Abstract

Maghemite nanoparticles were doped in optical poly phenyl methyl vinyl siloxane and oriented by externally applied electric fields before curing. Consequent change in the morphology of the nanocomposite was observed and characterized using small angle x-ray scattering (SAXS). After curing, Faraday rotation measurements were carried out at 632.8 nm. Electric field based alignment in addition to presence of the nanodopants enhanced the magneto-optic sensitivity by 14.3-48.6% for the polymer nanocomposites. A linear trend was observed between orienting electric fields and measured Faraday rotation angles. Limits on applicable electric fields for dopant concentrations were also ascertained from the magneto-optic response.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. R. Watekar, S. Ju, S. A. Kim, S. Jeong, Y. Kim, and W. T. Han, “Development of a highly sensitive compact sized optical fiber current sensor,” Opt. Express18(16), 17096–17105 (2010).
    [CrossRef] [PubMed]
  2. H. Yoshida, K. Tsubakimoto, Y. Fujimoto, K. Mikami, H. Fujita, N. Miyanaga, H. Nozawa, H. Yagi, T. Yanagitani, Y. Nagata, and H. Kinoshita, “Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator,” Opt. Express19(16), 15181–15187 (2011).
    [CrossRef] [PubMed]
  3. A. I. Savchuk, V. I. Fediv, S. A. Savchuk, and V. V. Makoviy, “Optical and magneto-optical diagnostics of polymer/nanoparticles colloidal solutions and composites,” Proc. SPIE7388, 73880Z (2009).
    [CrossRef]
  4. D. Golubchik, E. Polturak, G. Koren, and S. G. Lipson, “A high resolution magneto-optical system for imaging of individual magnetic flux quanta,” Opt. Express17(18), 16160–16165 (2009).
    [CrossRef] [PubMed]
  5. L. Sun, S. Jiang, and J. R. Marciante, “All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber,” Opt. Express18(6), 5407–5412 (2010).
    [CrossRef] [PubMed]
  6. A. Lopez-Santiago, P. Gangopadhyay, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation in magnetite-polymethylmethacrylate core-shell nanocomposites with high optical quality,” Appl. Phys. Lett.95(14), 143302 (2009).
    [CrossRef]
  7. M.-C. Oh, J.-K. Seo, K.-J. Kim, H. Kim, J.-W. Kim, and W.-S. Chu, “Optical Current Sensors Consisting of Polymeric Waveguide Components,” J. Lightwave Technol.28(12), 1851–1857 (2010).
    [CrossRef]
  8. H. Koerner, J. Jacobs, D. Tomlin, J. Busbee, and R. Vaia, “Tuning Polymer Nanocomposite Morphology: AC Electric Field Manipulation of Epoxy–Montmorillonite (Clay) Suspensions,” Adv. Mater.16(4), 297–302 (2004).
    [CrossRef]
  9. M. Mittal, P. P. Lele, E. W. Kaler, and E. M. Furst, “Polarization and interactions of colloidal particles in ac electric fields,” J. Chem. Phys.129(6), 064513 (2008).
    [CrossRef] [PubMed]
  10. S. K. Apte, S. D. Naik, R. S. Sonawane, B. B. Kale, and J. O. Baeg, “Synthesis of Nanosize-Necked Structure α- and γ-Fe2O3 and its Photocatalytic Activity,” J. Am. Ceram. Soc.90(2), 412–414 (2007).
    [CrossRef]
  11. A. E. DePrince and R. J. Hinde, “Accurate Computation of Electric Field Enhancement Factors for Metallic Nanoparticles Using the Discrete Dipole Approximation,” Nanoscale Res. Lett.5(3), 592–596 (2010).
    [CrossRef] [PubMed]
  12. J. Park and W. Lu, “Orientation of core-shell nanoparticles in an electric field,” Appl. Phys. Lett.91(5), 053113 (2007).
    [CrossRef]
  13. A. Yariv and P. Yeh, Optics of Waves in Crystals (Wiley, 2003).
  14. Yu. S. Dadoenkova, I. L. Lyubchanskii, Y. P. Lee, and Th. Rasing, “Electric field controlled Faraday rotation in an electro-optic/magneto-optic bilayer,” Appl. Phys. Lett.97(1), 011901 (2010).
    [CrossRef]
  15. X. J. Li and K. Chang, “Electric-field tuning s-d exchange interaction in quantum dots,” Appl. Phys. Lett.92(7), 071116 (2008).
    [CrossRef]

2011 (1)

2010 (5)

2009 (3)

A. Lopez-Santiago, P. Gangopadhyay, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation in magnetite-polymethylmethacrylate core-shell nanocomposites with high optical quality,” Appl. Phys. Lett.95(14), 143302 (2009).
[CrossRef]

A. I. Savchuk, V. I. Fediv, S. A. Savchuk, and V. V. Makoviy, “Optical and magneto-optical diagnostics of polymer/nanoparticles colloidal solutions and composites,” Proc. SPIE7388, 73880Z (2009).
[CrossRef]

D. Golubchik, E. Polturak, G. Koren, and S. G. Lipson, “A high resolution magneto-optical system for imaging of individual magnetic flux quanta,” Opt. Express17(18), 16160–16165 (2009).
[CrossRef] [PubMed]

2008 (2)

M. Mittal, P. P. Lele, E. W. Kaler, and E. M. Furst, “Polarization and interactions of colloidal particles in ac electric fields,” J. Chem. Phys.129(6), 064513 (2008).
[CrossRef] [PubMed]

X. J. Li and K. Chang, “Electric-field tuning s-d exchange interaction in quantum dots,” Appl. Phys. Lett.92(7), 071116 (2008).
[CrossRef]

2007 (2)

J. Park and W. Lu, “Orientation of core-shell nanoparticles in an electric field,” Appl. Phys. Lett.91(5), 053113 (2007).
[CrossRef]

S. K. Apte, S. D. Naik, R. S. Sonawane, B. B. Kale, and J. O. Baeg, “Synthesis of Nanosize-Necked Structure α- and γ-Fe2O3 and its Photocatalytic Activity,” J. Am. Ceram. Soc.90(2), 412–414 (2007).
[CrossRef]

2004 (1)

H. Koerner, J. Jacobs, D. Tomlin, J. Busbee, and R. Vaia, “Tuning Polymer Nanocomposite Morphology: AC Electric Field Manipulation of Epoxy–Montmorillonite (Clay) Suspensions,” Adv. Mater.16(4), 297–302 (2004).
[CrossRef]

Apte, S. K.

S. K. Apte, S. D. Naik, R. S. Sonawane, B. B. Kale, and J. O. Baeg, “Synthesis of Nanosize-Necked Structure α- and γ-Fe2O3 and its Photocatalytic Activity,” J. Am. Ceram. Soc.90(2), 412–414 (2007).
[CrossRef]

Baeg, J. O.

S. K. Apte, S. D. Naik, R. S. Sonawane, B. B. Kale, and J. O. Baeg, “Synthesis of Nanosize-Necked Structure α- and γ-Fe2O3 and its Photocatalytic Activity,” J. Am. Ceram. Soc.90(2), 412–414 (2007).
[CrossRef]

Busbee, J.

H. Koerner, J. Jacobs, D. Tomlin, J. Busbee, and R. Vaia, “Tuning Polymer Nanocomposite Morphology: AC Electric Field Manipulation of Epoxy–Montmorillonite (Clay) Suspensions,” Adv. Mater.16(4), 297–302 (2004).
[CrossRef]

Chang, K.

X. J. Li and K. Chang, “Electric-field tuning s-d exchange interaction in quantum dots,” Appl. Phys. Lett.92(7), 071116 (2008).
[CrossRef]

Chu, W.-S.

Dadoenkova, Yu. S.

Yu. S. Dadoenkova, I. L. Lyubchanskii, Y. P. Lee, and Th. Rasing, “Electric field controlled Faraday rotation in an electro-optic/magneto-optic bilayer,” Appl. Phys. Lett.97(1), 011901 (2010).
[CrossRef]

DePrince, A. E.

A. E. DePrince and R. J. Hinde, “Accurate Computation of Electric Field Enhancement Factors for Metallic Nanoparticles Using the Discrete Dipole Approximation,” Nanoscale Res. Lett.5(3), 592–596 (2010).
[CrossRef] [PubMed]

Fediv, V. I.

A. I. Savchuk, V. I. Fediv, S. A. Savchuk, and V. V. Makoviy, “Optical and magneto-optical diagnostics of polymer/nanoparticles colloidal solutions and composites,” Proc. SPIE7388, 73880Z (2009).
[CrossRef]

Fujimoto, Y.

Fujita, H.

Furst, E. M.

M. Mittal, P. P. Lele, E. W. Kaler, and E. M. Furst, “Polarization and interactions of colloidal particles in ac electric fields,” J. Chem. Phys.129(6), 064513 (2008).
[CrossRef] [PubMed]

Gangopadhyay, P.

A. Lopez-Santiago, P. Gangopadhyay, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation in magnetite-polymethylmethacrylate core-shell nanocomposites with high optical quality,” Appl. Phys. Lett.95(14), 143302 (2009).
[CrossRef]

Golubchik, D.

Han, W. T.

Hinde, R. J.

A. E. DePrince and R. J. Hinde, “Accurate Computation of Electric Field Enhancement Factors for Metallic Nanoparticles Using the Discrete Dipole Approximation,” Nanoscale Res. Lett.5(3), 592–596 (2010).
[CrossRef] [PubMed]

Jacobs, J.

H. Koerner, J. Jacobs, D. Tomlin, J. Busbee, and R. Vaia, “Tuning Polymer Nanocomposite Morphology: AC Electric Field Manipulation of Epoxy–Montmorillonite (Clay) Suspensions,” Adv. Mater.16(4), 297–302 (2004).
[CrossRef]

Jeong, S.

Jiang, S.

Ju, S.

Kale, B. B.

S. K. Apte, S. D. Naik, R. S. Sonawane, B. B. Kale, and J. O. Baeg, “Synthesis of Nanosize-Necked Structure α- and γ-Fe2O3 and its Photocatalytic Activity,” J. Am. Ceram. Soc.90(2), 412–414 (2007).
[CrossRef]

Kaler, E. W.

M. Mittal, P. P. Lele, E. W. Kaler, and E. M. Furst, “Polarization and interactions of colloidal particles in ac electric fields,” J. Chem. Phys.129(6), 064513 (2008).
[CrossRef] [PubMed]

Kim, H.

Kim, J.-W.

Kim, K.-J.

Kim, S. A.

Kim, Y.

Kinoshita, H.

Koerner, H.

H. Koerner, J. Jacobs, D. Tomlin, J. Busbee, and R. Vaia, “Tuning Polymer Nanocomposite Morphology: AC Electric Field Manipulation of Epoxy–Montmorillonite (Clay) Suspensions,” Adv. Mater.16(4), 297–302 (2004).
[CrossRef]

Koren, G.

Lee, Y. P.

Yu. S. Dadoenkova, I. L. Lyubchanskii, Y. P. Lee, and Th. Rasing, “Electric field controlled Faraday rotation in an electro-optic/magneto-optic bilayer,” Appl. Phys. Lett.97(1), 011901 (2010).
[CrossRef]

Lele, P. P.

M. Mittal, P. P. Lele, E. W. Kaler, and E. M. Furst, “Polarization and interactions of colloidal particles in ac electric fields,” J. Chem. Phys.129(6), 064513 (2008).
[CrossRef] [PubMed]

Li, X. J.

X. J. Li and K. Chang, “Electric-field tuning s-d exchange interaction in quantum dots,” Appl. Phys. Lett.92(7), 071116 (2008).
[CrossRef]

Lipson, S. G.

Lopez-Santiago, A.

A. Lopez-Santiago, P. Gangopadhyay, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation in magnetite-polymethylmethacrylate core-shell nanocomposites with high optical quality,” Appl. Phys. Lett.95(14), 143302 (2009).
[CrossRef]

Lu, W.

J. Park and W. Lu, “Orientation of core-shell nanoparticles in an electric field,” Appl. Phys. Lett.91(5), 053113 (2007).
[CrossRef]

Lyubchanskii, I. L.

Yu. S. Dadoenkova, I. L. Lyubchanskii, Y. P. Lee, and Th. Rasing, “Electric field controlled Faraday rotation in an electro-optic/magneto-optic bilayer,” Appl. Phys. Lett.97(1), 011901 (2010).
[CrossRef]

Makoviy, V. V.

A. I. Savchuk, V. I. Fediv, S. A. Savchuk, and V. V. Makoviy, “Optical and magneto-optical diagnostics of polymer/nanoparticles colloidal solutions and composites,” Proc. SPIE7388, 73880Z (2009).
[CrossRef]

Marciante, J. R.

Mikami, K.

Mittal, M.

M. Mittal, P. P. Lele, E. W. Kaler, and E. M. Furst, “Polarization and interactions of colloidal particles in ac electric fields,” J. Chem. Phys.129(6), 064513 (2008).
[CrossRef] [PubMed]

Miyanaga, N.

Nagata, Y.

Naik, S. D.

S. K. Apte, S. D. Naik, R. S. Sonawane, B. B. Kale, and J. O. Baeg, “Synthesis of Nanosize-Necked Structure α- and γ-Fe2O3 and its Photocatalytic Activity,” J. Am. Ceram. Soc.90(2), 412–414 (2007).
[CrossRef]

Norwood, R. A.

A. Lopez-Santiago, P. Gangopadhyay, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation in magnetite-polymethylmethacrylate core-shell nanocomposites with high optical quality,” Appl. Phys. Lett.95(14), 143302 (2009).
[CrossRef]

Nozawa, H.

Oh, M.-C.

Park, J.

J. Park and W. Lu, “Orientation of core-shell nanoparticles in an electric field,” Appl. Phys. Lett.91(5), 053113 (2007).
[CrossRef]

Persoons, A.

A. Lopez-Santiago, P. Gangopadhyay, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation in magnetite-polymethylmethacrylate core-shell nanocomposites with high optical quality,” Appl. Phys. Lett.95(14), 143302 (2009).
[CrossRef]

Peyghambarian, N.

A. Lopez-Santiago, P. Gangopadhyay, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation in magnetite-polymethylmethacrylate core-shell nanocomposites with high optical quality,” Appl. Phys. Lett.95(14), 143302 (2009).
[CrossRef]

Polturak, E.

Rasing, Th.

Yu. S. Dadoenkova, I. L. Lyubchanskii, Y. P. Lee, and Th. Rasing, “Electric field controlled Faraday rotation in an electro-optic/magneto-optic bilayer,” Appl. Phys. Lett.97(1), 011901 (2010).
[CrossRef]

Savchuk, A. I.

A. I. Savchuk, V. I. Fediv, S. A. Savchuk, and V. V. Makoviy, “Optical and magneto-optical diagnostics of polymer/nanoparticles colloidal solutions and composites,” Proc. SPIE7388, 73880Z (2009).
[CrossRef]

Savchuk, S. A.

A. I. Savchuk, V. I. Fediv, S. A. Savchuk, and V. V. Makoviy, “Optical and magneto-optical diagnostics of polymer/nanoparticles colloidal solutions and composites,” Proc. SPIE7388, 73880Z (2009).
[CrossRef]

Seo, J.-K.

Sonawane, R. S.

S. K. Apte, S. D. Naik, R. S. Sonawane, B. B. Kale, and J. O. Baeg, “Synthesis of Nanosize-Necked Structure α- and γ-Fe2O3 and its Photocatalytic Activity,” J. Am. Ceram. Soc.90(2), 412–414 (2007).
[CrossRef]

Sun, L.

Thomas, J.

A. Lopez-Santiago, P. Gangopadhyay, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation in magnetite-polymethylmethacrylate core-shell nanocomposites with high optical quality,” Appl. Phys. Lett.95(14), 143302 (2009).
[CrossRef]

Tomlin, D.

H. Koerner, J. Jacobs, D. Tomlin, J. Busbee, and R. Vaia, “Tuning Polymer Nanocomposite Morphology: AC Electric Field Manipulation of Epoxy–Montmorillonite (Clay) Suspensions,” Adv. Mater.16(4), 297–302 (2004).
[CrossRef]

Tsubakimoto, K.

Vaia, R.

H. Koerner, J. Jacobs, D. Tomlin, J. Busbee, and R. Vaia, “Tuning Polymer Nanocomposite Morphology: AC Electric Field Manipulation of Epoxy–Montmorillonite (Clay) Suspensions,” Adv. Mater.16(4), 297–302 (2004).
[CrossRef]

Watekar, P. R.

Yagi, H.

Yanagitani, T.

Yoshida, H.

Adv. Mater. (1)

H. Koerner, J. Jacobs, D. Tomlin, J. Busbee, and R. Vaia, “Tuning Polymer Nanocomposite Morphology: AC Electric Field Manipulation of Epoxy–Montmorillonite (Clay) Suspensions,” Adv. Mater.16(4), 297–302 (2004).
[CrossRef]

Appl. Phys. Lett. (4)

A. Lopez-Santiago, P. Gangopadhyay, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation in magnetite-polymethylmethacrylate core-shell nanocomposites with high optical quality,” Appl. Phys. Lett.95(14), 143302 (2009).
[CrossRef]

J. Park and W. Lu, “Orientation of core-shell nanoparticles in an electric field,” Appl. Phys. Lett.91(5), 053113 (2007).
[CrossRef]

Yu. S. Dadoenkova, I. L. Lyubchanskii, Y. P. Lee, and Th. Rasing, “Electric field controlled Faraday rotation in an electro-optic/magneto-optic bilayer,” Appl. Phys. Lett.97(1), 011901 (2010).
[CrossRef]

X. J. Li and K. Chang, “Electric-field tuning s-d exchange interaction in quantum dots,” Appl. Phys. Lett.92(7), 071116 (2008).
[CrossRef]

J. Am. Ceram. Soc. (1)

S. K. Apte, S. D. Naik, R. S. Sonawane, B. B. Kale, and J. O. Baeg, “Synthesis of Nanosize-Necked Structure α- and γ-Fe2O3 and its Photocatalytic Activity,” J. Am. Ceram. Soc.90(2), 412–414 (2007).
[CrossRef]

J. Chem. Phys. (1)

M. Mittal, P. P. Lele, E. W. Kaler, and E. M. Furst, “Polarization and interactions of colloidal particles in ac electric fields,” J. Chem. Phys.129(6), 064513 (2008).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

Nanoscale Res. Lett. (1)

A. E. DePrince and R. J. Hinde, “Accurate Computation of Electric Field Enhancement Factors for Metallic Nanoparticles Using the Discrete Dipole Approximation,” Nanoscale Res. Lett.5(3), 592–596 (2010).
[CrossRef] [PubMed]

Opt. Express (4)

Proc. SPIE (1)

A. I. Savchuk, V. I. Fediv, S. A. Savchuk, and V. V. Makoviy, “Optical and magneto-optical diagnostics of polymer/nanoparticles colloidal solutions and composites,” Proc. SPIE7388, 73880Z (2009).
[CrossRef]

Other (1)

A. Yariv and P. Yeh, Optics of Waves in Crystals (Wiley, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for determination of Faraday rotation angle and Verdet constant.

Fig. 2
Fig. 2

(a) TEM image of a maghemite nanoparticle. (b) FESEM of the dopant maghemite particles. (c) Nanoparticle axes with respect to applied electric field.

Fig. 3
Fig. 3

(a) SAXS scattering intensities for electric field oriented polymer nanocomposites. (b) Nanoparticle size distribution obtained via SAXS. (c) XRD info for maghemite with diffraction peaks.

Fig. 4
Fig. 4

(a) TEM image of anisotropic maghemite nanoparticle in PMVS. (b) Oriented maghemite nanoparticles in PMVS. E0 is the electric field applied and τ is the torque causing the orientation.

Fig. 5
Fig. 5

Measured Faraday rotation angles for (a) 0.03wt% γ-PMVS and (b) 0.06wt% γ-PMVS.

Fig. 6
Fig. 6

(a) Variation of measured Faraday rotation angle with respect to orienting electric field. The readings correspond to a magnetic field of 34.1 mT rms. (b) Non-linear magneto-optic response as a function of electric field duration.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

θ f =μVHL
E np = E 0 [ 1( ε n ε p 1 )( a b 2 2 ) 0 1 ( a 2 +u) 3/2 ( b 2 +u) du ]
τ=ν ε p E np 2 sin2α 2
B=μH+Λ E np
θ f =VBL=V(μH+Λ E np )L
θ f =( n L n R )πL/λ

Metrics