Abstract

The formation speed of a self-written waveguide structure formed owing to the propagation of surface waves in a photorefractive polymer composite is measured. The formation speed linearly increases with the power of a laser beam. From the measurements of the dynamics of photorefractive grating and the photocurrent output of the polymer, it is revealed that the waveguide structure is formed by a single photorefractive grating, which is identical for the different power levels of the injected pump beam.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Chen, M. Asaro, O. Ostroverkhova, W. E. Moerner, M. He, and R. J. Twieg, “Self-trapping of light in an organic photorefractive glass,” Opt. Lett.28(24), 2509–2511 (2003).
    [CrossRef] [PubMed]
  2. M. Asaro, M. Sheldon, Z. Chen, O. Ostroverkhova, and W. E. Moerner, “Soliton-induced waveguides in an organic photorefractive glass,” Opt. Lett.30(5), 519–521 (2005).
    [CrossRef] [PubMed]
  3. A. A. Kamshilin, E. Raita, and A. V. Khomenko, “Intensity redistribution in a thin photorefractive crystal caused by strong fanning effect and internal reflections,” J. Opt. Soc. Am. B13(11), 2536–2543 (1996).
    [CrossRef]
  4. V. Aleshkevich, Y. Kartashov, A. Egorov, and V. Vysloukh, “Stability and formation of localized surface waves at the dielectric—photorefractive crystal boundary,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 056610 (2001).
    [CrossRef] [PubMed]
  5. O. V. Lyubomudrov and V. V. Shkunov, “Self-bending specklons in photorefractive crystals,” J. Opt. Soc. Am. B11(8), 1403–1408 (1994).
    [CrossRef]
  6. I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett.83(12), 2429–2432 (1999).
    [CrossRef]
  7. W. Shao, L. Li, W. Liu, T. Zhang, H. Ma, J. Xu, and J. Tian, “Tunable long-range surface plasmon polaritons taking advantage of nonlinear surface waves,” Appl. Phys. Lett.95(21), 211105 (2009).
    [CrossRef]
  8. E. Raita, A. A. Kamshilin, and T. Jaaskelainen, “Fast mutually pumped phase conjugation induced by a transient photorefractive surface wave,” J. Opt. Soc. Am. B15(7), 2023–2031 (1998).
    [CrossRef]
  9. T. Fujihara, T. Sassa, T. Muto, S. Umegaki, and T. Wada, “Surface waves in photorefractive polymer films,” Opt. Express17(16), 14150–14155 (2009).
    [CrossRef] [PubMed]
  10. X. K. Ren, D. Y. Yang, T. H. Zhang, S. Zhang, L. Zhou, J. G. Tian, and J. J. Xu, “Polymeric photorefractive surface waves,” Opt. Commun.283(19), 3792–3797 (2010).
    [CrossRef]
  11. T. Sassa, T. Muto, T. Wada, Y. Takeda, T. Fujihara, and S. Umegaki, “Strongly electric-field-dependent spatial properties of fanning beam in polymeric medium,” Appl. Phys. Lett.86(8), 084103 (2005).
    [CrossRef]
  12. O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev.104(7), 3267–3314 (2004).
    [CrossRef] [PubMed]
  13. R. Bittner and K. Meerholz, “Amorphous organic photorefractiver materials,” in Photorefractive Materials and Their Applications, P. Gunter and J.-P. Huignard, eds. (Springer, New York, 2007), Vol. 2.
  14. S. Matsushima and Y. Tomita, “Experimental investigation of the relationship between photorefractive and two-beam coupling response times,” Opt. Commun.128(4-6), 287–291 (1996).
    [CrossRef]
  15. A. V. Khomenko, E. Nippolainen, A. A. Kamshilin, A. Zúñiga Segundo, and T. Jaaskelainen, “Leaky photorefractive surface waves in Bi12TiO20 and Bi12SiO20 crystals,” Opt. Commun.150(1-6), 175–179 (1998).
    [CrossRef]

2010 (1)

X. K. Ren, D. Y. Yang, T. H. Zhang, S. Zhang, L. Zhou, J. G. Tian, and J. J. Xu, “Polymeric photorefractive surface waves,” Opt. Commun.283(19), 3792–3797 (2010).
[CrossRef]

2009 (2)

T. Fujihara, T. Sassa, T. Muto, S. Umegaki, and T. Wada, “Surface waves in photorefractive polymer films,” Opt. Express17(16), 14150–14155 (2009).
[CrossRef] [PubMed]

W. Shao, L. Li, W. Liu, T. Zhang, H. Ma, J. Xu, and J. Tian, “Tunable long-range surface plasmon polaritons taking advantage of nonlinear surface waves,” Appl. Phys. Lett.95(21), 211105 (2009).
[CrossRef]

2005 (2)

M. Asaro, M. Sheldon, Z. Chen, O. Ostroverkhova, and W. E. Moerner, “Soliton-induced waveguides in an organic photorefractive glass,” Opt. Lett.30(5), 519–521 (2005).
[CrossRef] [PubMed]

T. Sassa, T. Muto, T. Wada, Y. Takeda, T. Fujihara, and S. Umegaki, “Strongly electric-field-dependent spatial properties of fanning beam in polymeric medium,” Appl. Phys. Lett.86(8), 084103 (2005).
[CrossRef]

2004 (1)

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev.104(7), 3267–3314 (2004).
[CrossRef] [PubMed]

2003 (1)

2001 (1)

V. Aleshkevich, Y. Kartashov, A. Egorov, and V. Vysloukh, “Stability and formation of localized surface waves at the dielectric—photorefractive crystal boundary,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 056610 (2001).
[CrossRef] [PubMed]

1999 (1)

I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett.83(12), 2429–2432 (1999).
[CrossRef]

1998 (2)

E. Raita, A. A. Kamshilin, and T. Jaaskelainen, “Fast mutually pumped phase conjugation induced by a transient photorefractive surface wave,” J. Opt. Soc. Am. B15(7), 2023–2031 (1998).
[CrossRef]

A. V. Khomenko, E. Nippolainen, A. A. Kamshilin, A. Zúñiga Segundo, and T. Jaaskelainen, “Leaky photorefractive surface waves in Bi12TiO20 and Bi12SiO20 crystals,” Opt. Commun.150(1-6), 175–179 (1998).
[CrossRef]

1996 (2)

S. Matsushima and Y. Tomita, “Experimental investigation of the relationship between photorefractive and two-beam coupling response times,” Opt. Commun.128(4-6), 287–291 (1996).
[CrossRef]

A. A. Kamshilin, E. Raita, and A. V. Khomenko, “Intensity redistribution in a thin photorefractive crystal caused by strong fanning effect and internal reflections,” J. Opt. Soc. Am. B13(11), 2536–2543 (1996).
[CrossRef]

1994 (1)

Aleshkevich, V.

V. Aleshkevich, Y. Kartashov, A. Egorov, and V. Vysloukh, “Stability and formation of localized surface waves at the dielectric—photorefractive crystal boundary,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 056610 (2001).
[CrossRef] [PubMed]

Asaro, M.

Chen, Z.

Davis, C. C.

I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett.83(12), 2429–2432 (1999).
[CrossRef]

Egorov, A.

V. Aleshkevich, Y. Kartashov, A. Egorov, and V. Vysloukh, “Stability and formation of localized surface waves at the dielectric—photorefractive crystal boundary,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 056610 (2001).
[CrossRef] [PubMed]

Fujihara, T.

T. Fujihara, T. Sassa, T. Muto, S. Umegaki, and T. Wada, “Surface waves in photorefractive polymer films,” Opt. Express17(16), 14150–14155 (2009).
[CrossRef] [PubMed]

T. Sassa, T. Muto, T. Wada, Y. Takeda, T. Fujihara, and S. Umegaki, “Strongly electric-field-dependent spatial properties of fanning beam in polymeric medium,” Appl. Phys. Lett.86(8), 084103 (2005).
[CrossRef]

He, M.

Jaaskelainen, T.

E. Raita, A. A. Kamshilin, and T. Jaaskelainen, “Fast mutually pumped phase conjugation induced by a transient photorefractive surface wave,” J. Opt. Soc. Am. B15(7), 2023–2031 (1998).
[CrossRef]

A. V. Khomenko, E. Nippolainen, A. A. Kamshilin, A. Zúñiga Segundo, and T. Jaaskelainen, “Leaky photorefractive surface waves in Bi12TiO20 and Bi12SiO20 crystals,” Opt. Commun.150(1-6), 175–179 (1998).
[CrossRef]

Kamshilin, A. A.

Kartashov, Y.

V. Aleshkevich, Y. Kartashov, A. Egorov, and V. Vysloukh, “Stability and formation of localized surface waves at the dielectric—photorefractive crystal boundary,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 056610 (2001).
[CrossRef] [PubMed]

Khomenko, A. V.

A. V. Khomenko, E. Nippolainen, A. A. Kamshilin, A. Zúñiga Segundo, and T. Jaaskelainen, “Leaky photorefractive surface waves in Bi12TiO20 and Bi12SiO20 crystals,” Opt. Commun.150(1-6), 175–179 (1998).
[CrossRef]

A. A. Kamshilin, E. Raita, and A. V. Khomenko, “Intensity redistribution in a thin photorefractive crystal caused by strong fanning effect and internal reflections,” J. Opt. Soc. Am. B13(11), 2536–2543 (1996).
[CrossRef]

Lee, C. H.

I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett.83(12), 2429–2432 (1999).
[CrossRef]

Li, L.

W. Shao, L. Li, W. Liu, T. Zhang, H. Ma, J. Xu, and J. Tian, “Tunable long-range surface plasmon polaritons taking advantage of nonlinear surface waves,” Appl. Phys. Lett.95(21), 211105 (2009).
[CrossRef]

Liu, W.

W. Shao, L. Li, W. Liu, T. Zhang, H. Ma, J. Xu, and J. Tian, “Tunable long-range surface plasmon polaritons taking advantage of nonlinear surface waves,” Appl. Phys. Lett.95(21), 211105 (2009).
[CrossRef]

Lyubomudrov, O. V.

Ma, H.

W. Shao, L. Li, W. Liu, T. Zhang, H. Ma, J. Xu, and J. Tian, “Tunable long-range surface plasmon polaritons taking advantage of nonlinear surface waves,” Appl. Phys. Lett.95(21), 211105 (2009).
[CrossRef]

Matsushima, S.

S. Matsushima and Y. Tomita, “Experimental investigation of the relationship between photorefractive and two-beam coupling response times,” Opt. Commun.128(4-6), 287–291 (1996).
[CrossRef]

Moerner, W. E.

Muto, T.

T. Fujihara, T. Sassa, T. Muto, S. Umegaki, and T. Wada, “Surface waves in photorefractive polymer films,” Opt. Express17(16), 14150–14155 (2009).
[CrossRef] [PubMed]

T. Sassa, T. Muto, T. Wada, Y. Takeda, T. Fujihara, and S. Umegaki, “Strongly electric-field-dependent spatial properties of fanning beam in polymeric medium,” Appl. Phys. Lett.86(8), 084103 (2005).
[CrossRef]

Nippolainen, E.

A. V. Khomenko, E. Nippolainen, A. A. Kamshilin, A. Zúñiga Segundo, and T. Jaaskelainen, “Leaky photorefractive surface waves in Bi12TiO20 and Bi12SiO20 crystals,” Opt. Commun.150(1-6), 175–179 (1998).
[CrossRef]

Ostroverkhova, O.

Raita, E.

Ren, X. K.

X. K. Ren, D. Y. Yang, T. H. Zhang, S. Zhang, L. Zhou, J. G. Tian, and J. J. Xu, “Polymeric photorefractive surface waves,” Opt. Commun.283(19), 3792–3797 (2010).
[CrossRef]

Sassa, T.

T. Fujihara, T. Sassa, T. Muto, S. Umegaki, and T. Wada, “Surface waves in photorefractive polymer films,” Opt. Express17(16), 14150–14155 (2009).
[CrossRef] [PubMed]

T. Sassa, T. Muto, T. Wada, Y. Takeda, T. Fujihara, and S. Umegaki, “Strongly electric-field-dependent spatial properties of fanning beam in polymeric medium,” Appl. Phys. Lett.86(8), 084103 (2005).
[CrossRef]

Shao, W.

W. Shao, L. Li, W. Liu, T. Zhang, H. Ma, J. Xu, and J. Tian, “Tunable long-range surface plasmon polaritons taking advantage of nonlinear surface waves,” Appl. Phys. Lett.95(21), 211105 (2009).
[CrossRef]

Sheldon, M.

Shkunov, V. V.

Smolyaninov, I. I.

I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett.83(12), 2429–2432 (1999).
[CrossRef]

Takeda, Y.

T. Sassa, T. Muto, T. Wada, Y. Takeda, T. Fujihara, and S. Umegaki, “Strongly electric-field-dependent spatial properties of fanning beam in polymeric medium,” Appl. Phys. Lett.86(8), 084103 (2005).
[CrossRef]

Tian, J.

W. Shao, L. Li, W. Liu, T. Zhang, H. Ma, J. Xu, and J. Tian, “Tunable long-range surface plasmon polaritons taking advantage of nonlinear surface waves,” Appl. Phys. Lett.95(21), 211105 (2009).
[CrossRef]

Tian, J. G.

X. K. Ren, D. Y. Yang, T. H. Zhang, S. Zhang, L. Zhou, J. G. Tian, and J. J. Xu, “Polymeric photorefractive surface waves,” Opt. Commun.283(19), 3792–3797 (2010).
[CrossRef]

Tomita, Y.

S. Matsushima and Y. Tomita, “Experimental investigation of the relationship between photorefractive and two-beam coupling response times,” Opt. Commun.128(4-6), 287–291 (1996).
[CrossRef]

Twieg, R. J.

Umegaki, S.

T. Fujihara, T. Sassa, T. Muto, S. Umegaki, and T. Wada, “Surface waves in photorefractive polymer films,” Opt. Express17(16), 14150–14155 (2009).
[CrossRef] [PubMed]

T. Sassa, T. Muto, T. Wada, Y. Takeda, T. Fujihara, and S. Umegaki, “Strongly electric-field-dependent spatial properties of fanning beam in polymeric medium,” Appl. Phys. Lett.86(8), 084103 (2005).
[CrossRef]

Vysloukh, V.

V. Aleshkevich, Y. Kartashov, A. Egorov, and V. Vysloukh, “Stability and formation of localized surface waves at the dielectric—photorefractive crystal boundary,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 056610 (2001).
[CrossRef] [PubMed]

Wada, T.

T. Fujihara, T. Sassa, T. Muto, S. Umegaki, and T. Wada, “Surface waves in photorefractive polymer films,” Opt. Express17(16), 14150–14155 (2009).
[CrossRef] [PubMed]

T. Sassa, T. Muto, T. Wada, Y. Takeda, T. Fujihara, and S. Umegaki, “Strongly electric-field-dependent spatial properties of fanning beam in polymeric medium,” Appl. Phys. Lett.86(8), 084103 (2005).
[CrossRef]

Xu, J.

W. Shao, L. Li, W. Liu, T. Zhang, H. Ma, J. Xu, and J. Tian, “Tunable long-range surface plasmon polaritons taking advantage of nonlinear surface waves,” Appl. Phys. Lett.95(21), 211105 (2009).
[CrossRef]

Xu, J. J.

X. K. Ren, D. Y. Yang, T. H. Zhang, S. Zhang, L. Zhou, J. G. Tian, and J. J. Xu, “Polymeric photorefractive surface waves,” Opt. Commun.283(19), 3792–3797 (2010).
[CrossRef]

Yang, D. Y.

X. K. Ren, D. Y. Yang, T. H. Zhang, S. Zhang, L. Zhou, J. G. Tian, and J. J. Xu, “Polymeric photorefractive surface waves,” Opt. Commun.283(19), 3792–3797 (2010).
[CrossRef]

Zhang, S.

X. K. Ren, D. Y. Yang, T. H. Zhang, S. Zhang, L. Zhou, J. G. Tian, and J. J. Xu, “Polymeric photorefractive surface waves,” Opt. Commun.283(19), 3792–3797 (2010).
[CrossRef]

Zhang, T.

W. Shao, L. Li, W. Liu, T. Zhang, H. Ma, J. Xu, and J. Tian, “Tunable long-range surface plasmon polaritons taking advantage of nonlinear surface waves,” Appl. Phys. Lett.95(21), 211105 (2009).
[CrossRef]

Zhang, T. H.

X. K. Ren, D. Y. Yang, T. H. Zhang, S. Zhang, L. Zhou, J. G. Tian, and J. J. Xu, “Polymeric photorefractive surface waves,” Opt. Commun.283(19), 3792–3797 (2010).
[CrossRef]

Zhou, L.

X. K. Ren, D. Y. Yang, T. H. Zhang, S. Zhang, L. Zhou, J. G. Tian, and J. J. Xu, “Polymeric photorefractive surface waves,” Opt. Commun.283(19), 3792–3797 (2010).
[CrossRef]

Zúñiga Segundo, A.

A. V. Khomenko, E. Nippolainen, A. A. Kamshilin, A. Zúñiga Segundo, and T. Jaaskelainen, “Leaky photorefractive surface waves in Bi12TiO20 and Bi12SiO20 crystals,” Opt. Commun.150(1-6), 175–179 (1998).
[CrossRef]

Appl. Phys. Lett. (2)

W. Shao, L. Li, W. Liu, T. Zhang, H. Ma, J. Xu, and J. Tian, “Tunable long-range surface plasmon polaritons taking advantage of nonlinear surface waves,” Appl. Phys. Lett.95(21), 211105 (2009).
[CrossRef]

T. Sassa, T. Muto, T. Wada, Y. Takeda, T. Fujihara, and S. Umegaki, “Strongly electric-field-dependent spatial properties of fanning beam in polymeric medium,” Appl. Phys. Lett.86(8), 084103 (2005).
[CrossRef]

Chem. Rev. (1)

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev.104(7), 3267–3314 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (3)

Opt. Commun. (3)

S. Matsushima and Y. Tomita, “Experimental investigation of the relationship between photorefractive and two-beam coupling response times,” Opt. Commun.128(4-6), 287–291 (1996).
[CrossRef]

A. V. Khomenko, E. Nippolainen, A. A. Kamshilin, A. Zúñiga Segundo, and T. Jaaskelainen, “Leaky photorefractive surface waves in Bi12TiO20 and Bi12SiO20 crystals,” Opt. Commun.150(1-6), 175–179 (1998).
[CrossRef]

X. K. Ren, D. Y. Yang, T. H. Zhang, S. Zhang, L. Zhou, J. G. Tian, and J. J. Xu, “Polymeric photorefractive surface waves,” Opt. Commun.283(19), 3792–3797 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

V. Aleshkevich, Y. Kartashov, A. Egorov, and V. Vysloukh, “Stability and formation of localized surface waves at the dielectric—photorefractive crystal boundary,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 056610 (2001).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett.83(12), 2429–2432 (1999).
[CrossRef]

Other (1)

R. Bittner and K. Meerholz, “Amorphous organic photorefractiver materials,” in Photorefractive Materials and Their Applications, P. Gunter and J.-P. Huignard, eds. (Springer, New York, 2007), Vol. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Structures of components of photorefractive polymer composite used in this work.

Fig. 2
Fig. 2

Schematic of experimental setup for evaluation of formation speed of surface wave based waveguide (a) and asymmetric PR cell sample for generation of surface waves (b). Slit size was ca. 25 mm.

Fig. 3
Fig. 3

Schematic of experimental setup for four-wave mixing (FWM) to measure diffracted beam power from PR index gratings. Diameters of pump beams were 0.8 mm.

Fig. 4
Fig. 4

Temporal changes in detected light power collected through slit for several pump power levels. Dotted lines represent biexponential fitting curves. Inset shows image of the surface wave projected on image plane, in which dotted lines represent interfaces between substrates S1 and S2, and polymer layer.

Fig. 5
Fig. 5

Formation speed of waveguide structure. Solid line represents the result of linear fitting of obtained plots.

Fig. 6
Fig. 6

Speed of refractive index change obtained from FWM experiment for different pump beam intensities. Solid line represents the result of linear fitting of obtained plots. Inset shows typical diffraction signal (plots) of FWM experiment and result of a least square fitting (solid curve).

Fig. 7
Fig. 7

Experimental result of photocurrent measurements. Electric field of 40 V/μm was applied to sample with the thickness of ca. 50 μm. Pump beam diameter was adjusted to 3 mm so as to cover the electrode area. Solid line represents the result of a linear fitting of obtained plots.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ 1 =a( Λ ) σ ph ( I ) with  σ ph I,

Metrics