. Zhao, J. Sun, K. Qiu, J. Zhou, and D. Lippens, “Electrically controllable fishnet metamaterial based on nematic liquid crystal,” Opt. Express19, 1563–1568 (2011).
[CrossRef] [PubMed]

Y. J. Liu, E. S. P. Leong, B. Wang, and J. H. Teng, “Optical transmission enhancement and tuning by overylaying liquid crystals on a gold film with patterned nanoholes,” Plasmonics6, 659–664 (2011).
[CrossRef]

2010 (2)

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett.96, 193103 (2010).
[CrossRef]

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett.97, 091101 (2010).
[CrossRef]

2009 (1)

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett.95, 033115 (2009).
[CrossRef]

2008 (3)

J.-i. Niitsuma, M. Yoneya, and H. Yokoyama, “Contact photolithographic micropatterning for bistable nematic liquid crystal displays,” Appl. Phys. Lett.92, 241120 (2008).
[CrossRef]

F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, and D. Lippens, “Magnetic control of negative permeability metamaterials based on liquid crystals,” Appl. Phys. Lett.92, 193104 (2008).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008).
[CrossRef] [PubMed]

2007 (5)

D. H. Werner, D. Kwon, I. Khoo, A. V. Kildishev, and V. M. Shalaev, “Liquid crystal clad near-infrared metama-terials with tunable negative-zero-positive refractive indices,” Opt. Express15, 3342–3347 (2007).
[CrossRef] [PubMed]

X. Wang, D. Kwon, D. H. Werner, I. Khoo, A. V. Kildishev, and V. M. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett.91, 143122 (2007).
[CrossRef]

J. S. Gwag, J.-i. Fukuda, M. Yoneya, and H. Yokoyama, “In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief” Appl. Phys. Lett.91, 073504 (2007).
[CrossRef]

C. Huang, H. E. Katz, and J. E. West, “Solution-processed organic field-effect transistors and unipolar inverters using self-assembled interface dipoles on gate dielectrics,” Langmuir23, 13223–13231 (2007).
[CrossRef] [PubMed]

G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys.101, 073105 (2007).
[CrossRef]

2002 (1)

J. Kim, M. Yoneya, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature420, 159–162 (2002).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

1972 (1)

D. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett.28, 1683–1686 (1972).
[CrossRef]

Abbate, G.

G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys.101, 073105 (2007).
[CrossRef]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008).
[CrossRef] [PubMed]

Berreman, D.

D. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett.28, 1683–1686 (1972).
[CrossRef]

Chettiar, U. K.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett.95, 033115 (2009).
[CrossRef]

de Gennes, P. G.

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press; Oxford University Press, Oxford, New York, 1993).

De Stefano, L.

G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys.101, 073105 (2007).
[CrossRef]

Drachev, V.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett.95, 033115 (2009).
[CrossRef]

Ebbesen, T. W.

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett.24, 256–258 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Farnell, J.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. Hoe Tan, C. Jagadish, and Y. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett.100, 121113 (2012).
[CrossRef]

Fukuda, J.-i.

J. S. Gwag, J.-i. Fukuda, M. Yoneya, and H. Yokoyama, “In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief” Appl. Phys. Lett.91, 073504 (2007).
[CrossRef]

Gaillot, D. P.

F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, and D. Lippens, “Magnetic control of negative permeability metamaterials based on liquid crystals,” Appl. Phys. Lett.92, 193104 (2008).
[CrossRef]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Giocondo, M.

G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys.101, 073105 (2007).
[CrossRef]

Grupp, D. E.

Gwag, J. S.

J. S. Gwag, J.-i. Fukuda, M. Yoneya, and H. Yokoyama, “In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief” Appl. Phys. Lett.91, 073504 (2007).
[CrossRef]

Hao, Q.

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett.97, 091101 (2010).
[CrossRef]

Hoe Tan, H.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. Hoe Tan, C. Jagadish, and Y. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett.100, 121113 (2012).
[CrossRef]

Huang, C.

C. Huang, H. E. Katz, and J. E. West, “Solution-processed organic field-effect transistors and unipolar inverters using self-assembled interface dipoles on gate dielectrics,” Langmuir23, 13223–13231 (2007).
[CrossRef] [PubMed]

Huang, T. J.

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett.97, 091101 (2010).
[CrossRef]

Huang, Y.

J. Zhong, Y. Huang, G. Wen, H. Sun, and W. Zhu, “The design and applications of tunable metamaterials,” Procedia Eng.29, 802–807 (2012).
[CrossRef]

Jagadish, C.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. Hoe Tan, C. Jagadish, and Y. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett.100, 121113 (2012).
[CrossRef]

Kang, L.

F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, and D. Lippens, “Magnetic control of negative permeability metamaterials based on liquid crystals,” Appl. Phys. Lett.92, 193104 (2008).
[CrossRef]

Karouta, F.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. Hoe Tan, C. Jagadish, and Y. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett.100, 121113 (2012).
[CrossRef]

Katz, H. E.

C. Huang, H. E. Katz, and J. E. West, “Solution-processed organic field-effect transistors and unipolar inverters using self-assembled interface dipoles on gate dielectrics,” Langmuir23, 13223–13231 (2007).
[CrossRef] [PubMed]

Khoo, I.

D. H. Werner, D. Kwon, I. Khoo, A. V. Kildishev, and V. M. Shalaev, “Liquid crystal clad near-infrared metama-terials with tunable negative-zero-positive refractive indices,” Opt. Express15, 3342–3347 (2007).
[CrossRef] [PubMed]

X. Wang, D. Kwon, D. H. Werner, I. Khoo, A. V. Kildishev, and V. M. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett.91, 143122 (2007).
[CrossRef]

Khoo, I. C.

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett.97, 091101 (2010).
[CrossRef]

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett.95, 033115 (2009).
[CrossRef]

Kildishev, A. V.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett.95, 033115 (2009).
[CrossRef]

X. Wang, D. Kwon, D. H. Werner, I. Khoo, A. V. Kildishev, and V. M. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett.91, 143122 (2007).
[CrossRef]

D. H. Werner, D. Kwon, I. Khoo, A. V. Kildishev, and V. M. Shalaev, “Liquid crystal clad near-infrared metama-terials with tunable negative-zero-positive refractive indices,” Opt. Express15, 3342–3347 (2007).
[CrossRef] [PubMed]

Kim, J.

J. Kim, M. Yoneya, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature420, 159–162 (2002).
[CrossRef] [PubMed]

Kim, T. J.

Kivshar, Y. S.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. Hoe Tan, C. Jagadish, and Y. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett.100, 121113 (2012).
[CrossRef]

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett.96, 193103 (2010).
[CrossRef]

Kwon, D.

X. Wang, D. Kwon, D. H. Werner, I. Khoo, A. V. Kildishev, and V. M. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett.91, 143122 (2007).
[CrossRef]

D. H. Werner, D. Kwon, I. Khoo, A. V. Kildishev, and V. M. Shalaev, “Liquid crystal clad near-infrared metama-terials with tunable negative-zero-positive refractive indices,” Opt. Express15, 3342–3347 (2007).
[CrossRef] [PubMed]

Leong, E. S. P.

Y. J. Liu, E. S. P. Leong, B. Wang, and J. H. Teng, “Optical transmission enhancement and tuning by overylaying liquid crystals on a gold film with patterned nanoholes,” Plasmonics6, 659–664 (2011).
[CrossRef]

Lezec, H. J.

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett.24, 256–258 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Liou, J.

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett.97, 091101 (2010).
[CrossRef]

Lippens, D.

F. Zhang, W. Zhang, Q. Zhao, J. Sun, K. Qiu, J. Zhou, and D. Lippens, “Electrically controllable fishnet metamaterial based on nematic liquid crystal,” Opt. Express19, 1563–1568 (2011).
[CrossRef] [PubMed]

F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, and D. Lippens, “Magnetic control of negative permeability metamaterials based on liquid crystals,” Appl. Phys. Lett.92, 193104 (2008).
[CrossRef]

Liu, Y.

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev.40, 2494–2507 (2011).
[CrossRef] [PubMed]

Liu, Y. J.

Y. J. Liu, E. S. P. Leong, B. Wang, and J. H. Teng, “Optical transmission enhancement and tuning by overylaying liquid crystals on a gold film with patterned nanoholes,” Plasmonics6, 659–664 (2011).
[CrossRef]

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett.97, 091101 (2010).
[CrossRef]

Marino, A.

G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys.101, 073105 (2007).
[CrossRef]

Mazzulla, A.

G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys.101, 073105 (2007).
[CrossRef]

McKerracher, I.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. Hoe Tan, C. Jagadish, and Y. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett.100, 121113 (2012).
[CrossRef]

Minovich, A.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. Hoe Tan, C. Jagadish, and Y. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett.100, 121113 (2012).
[CrossRef]

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett.96, 193103 (2010).
[CrossRef]

Neshev, D. N.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. Hoe Tan, C. Jagadish, and Y. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett.100, 121113 (2012).
[CrossRef]

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett.96, 193103 (2010).
[CrossRef]

Niitsuma, J.-i.

J.-i. Niitsuma, M. Yoneya, and H. Yokoyama, “Contact photolithographic micropatterning for bistable nematic liquid crystal displays,” Appl. Phys. Lett.92, 241120 (2008).
[CrossRef]

Powell, D. A.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. Hoe Tan, C. Jagadish, and Y. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett.100, 121113 (2012).
[CrossRef]

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett.96, 193103 (2010).
[CrossRef]

Prost, J.

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press; Oxford University Press, Oxford, New York, 1993).

Qiu, K.

Shadrivov, I. V.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. Hoe Tan, C. Jagadish, and Y. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett.100, 121113 (2012).
[CrossRef]

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett.96, 193103 (2010).
[CrossRef]

Shalaev, V. M.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett.95, 033115 (2009).
[CrossRef]

X. Wang, D. Kwon, D. H. Werner, I. Khoo, A. V. Kildishev, and V. M. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett.91, 143122 (2007).
[CrossRef]

D. H. Werner, D. Kwon, I. Khoo, A. V. Kildishev, and V. M. Shalaev, “Liquid crystal clad near-infrared metama-terials with tunable negative-zero-positive refractive indices,” Opt. Express15, 3342–3347 (2007).
[CrossRef] [PubMed]

Smalley, J. S. T.

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett.97, 091101 (2010).
[CrossRef]

Sun, H.

J. Zhong, Y. Huang, G. Wen, H. Sun, and W. Zhu, “The design and applications of tunable metamaterials,” Procedia Eng.29, 802–807 (2012).
[CrossRef]

Sun, J.

Teng, J. H.

Y. J. Liu, E. S. P. Leong, B. Wang, and J. H. Teng, “Optical transmission enhancement and tuning by overylaying liquid crystals on a gold film with patterned nanoholes,” Plasmonics6, 659–664 (2011).
[CrossRef]

Thio, T.

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett.24, 256–258 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Tian, J.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. Hoe Tan, C. Jagadish, and Y. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett.100, 121113 (2012).
[CrossRef]

Tkachenko, V.

G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys.101, 073105 (2007).
[CrossRef]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008).
[CrossRef] [PubMed]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008).
[CrossRef] [PubMed]

Vita, F.

G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys.101, 073105 (2007).
[CrossRef]

Wang, B.

Y. J. Liu, E. S. P. Leong, B. Wang, and J. H. Teng, “Optical transmission enhancement and tuning by overylaying liquid crystals on a gold film with patterned nanoholes,” Plasmonics6, 659–664 (2011).
[CrossRef]

Wang, X.

X. Wang, D. Kwon, D. H. Werner, I. Khoo, A. V. Kildishev, and V. M. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett.91, 143122 (2007).
[CrossRef]

Wen, G.

J. Zhong, Y. Huang, G. Wen, H. Sun, and W. Zhu, “The design and applications of tunable metamaterials,” Procedia Eng.29, 802–807 (2012).
[CrossRef]

Werner, D. H.

D. H. Werner, D. Kwon, I. Khoo, A. V. Kildishev, and V. M. Shalaev, “Liquid crystal clad near-infrared metama-terials with tunable negative-zero-positive refractive indices,” Opt. Express15, 3342–3347 (2007).
[CrossRef] [PubMed]

X. Wang, D. Kwon, D. H. Werner, I. Khoo, A. V. Kildishev, and V. M. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett.91, 143122 (2007).
[CrossRef]

West, J. E.

C. Huang, H. E. Katz, and J. E. West, “Solution-processed organic field-effect transistors and unipolar inverters using self-assembled interface dipoles on gate dielectrics,” Langmuir23, 13223–13231 (2007).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Xiao, S.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett.95, 033115 (2009).
[CrossRef]

Yokoyama, H.

J.-i. Niitsuma, M. Yoneya, and H. Yokoyama, “Contact photolithographic micropatterning for bistable nematic liquid crystal displays,” Appl. Phys. Lett.92, 241120 (2008).
[CrossRef]

J. S. Gwag, J.-i. Fukuda, M. Yoneya, and H. Yokoyama, “In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief” Appl. Phys. Lett.91, 073504 (2007).
[CrossRef]

J. Kim, M. Yoneya, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature420, 159–162 (2002).
[CrossRef] [PubMed]

Yoneya, M.

J.-i. Niitsuma, M. Yoneya, and H. Yokoyama, “Contact photolithographic micropatterning for bistable nematic liquid crystal displays,” Appl. Phys. Lett.92, 241120 (2008).
[CrossRef]

J. S. Gwag, J.-i. Fukuda, M. Yoneya, and H. Yokoyama, “In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief” Appl. Phys. Lett.91, 073504 (2007).
[CrossRef]

J. Kim, M. Yoneya, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature420, 159–162 (2002).
[CrossRef] [PubMed]

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008).
[CrossRef] [PubMed]

Zhang, F.

F. Zhang, W. Zhang, Q. Zhao, J. Sun, K. Qiu, J. Zhou, and D. Lippens, “Electrically controllable fishnet metamaterial based on nematic liquid crystal,” Opt. Express19, 1563–1568 (2011).
[CrossRef] [PubMed]

F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, and D. Lippens, “Magnetic control of negative permeability metamaterials based on liquid crystals,” Appl. Phys. Lett.92, 193104 (2008).
[CrossRef]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008).
[CrossRef] [PubMed]

Zhang, W.

Zhang, X.

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev.40, 2494–2507 (2011).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008).
[CrossRef] [PubMed]

Zhao, Q.

F. Zhang, W. Zhang, Q. Zhao, J. Sun, K. Qiu, J. Zhou, and D. Lippens, “Electrically controllable fishnet metamaterial based on nematic liquid crystal,” Opt. Express19, 1563–1568 (2011).
[CrossRef] [PubMed]

F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, and D. Lippens, “Magnetic control of negative permeability metamaterials based on liquid crystals,” Appl. Phys. Lett.92, 193104 (2008).
[CrossRef]

Zhao, X.

F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, and D. Lippens, “Magnetic control of negative permeability metamaterials based on liquid crystals,” Appl. Phys. Lett.92, 193104 (2008).
[CrossRef]

Zhong, J.

J. Zhong, Y. Huang, G. Wen, H. Sun, and W. Zhu, “The design and applications of tunable metamaterials,” Procedia Eng.29, 802–807 (2012).
[CrossRef]

Zhou, J.

F. Zhang, W. Zhang, Q. Zhao, J. Sun, K. Qiu, J. Zhou, and D. Lippens, “Electrically controllable fishnet metamaterial based on nematic liquid crystal,” Opt. Express19, 1563–1568 (2011).
[CrossRef] [PubMed]

F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, and D. Lippens, “Magnetic control of negative permeability metamaterials based on liquid crystals,” Appl. Phys. Lett.92, 193104 (2008).
[CrossRef]

Zhu, W.

J. Zhong, Y. Huang, G. Wen, H. Sun, and W. Zhu, “The design and applications of tunable metamaterials,” Procedia Eng.29, 802–807 (2012).
[CrossRef]

Appl. Phys. Lett. (8)

X. Wang, D. Kwon, D. H. Werner, I. Khoo, A. V. Kildishev, and V. M. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett.91, 143122 (2007).
[CrossRef]

F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, and D. Lippens, “Magnetic control of negative permeability metamaterials based on liquid crystals,” Appl. Phys. Lett.92, 193104 (2008).
[CrossRef]

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett.96, 193103 (2010).
[CrossRef]

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. Hoe Tan, C. Jagadish, and Y. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett.100, 121113 (2012).
[CrossRef]

J. S. Gwag, J.-i. Fukuda, M. Yoneya, and H. Yokoyama, “In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief” Appl. Phys. Lett.91, 073504 (2007).
[CrossRef]

J.-i. Niitsuma, M. Yoneya, and H. Yokoyama, “Contact photolithographic micropatterning for bistable nematic liquid crystal displays,” Appl. Phys. Lett.92, 241120 (2008).
[CrossRef]

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett.95, 033115 (2009).
[CrossRef]

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett.97, 091101 (2010).
[CrossRef]

Chem. Soc. Rev. (1)

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev.40, 2494–2507 (2011).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys.101, 073105 (2007).
[CrossRef]

Langmuir (1)

C. Huang, H. E. Katz, and J. E. West, “Solution-processed organic field-effect transistors and unipolar inverters using self-assembled interface dipoles on gate dielectrics,” Langmuir23, 13223–13231 (2007).
[CrossRef] [PubMed]

Nature (3)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

J. Kim, M. Yoneya, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature420, 159–162 (2002).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

D. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett.28, 1683–1686 (1972).
[CrossRef]

Plasmonics (1)

Y. J. Liu, E. S. P. Leong, B. Wang, and J. H. Teng, “Optical transmission enhancement and tuning by overylaying liquid crystals on a gold film with patterned nanoholes,” Plasmonics6, 659–664 (2011).
[CrossRef]

Procedia Eng. (1)

J. Zhong, Y. Huang, G. Wen, H. Sun, and W. Zhu, “The design and applications of tunable metamaterials,” Procedia Eng.29, 802–807 (2012).
[CrossRef]

Other (1)

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press; Oxford University Press, Oxford, New York, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic illustration of the NHA pattern, (b) Side-on view of the NHA pattern. (c) SEM image of the NHA substrate. scale bar: 1 μm.

Fig. 2
Fig. 2

Chemical structure of the silane-coupling agent used.

Fig. 3
Fig. 3

Transmittance spectra of the NHA substrate before and after application of SAM.

Fig. 4
Fig. 4

(a), (b) Microscope image of samples with and without SCA-treatment, and (c), (d) POM image of samples with and without SCA-treatment.

Fig. 5
Fig. 5

(a) Conoscopic image of samples with and (b) without SCA-treatment.

Fig. 6
Fig. 6

(a) Temperature dependence of the transmittance spectrum of the SCA-treated sample. (b) Temperature dependence of the transmittance dip positions and corresponding refractive indices.

Metrics